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Hybrid Services with Future Channel Gains
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Abstract

In this paper, we propose a framework to maximize energy efficiency (EE) of a system supporting

real-time (RT) and non-real-time services by exploiting future average channel gains of mobile users,

which change in the timescale of seconds and are reported predictable within a minute-long time window.

To demonstrate the potential of improving EE by jointly optimizing resource allocation for both services

by harnessing both future average channel gains and current instantaneous channel gains, we optimize

a two-timescale policy with perfect prediction, by taking orthogonal frequency division multiple access

system serving RT and video-on-demand (VoD) users as an example. Considering that fine-grained

prediction for every user is with high cost, we propose a heuristic policy that only needs to predict

the median of average channel gains of VoD users. Simulation results show that the optimal policy

outperforms relevant counterparts, indicating the necessity of the joint optimization for both services

and for two timescales. Besides, the heuristic policy performs closely to the optimal policy with perfect

prediction while becomes superior with large prediction errors. This suggests that the EE gain over

non-predictive policies can be captured with coarse-grained prediction.

Index Terms

Energy efficiency, predictive resource allocation, future information, VoD services, real-time services

I. INTRODUCTION

To support the ever-growing traffic demands, the main trend techniques of future mobile com-

munications are exploring wider spectrum and deploying more antennas or base stations (BSs).

Yet due to temporal-spatial traffic fluctuations, existing cellular networks, usually optimized for

fully loaded scenarios, are often observed not-busy in many places. According to the recent data

analysis in [2], only a small portion of radio resources in Long Term Evolution (LTE) networks

are truly used in average. To avoid wasting resources when the system is not fully loaded,

energy efficiency (EE) becomes a key performance metric for cellular networks [3]. Recently,

energy-efficient resource allocation has been investigated extensively in literature [4–8].

A part of this work was presented in IEEE/CIC ICCC 2015 [1].
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The dynamic nature of traffic load comes from user behaviors such as mobility and activities,

which change in a much longer timescale than channel state information (CSI) and have long been

regarded as random in wireless system design. However, the research efforts in other domains

demonstrate that some user behaviors, say mobility pattern, are highly predictable [9–12]. With

the predicted trajectory, radio resources can be allocated adaptive to network dynamics caused

by user mobility. This provides a promising way to circumvent the resource under-utilization.

By harnessing future information in a minute-level time horizon, predictive resource allocation

(PRA) has been shown to provide remarkable gain in terms of improving network EE, throughput,

and user experience than the non-predictive counterparts [12–21]. The gain of PRA has been

validated by recent data-driven analysis [2, 16, 22].

Prevalent resource allocation policies are non-predictive, which are optimized with instan-

taneous or average channel gain in the current time slot or frame varying in the timescales of

milliseconds or seconds [4–8]. Different from these policies, PRA leverages future information in

a minutes-long window [13,18,19]. By predicting trajectory [10,23] and constructing radio map

[24,25], the future average channel gain (also called large-scale channel gain interchangeably in

the sequel) in each frame can be predicted [23]. By using the historical record of the modulation

and coding scheme for a mobile user, its average data rate in each frame of a 30-seconds

time window is predicted in [2]. Though predicting information in such horizon is possible

with machine learning, the prediction itself incurs extra costs for training and data gathering

[10,23–25]. To achieve the gain of PRA at affordable costs, it is critical to study what information

needs to be predicted and how to exploit different information effectively.

Maximizing the EE of a network should not compromise the quality-of-service (QoS) of

users. Future cellular networks need to support diverse services with different QoS provision

[26]. One type is real-time (RT) services such as video conference and voice over IP that

require stringent QoS [26]. For this type of services, a data packet becomes useless once its

required delay is violated. Hence, the QoS is characterized by the statistical QoS requirement,

defined as a delay bound and a delay bound violation probability, whose values depend on

specific service [27]. The other type is non-real-time (NRT) services such as file downloading

and video-on-demand (VoD). For VoD services, the video quality and playback interruption

are key metrics for user experience [28]. To meet the demands of different services efficiently,

softwarization techniques such as network function virtualization (NFV) and software-defined
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networking (SDN) are proposed for the fifth generation (5G) networks [29, 30]. SDN manages

radio resources and traffic flows in a centralized manner with a global view of the network state

[30]. NFV is a viable way to provide a network slice tailored to each service [31]. In fact, with

the global view of future average channel gains, the network performance can be improved by

jointly optimizing predictive resource allocation for different types of services subject to the

QoS of each user. However, existing works in the area of NFV/SDN focus on how to meet the

demands of each kind of services rather than ensure the QoS of each user, and do not investigate

how to harness the predictable trajectories of mobile users.

A. Related Works

Predictive resource allocation has been optimized separately for RT and NRT services.

For users requesting RT services, PRA is usually designed for improving admission level QoS

via mobility management with cell-level mobility prediction [11, 12, 14, 32]. By predicting the

future handoff time and the BS that a RT user will access to, the bandwidth at the next BS

was reserved for the user [32], and a call admission control scheme was proposed in [14]. By

predicting the next several cells a RT user will enter, the delay caused by handoff and signaling

is reduced significantly [11].

For users requesting NRT services, PRA is usually designed for boosting network performance

such as EE or QoS of mobile NRT users with fine-grained prediction [13, 15–19, 22, 33]. Most

existing works of PRA consider VoD service. With known future instantaneous channel gains,

the trade-off between the required resources and the stalling time was investigated in [15]. With

known future average data rates in the frames of a prediction window, the number of time slots in

each frame was optimized in [13] to save energy for ensuring the QoS of each VoD user. In [33],

a practical two-timescale PRA was proposed for LTE systems. In the first timescale, the number

of time slots is optimized based on the rate prediction at the start of the prediction window, while

in the second timescale the subcarriers are allocated in each time slot based on the instantaneous

channel gains. Considering that future data rates cannot be predicted without errors, a robust

PRA policy was optimized in [18] by assuming bounded prediction errors. Further considering

that the time resource occupied by RT services is uncertain due to the random request arrival,

a robust PRA for VoD service was optimized in [19]. A common assumption in [13, 18, 19, 33]

is that the future data rate of each user is predictable. However, the data rate of a wireless
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link depends on the resource allocation among users, i.e., the rate prediction is coupled with

predictive resource allocation. This suggests that PRA with rate prediction is non-optimal. There

also exist a few works of PRA considering the service of file downloading [16, 17]. By using

future average channel gains, a proportional fair scheduling policy was proposed in [16]. With

both future average channel gains of NRT users and average arrival rate of RT traffic, an energy-

saving PRA policy was proposed in [17], where radio resources are reserved for RT services.

B. Motivations and Contributions

All previous PRA policies are only optimized for a single kind of services. All policies are

either optimized in one timescale or separately designed in two timescales. All existing policies

are designed based on the fine-grained information (say trajectory or rate in each second) of

every mobile user. While technically viable, predicting fine-grained information incurs high costs.

For example, to predict fine-grained average channel gains, one needs to predict a fine-grained

trajectory for every user. This requires a large number of training samples and high computational

complexity for the off-line training [23]. Besides, one needs to establish a fine-grained radio map

for the network, where the average channel gains between each location and surrounding BSs

need to be measured and stored, say by expensive drive tests [25].

PRA policies can be optimized toward different objectives, which need very different tech-

niques to find the optimal solutions. In this paper, we consider a not-fully-loaded network. While

throughput-maximal PRA can boost the maximal number of users/requests that the network is

able to support, EE-maximal PRA can save resources when the traffic load is not heavy, which

is often the case in real-world cellular networks [2].

Despite that prior works have demonstrated the potential of PRA, the following questions,

which are important before PRA is put into practice use, remain open: 1) To maximize the EE

of a network, do we need to jointly optimize PRA for different types of services over multiple

timescales? 2) Which kinds of future channel information are needed to maximize EE? 3) Is

it possible to approach the maximal EE with coarse-grained future information? We strive to

answer these questions in this paper. Since the majority of data traffic is from mobile videos, we

take VoD as an example of NRT services. Our major contributions are summarized as follows:

• To show the potential of the joint optimization, we propose a framework to joint optimize

PRA that maximizes the EE of network subject to the QoS requirements for both VoD
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and RT users by using two-timescale channel information. Finding the optimal solution

is challenging, because optimizing the policies in two timescales turns out a functional

extreme problem, which can not be solved by directly using convex optimization tools. To

provide a baseline of comparison for the heuristic policy with coarse-grained prediction,

we assume that the fine-grained future average channel gains for both types of users are

perfectly known as in the existing works. Simulation results show that jointly optimizing

PRA for both types of services and for two timescales can improve EE significantly.

• To show which kind of future information is necessary to maximize EE, we analyze the

degenerated optimization problem for the system serving only RT or VoD users. We find

that predicting the average channel gains in the prediction window is helpful, but further

predicting instantaneous channel gains in future time slots cannot improve EE.

• To illustrate that PRA can achieve high EE even with coarse-grained prediction, we propose

a heuristic policy, inspired by the structure of the optimization problem. This policy only

needs the median of future average channel gains of VoD users. Surprisingly, the heuristic

policy outperforms the optimal policy when the prediction errors are large, thanks to the

fact that a median is insensitive to errors.

II. SYSTEM MODEL AND QOS REQUIREMENTS

Consider the scenario that multiple mobile users travel across the cells of an orthogonal

frequency division multiple access (OFDMA) network. A user either requests for VoD or requests

for RT service. For notational simplicity, we first consider a single cell scenario in this section

and then extend to the multi-cell scenario at the end of the next section.

A. Transmission and Channel Models

Consider frequency-selective block fading channel. Time is discretized to frames each with

duration ∆T and time slots each with duration τ . The durations are defined according to

the variation of large-scale channel gain and small-scale channel gain due to user mobility,

respectively. The large-scale channel gains are predictable within a prediction window, with the

predicted trajectories and a measured radio map [13]. The small-scale channel gains (called

instantaneous channel gains interchangeably in this work, also called CSI in literature) are

predictable [34] within the channel coherence time (i.e., within τ ). For simplicity, we assume

that: (1) the large-scale channel gain remains constant within each frame and may vary among
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frames, and (2) the small-scale channel gain remains constant within each time slot and is

independent and identically distributed (i.i.d.) among time slots in each frame and subcarriers.

Each frame includes NS time slots, i.e., ∆T = NSτ . A prediction window includes NL

successive frames. At the beginning of a prediction window, the average channel gains in future

frames within the window of both types of users are assumed known at the BS. However, CSI

is only known at the BS and the user at the beginning of each time slot.

There are MD + MR users that access to the BS at the beginning of a prediction window,

where MD and MR are the numbers of users requesting VoD and RT services, respectively. For

the mth user, αm
i is the average channel gain in the ith frame, and gmijk is the CSI on the kth

subcarrier in the jth time slot of the ith frame.

The achievable instantaneous data rate for the mth user can be expressed as follows,

smij = B

Km
i
∑

k=1

log2

(

1 +
αm
i

φσ2
0

pmijkg
m
ijk

)

bits/s, (1)

where B is the subcarrier spacing, pmijk is the transmit power allocated to the mth user on the

kth subcarrier in the jth time slot of the ith frame, φ > 1 captures the gap between capacity and

achievable rate with practical modulation and coding schemes, σ2
0 is the variance of the additive

Gaussian noise, and Km
i is the number of subcarriers assigned to the mth user in the ith frame.

B. QoS Requirement for VoD Service

Since the key factor that determines the experience of a user requesting a VoD service is

playback interruption, we consider the queue in the buffer at each user. We assume that the video

segments to be played within the prediction window are available at the BS as in [13, 18, 35].

The queueing model for VoD service is shown in Fig. 1(a), where Rm
i is the amount of data

played at the mth user in the ith frame. The value of Rm
i is given when a certain quality level

of the video is chosen by the user (e.g., high definition video). The amount of data that can be

transmitted to the mth user during the ith frame is given by Sm
i = τ

NS
∑

j=1

smij .

Denote the duration of each video segment as Tseg. Without loss of generality, we set Tseg =

∆T for notational simplicity. Then, there are NL video segments in a prediction window.

Assume that the buffer size is larger than the size of NL video segments. This is reasonable

for smartphones since storage devices are cheap nowadays. The assumption will be removed in

Section IV, where we design a heuristic policy that is aware of limited buffer size.
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(b) Queueing model for the mth RT user.

Fig. 1. Queueing models for VoD and RT services.

To avoid stalling during playback, each video segment should be delivered to a VoD user

before the segment is played. Then, the QoS required by the VoD user can be reflected by the

following constraint [13],

Qm
0 +

l
∑

i=1

Sm
i ≥

l+1
∑

i=1

Rm
i , l = 1, ..., NL, m = 1, ...,MD, (2)

where Qm
0 = Rm

1 is the initial queue length and Rm
NL+1 is the number of bits in the first video

segment to be played in the next prediction window. Hence, no interruption occurs between the

adjacent prediction windows.1 Scalable video coding (SVC) is used to encode videos, i.e., each

video segment is encoded into one base layer and multiple enhancement layers [36]. When the

channel quality is not good such that the data rate cannot satisfy the requirement in (2), we

can reduce the value of Rm
i by not transmitting some enhancement layers. In this way, we can

reduce the stalling probability at the cost of sacrificing the definition of the video.

Since the number of time slots in each frame is large in practice, by channel coding among

time slots, the time-average data rate in a frame can approach the ensemble-average data rate

[37]. From (1), the average data rate for the mth user in the ith frame can be expressed as,

s̄mi = B

Km
i
∑

k=1

Eh

[

log2

(

1 +
αm
i

φσ2
0

pmijkg
m
ijk

)]

bits/s, (3)

where the average is taken over small-scale channel fading. Then, we have Sm
i = ∆T s̄mi , and

the QoS constraint in (2) can be equivalently written as

l
∑

i=1

s̄mi ≥
1

∆T

l+1
∑

i=2

Rm
i , l = 1, ..., NL, m = 1, ...,MD. (4)

1At the beginning of the first prediction window, the user only needs to download the video segment played in the first frame.

This will not lead to long waiting time at the beginning of the service.
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Remark 1. Other NRT services such as file downloading, whose user demand can be charac-

terized as to transmit a file with size R̃m in NL frames, can also be included in our framework.

Its QoS requirement can be expressed as
NL
∑

i=1

s̄mi ≥ R̃m, which is similar to (4).

C. QoS Requirement for Real-time Service

The queueing model for the mth user requesting RT service is shown in Fig. 1(b), where amij

represents the data arrival rate in the jth time slot of the ith frame. If the queueing delay in the

mth queue exceeds a delay bound Dm
max with a delay violation probability less than εmD , then

the QoS requirement of the mth RT user can be satisfied [4, 5, 38, 39].

Effective bandwidth and effective capacity are widely applied tools in designing resource

allocation with such statistical QoS requirement [40,41].2 For uncorrelated random arrival process

and service process, {amij} and {smij}, the effective bandwidth and effective capacity can be

expressed as Em
B (θm) = 1

θmτ
lnE

[

exp
(

θmτamij
)]

(bits/s) and

Em
Ci
(θm) = −

1

θmτ
lnEgm

ijk

[

exp
(

−θmτsmij
)

|αm
i

]

(bits/s), (5)

respectively [40, 41], where where θm is the QoS exponent. The required QoS exponent θm to

guarantee (Dm
max, ε

m
D) can be obtained from [5], i.e.,

Pr{Dm
∞ > Dm

max} ≈ exp [−θmEm
B (θm)Dm

max] = εmD , (6)

where Dm
∞ is the steady state delay for the mth user. To ensure the QoS of the mth RT user

over wireless channels, the following constraint should be satisfied [39]

Em
Ci
(θm) ≥ Em

B (θm) , m = MD + 1, ...,MD +MR, i = 1, ..., NL. (7)

D. Power Consumption Model and EE Definition

The total energy consumed by transmit power and circuit power at the BS for serving MD+MR

users in the prediction window (i.e., in NL frames) can be modeled as [42]

NL
∑

i=1

Ei =

NL
∑

i=1





1

ρ

MD+MR
∑

m=1

NS
∑

j=1

Km
i
∑

k=1

τpmijk +∆TPc

MD+MR
∑

m=1

Km
i +∆TP0



, (8)

2The term “effective bandwidth” is not the spectrum resource in radio access networks. According to the definition in [40],

it is the minimal constant service rate that is required to ensure the QoS of a RT user with random arrived packets.
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where Ei is the energy consumption in the ith frame, ρ ∈ (0, 1] is the power amplifier efficiency,

Pc is the circuit power consumed for baseband processing such as channel estimation on each

subcarrier, and P0 is the fixed circuit power consumption for the BS.

According to the bits per Joule metric in [43], EE of a system is the ratio of the amount of

data transmitted to the energy consumed during a certain period. For PRA, the period is the

duration of the prediction window. However, since only the average channel gains are available

at the beginning of the prediction window, both the amount of data to be transmitted and the

energy to be consumed in the upcoming NL frames are random variables, which depend on the

instantaneous channel gains. As a result, we cannot optimize PRA to maximize the EE metric

in [43]. Since the number of time slots in each frame is large, i.e., NS is large, maximizing

the above EE metric is equivalent to maximizing the ratio of the average amount of transmitted

data to the average energy consumption, where the average is taken over the small-scale channel

gains. Hence, we define the EE as follows,

η ,

[

Eh

(

MD
∑

m=1

NL
∑

i=1

τ

NS
∑

j=1

smij

)

+ Eh

(

MD+MR
∑

m=MD+1

NL
∑

i=1

τ

NS
∑

j=1

bmij

)]/[

Eh

(

NL
∑

i=1

Ei

)]

. (9)

For VoD services, the amount of data transmitted equals the amount of data that needs to

transmit. Thus, Eh

(

MD
∑

m=1

NL
∑

i=1

τ
NS
∑

j=1

smij

)

=
MD
∑

m=1

NL
∑

i=1

∆T s̄mi =
MD
∑

m=1

NL+1
∑

i=2

Rm
i , which is determined

at the beginning of the prediction window by the requested video level and network status.

For RT services, when the queues are in steady states, the average departure rates equal to the

average arrival rates [44]. Thus, Eh

(

MD+MR
∑

m=MD+1

NL
∑

i=1

τ
NS
∑

j=1

bmij

)

= Eh

(

MD+MR
∑

m=MD+1

NL
∑

i=1

τ
NS
∑

j=1

amij

)

, which

is determined by the arrival processes. Therefore, the numerator of (9) does not depend on the

resource allocation. Further considering that the last term in (8) is a constant, maximizing EE

is equivalent to minimizing the following average energy consumption,

1

ρ
Eh





MD+MR
∑

m=1

NL
∑

i=1

NS
∑

j=1

Km
i
∑

k=1

τpmijk



 +∆TPc

MD+MR
∑

m=1

NL
∑

i=1

Km
i . (10)

III. ENERGY EFFICIENT PREDICTIVE RESOURCE ALLOCATION

In this section, we optimize predictive resource allocation under the assumption that the

average channel gains in future frames of the window are perfectly known. We formulate a
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functional extreme problem and obtain the global optimal solution, referred to as ideal policy

for short. We first consider the single cell scenario and then extend to the multi-cell scenario.

A. Problem Formulation

At the beginning of a prediction window, we cannot optimize pmijk to minimize (10) since

the instantaneous channel gains in future time slots are unknown. Yet we can optimize the

average transmit power P̄m
i , Eh

(

Km
i
∑

k=1

pmijk

)

and the number of subcarriers (i.e., bandwidth)

Km
i assigned to the mth user in the ith frame, since the future average channel gains are known.

We refer to {P̄m
i , Km

i }, m = 1, ...,MD +MR, i = 1, ..., NL, as the resource allocation plan. It

determines the amount of resources assigned to the users in all frames of the prediction window.

At the beginning of each time slot, we can optimize pmijk according to the assigned resources

in the corresponding frame {P̄m
i , Km

i }, since the instantaneous channel gains gmijk, k = 1, ..., Km
i

are available at the BS. To gain useful insight, here we only consider power allocation, but not

subcarrier allocation. We denote the power allocation policies for the VoD users and the RT

users as pmijk = fD(P̄
m
i , Km

i , gmijk), m = 1, ...,MD and pmijk = fR(P̄
m
i , Km

i , gmijk), m = MD +

1, ...,MD +MR, respectively, where i = 1, ..., NL, j = 1, ..., NS and k = 1, ..., Km
i . The forms

of the functions fD(·) and fR(·) differ for different power allocation policies.

The optimization of resource allocation plan and power allocation policies are coupled. In

what follows, we formulate the joint optimization problem for the two-timescale policy. We take

Rayleigh fading as an example, but the methodology can be extended to the other channels.

Substituting the power allocation policy for VoD service pmijk = fD(P̄
m
i , Km

i , gmijk) into (3),

the average service rate in the ith frame for Rayleigh fading can be expressed as follows,

s̄mi = Km
i

∫

∞

0

Blog2

[

1 +
αm
i

φσ2
0

fD
(

P̄m
i , Km

i , g
)

g

]

e−gdg, (11)

where m = 1, ...,MD, and g is exponentially distributed with the mean of 1.

Substituting the power allocation policy for RT service pmijk = fR(P̄
m
i , Km

i , gmijk) into (1) and

then into (5), the effective capacity in the ith frame for Rayleigh fading can be obtained as

Em
Ci
(θm) = −

Km
i

θmτ
ln

{

∫

∞

0

[

1 +
αm
i

φσ2
0

fR
(

P̄m
i , Km

i , g
)

g

]−βm

e−gdg

}

(bits/s), (12)

where m = MD + 1, ...,MD +MR, and βm , θmτB
ln 2

.
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Then, the optimal two-timescale policy that maximizes the EE with satisfied QoS requirement

of each RT user and each VoD user can be obtained by solving the following problem,

min
fD(·),fR(·),P̄m

i ,Km
i ,

i=1,...,NL,

m=1,...,MD+MR

Eave
∆
=

MD+MR
∑

m=1

NL
∑

i=1

(

1

ρ
P̄m
i + PcK

m
i

)

, (13)

s.t.

l
∑

i=1

Km
i

∫

∞

0

Blog2

[

1 +
αm
i

φσ2
0

fD
(

P̄m
i , Km

i , g
)

g

]

e−gdg ≥
1

∆T

l+1
∑

i=2

Rm
i ,

m = 1, ...,MD, l = 1, ..., NL, (13a)

−
Km

i

θmτ
ln

{

∫

∞

0

[

1 +
αm
i

φσ2
0

fR
(

P̄m
i , Km

i , g
)

g

]−βm

e−gdg

}

≥ Em
B (θm) ,

m = MD + 1, ...,MD +MR, i = 1, ..., NL, (13b)

MD+MR
∑

m=1

P̄m
i ≤ Pmax

ave , i = 1, ..., NL, (13c)

MD+MR
∑

m=1

Km
i ≤ Kmax, i = 1, ..., NL, (13d)

P̄m
i ≥ 0, Km

i ≥ 0, Km
i ∈ Z, m = 1, ...,MD +MR, i = 1, ..., NL, (13e)

where the objective function in (13) is obtained by substituting P̄m
i = Eh

(

Km
i
∑

k=1

pmijk

)

into (10) and

ignoring a constant ∆T = NSτ , constraints in (13a) and (13b) are obtained by substituting (11)

and (12) into (4) and (7), respectively, and constraints in (13c) and (13d) ensure that the average

transmit power and the number of subcarriers allocated to all the users do not exceed the maximal

average transmit power Pmax
ave and the total number of subcarriers Kmax. With constraint (13d),

we can always allocate each subcarrier only to one user at each time slot. Due to the bandwidth

and power constraints, the problem could be infeasible when the system is heavy loaded and the

channels are not good. In this case, the system can drop some enhancement layers of the SVC

for VoD service, and then the value of Rm
i is reduced. To minimize the quality deterioration,

Rm
i should be optimized when the system is fully loaded as in the literature, e.g., [45, 46]. In

this work, we study how to improve EE when the system is not fully loaded. In this case, the

problem is feasible.

Finding the optimal solution of problem (13) is non-trivial. On the one hand, the constraints
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in (13a) and (13b) depend on the forms of the functions fD(·) and fR(·). As a result, the

optimal values of Eave in (13) is a function of power allocation policies. We denote the minimal

energy consumption with given power allocation policies as E∗
ave (fD, fR). The optimal power

allocation policies can be obtained by minimizing E∗
ave (fD, fR), and are denoted as f ∗

D(·) and

f ∗
R(·). Finding the optimal form of functions results in an optimization problem in the calculus of

variations [47], where the optimization variables are functions that can be regarded as vectors with

infinite dimensions. Since convex optimization tools can only be used to solve finite dimensional

optimization problems, they are not applicable here. On the other hand, there are no closed-form

expressions of constraints (13a) and (13b). Although the achievable rate is concave in transmit

power and bandwidth with equal power allocation [4], whether or not the convexity still holds

with optimal power allocation policies is unknown.

To address the challenge of deriving the optimal two-timescale policy, we first find the

functions of f ∗
D(·) and f ∗

R(·) that minimizes E∗
ave (fD, fR), by proving that two spectral-efficient

power allocation policies are fortunately also able to maximize EE. Then, we find the optimal

resource allocation planning from problem (13) upon substituting to f ∗
D(·) and f ∗

R(·).

Remark 2. The terms inside the sum of the left-hand side of (13a) are the average rates in

different frames (i.e., s̄mi in (11)). In many existing works [13, 18, 19, 33], this average rate is

assumed known by prediction. However, it is clear from problem (13) that the future average rate

depends on {P̄m
i , Km

i } and fD(·) even if the system only supports VoD services. This suggests

that making the resource allocation plan based on average rate prediction is non-optimal.

B. Optimal Power Allocation Policies

A policy that maximizes the average service rate s̄mi (or effective capacity Em
Ci
(θm)) with given

average transmit power P̄m
i and number of subcarriers Km

i (i.e., bandwidth) can also minimize

P̄m
i with given s̄mi (or Em

Ci
(θm)) and Km

i [38, 48]. Yet this does not mean that the policy is

optimal to minimize the average energy consumption in (13), i.e., maximize the EE.

1) Power allocation policy for VoD service: As shown in [48], the policy that maximizes s̄mi

with given P̄m
i and Km

i is water-filling, which is

fw
D

(

P̄m
i

Km
i

, g

)

=







φσ2
0

αm
i

(

1
νmi

− 1
g

)

, g ≥ νm
i ,

0, g < νm
i ,

(14)
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where the water level νm
i can be obtained from

∫

∞

νmi

σ2
0

αm
i

(

1
νmi

− 1
g

)

e−gdg =
P̄m
i

Km
i

.

2) Power allocation policy for RT service: As shown in [38], the policy that maximizes

Em
Ci
(θm) with given P̄m

i and Km
i also follows a water-filling structure, which is

fw
R

(

P̄m
i

Km
i

, g

)

=















φσ2
0

αm
i

[

1

(νmi )
1

βm+1 g
βm

βm+1

− 1
g

]

, g ≥ νm
i ,

0, g < νm
i ,

(15)

where m = MD + 1, ...,MD + MR, i = 1, ..., NL, βm = θmτB
ln 2

, and the water level νm
i over

Rayleigh fading channel can be obtained from

∫

∞

νmi

φσ2
0

αm
i

[

1

(νm
i )

1

βm+1g
βm

βm+1

−
1

g

]

e−gdg =
P̄m
i

Km
i

. (16)

The water-level is time-varying and the instantaneous power allocated to each subcarrier depends

on the instantaneous channel gains on all the subcarriers assigned to the user.

3) Optimality of the power allocation policies: The following proposition (see proof in

Appendix A.) indicates that (14) is the optimal power allocation policy for VoD service and

(15) is the optimal power allocation policy for RT service in terms of maximizing the EE. In

other words, f ∗
D(P̄

m
i , Km

i , g) = fw
D

(

P̄m
i

Km
i

, g
)

and f ∗
R(P̄

m
i , Km

i , g) = fw
R

(

P̄m
i

Km
i

, g
)

.

Proposition 1. For ANY power allocation policies f ′
D

(

P̄m
i , Km

i , g
)

and f ′
R

(

P̄m
i , Km

i , g
)

,

E∗

ave (f
w
D , f

w
R ) ≤ E∗

ave (f
′

D, f
′

R) . (17)

C. Optimal Resource Allocation Planning

Substituting the optimal power allocation policies in (14) and (15) into (13a) and (13b), the

optimal resource allocation plan can be obtained from the following problem,

min
P̄m
i

,Km
i
,

m=1,...,MD+MR,i=1,...,NL

MD+MR
∑

m=1

NL
∑

i=1

(

1

ρ
P̄m
i + PcK

m
i

)

, (18)

s.t.

l
∑

i=1

Km
i FD

(

P̄m
i

Km
i

)

≥
1

∆T

l+1
∑

i=2

Rm
i , m = 1, ...,MD, l = 1, ..., NL, (18a)

−
Km

i

θmτ
ln

[

FR

(

P̄m
i

Km
i

)]

≥ Em
B (θm) , m = MD + 1, ...,MD +MR, i = 1, ..., NL, (18b)
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(13c), (13d) and (13e),

where

FD

(

P̄m
i

Km
i

)

=

∫

∞

0

Blog2

[

1 +
αm
i

φσ2
0

fw
D

(

P̄m
i

Km
i

, g

)

g

]

e−gdg, (19)

FR

(

P̄m
i

Km
i

)

=

∫

∞

0

[

1 +
αm
i

φσ2
0

fw
R

(

P̄m
i

Km
i

, g

)

g

]−βm

e−gdg. (20)

By relaxing the numbers of subcarriers as continuous variables, we can obtain the following

property (See proof in Appendix B).

Property 1. The left-hand sides of (18a) and (18b) are jointly concave in P̄m
i and Km

i .

The above property indicates that the feasible region of problem (18) is a convex set. Since the

objective function in (18) is linear, problem (18) is convex programming, whose global optimal

solution can be solved numerically by the interior-point method if it is feasible [49].

The ideal policy, i.e., the optimal solution of problem (13), consists of making a plan and

allocating power that operate in two timescales. The resource allocation plan for a user is made

at the start of the prediction window with predicted average channel gains, which is optimized

from problem (18). The transmit power is allocated at the start of each time slot with estimated

CSI, which is optimized from (14) and (15).

D. Impacts of Predicted Information on EE

Predicting the instantaneous channel gains (i.e., CSI) and average channel gains of every user

are possible, but inevitably incurs cost for training [23, 34]. In the sequel, we discuss which

kinds of future information are necessary to maximize the EE.

1) Predicted Information of VoD Users: Here we consider a system without RT users, i.e.,

MR = 0. If the future CSI is available at the BS at the beginning of each prediction window

and MR = 0, then minimizing (10) is equivalent to minimizing the following objective function,

1

ρ





MD
∑

m=1

NL
∑

i=1

NS
∑

j=1

Km
i
∑

k=1

τpmijk



+∆TPc

MD
∑

m=1

NL
∑

i=1

Km
i , (21)

where the transmit powers on different subcarriers in the ith frame {pmijk, k = 1, ..., Km
i } depend

on the instantaneous channel gains {gmijk, k = 1, ..., Km
i }. Denote the total transmit power for the
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mth user in the jth time slot of the ith frame as Pm
ij =

Km
i
∑

k=1

pmijk. Since the fast fading channels

among the time slots in each frame are i.i.d., if the number of time slots in each frame is large,

then the time-average transmit power converges to the ensemble-average transmit power, i.e.,

1
NS

NS
∑

j=1

Pm
ij → P̄m

i when NS → ∞. Further considering that ∆T = NSτ , minimizing (21) is

equivalent to minimizing the following expression,

1

ρ

(

MD
∑

m=1

NL
∑

i=1

P̄m
i

)

+ Pc

MD
∑

m=1

NL
∑

i=1

Km
i , (22)

which is the same as the objective function in (13) when MR = 0.

The ideal policy that minimizes the energy consumed for VoD users with future CSI can

be obtained by minimizing (22) under constraints (13a), (13c), (13d) and (13e). Since the

optimization problem is the same as problem (13), the optimal power allocation policies, the

optimal average transmit power and numbers of subcarriers, and the minimal total energy

consumptions obtained from the two problems are equal. This leads to the following observation.

Observation 1: Predicting the CSI of each VoD user in future time slots does not help improve

the system EE, but predicting the average channel gains of the VoD user can improve EE.

2) Predicted Information of RT Users: Similarly, here we consider a system without VoD

users, i.e., MD = 0. For RT service, τ ≪ Dm
max ≪ ∆T , where τ and ∆T are the time slot and

frame durations. At the beginning of each frame, when the average channel gain is available by

estimation, the BS can assign the average transmit power and number of subcarriers to each RT

user. The amount of resources assigned to the mth RT user in the ith frame can be obtained

from the following problem,

min
P̄m
i ,Km

i ,

MR
∑

m=1

(

1

ρ
P̄m
i + PcK

m
i

)

(23)

s.t. (13b), (13c), (13d) and (13e).

From the expressions of the constraints, we can see that the amount of resources assigned in

the ith frame does not depend on the amount of resources assigned in other frames. Therefore,

problem (13) can be decomposed into NL independent problems as problem (23). Knowing the

average channel gains (and hence CSI) in future frames cannot help improve the QoS (i.e., Dm
max

and εmD) or the EE of a system only with RT services. This implies that making the resource
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allocation plan for RT users is unnecessary, and gives rise to another observation as follows.

Observation 2: Predicting the average channel gains and CSI of each RT user in the prediction

window does not help improve the EE of a system only with RT service.

Remark 3. VoD service is delay-tolerant. The QoS of a VoD user can be satisfied if the requested

segment can be downloaded to the user before playback. Hence, the BS can choose some frames

in the prediction window with high average channel gains to transmit data in advance to save

energy. By contrast, RT service is delay-sensitive. The QoS of a RT user in terms of delay (i.e.,

Dm
max) is less than the frame duration ∆T . Hence, to improve the EE under the QoS constraint,

the BS can only adjust resources among the time slots within Dm
max. This explains why the future

average channel gains of each RT user cannot help improve the EE of a system only with RT

users. Nevertheless, predicting the average channel gains of RT users helps improve the EE of

a network with both VoD and RT services.

E. Extension to Multicell Scenario

Now we consider a scenario where the MD +MR users are served by NB BSs. The BSs are

connected with a central processor (CP) and send the future average channel gains of all the users

in a prediction window to the CP. To focus on the EE-maximal optimization for both services and

in two timescales, we assume that the inter-cell interference can be treated as noise. A simple

way to avoid strong interference is using orthogonal resources in adjacent cells, say by soft

frequency reuse. This assumption is reasonable for the problem at hand, because we consider a

non-fully-loaded network. The problem to optimize PRA with strong interference is nontrivial, as

demonstrated in [21], where a PRA is designed for file downloading in heterogeneous networks.

It is not hard to show that Proposition 1 can be extended into the multi-cell scenario, and

hence the power allocation policies in (14) and (15) are optimal for VoD service and RT service,

respectively. Denote P̄mn
i and Kmn

i as the average transmit power and the number of subcarriers

assigned to the mth user in the ith frame by its accessed BS (i.e., the nth BS). Denote Mn
i as

the set of indices of the users that are served by the nth BS in the ith frame. The difference

between single-cell and multi-cell scenarios lies in the constraints on the average transmit power

and the total number of subcarriers. Specifically, the amount of resources assigned to the users
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that access to the same BS in the multi-cell scenario should satisfy the following constraints

∑

m∈Mn
i

P̄mn
i ≤ Pmax

ave ,
∑

m∈Mn
i

Kmn
i ≤ Kmax, n = 1, ..., NB, i = 1, ..., NL. (24)

The user association {Mn
i , n = 1, ..., NB, i = 1, ..., NL} and resource allocation plan can be

jointly optimized, but the resulting problem is a mixed integer optimization problem, which

is much more challenging than the problem for the single-cell scenario. To save energy, it is

reasonable to assume that each user is accessed to the BS with the highest large-scale channel

gain. Then, {Mn
i , n = 1, ..., NB, i = 1, ..., NL} are known by the CP at the beginning of each

prediction window with the predicted trajectories of mobile users. Similar to problem (18), the

optimal resource allocation plan is also convex programming.

IV. A HEURISTIC JOINT RESOURCE ALLOCATION POLICY WITH LOW COSTS

In this section, we propose a heuristic policy that can perform close to the optimal solution

with coarsely predicted knowledge. The queue states in the buffers of VoD users are also taken

into account. To be more specific, each VoD user sends two bits information to the BS to indicate

whether the buffer will overflow and whether playback interruption will occur.3

This policy is inspired by the structure of problem (18), which suggests that the amount of

resources assigned for a RT user in each frame is independent of the resources assigned in

other frames if only RT users exist. This implies that predictive resource allocation for RT users

cannot improve EE. In other words, we only need to design the resource allocation plan for

VoD users. If we can also decompose the resource allocation planning problem for VoD users

into NL independent problems, then many existing low-complexity algorithms can be applied to

assign resources in each frame for both types of users.

To decouple the resource allocation planning problem, we come back to the basic idea of

PRA that only serves VoD users: transmit more data to a user when the user undergoes good

average channels [13]. Such an idea can be translated as: which frame is with good channel to

boost the EE and how much data should be transmitted to satisfy the QoS.

To increase EE, we find a “ruler” to judge whether the average channel gain in a frame is

high or low. According to the results in [1] obtained from optimizing for a single VoD user,

3In practice, the user can send a request for stopping transmission if the buffer will overflow. If the last video segment in the

buffer is played in the current frame, the user can send a transmission request to avoid interruption in the next frame.
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the ideal policy transmits data only when the average channel gains exceed a certain threshold,

which occurs over around half of the frames in the prediction window. This inspires us to use

the median of the average channel gains in the window, denoted as αm
med, as the threshold. Then,

at the beginning of the window, the CP only needs to predict the median for each VoD user.

To avoid stalling and buffer overflow for the VoD users with limited buffer sizes, we should

consider the queueing status of each VoD user and control the number of segments transmitted

in each frame. The number depends on the traffic load of the network, the buffer size and

channel condition of each VoD user. Since we use the median as the threshold, in average the

BS transmits data to a VoD user in 50% time slots during streaming. Then, it is reasonable to

transmit several segments (we consider two segments for illustration in the sequel, but more

segments can be transmitted) to a user with good channel in a frame, if there is still room in

the buffer. With given average power and bandwidth in each frame, the transmission procedure

for each VoD user (say the mth user) of the heuristic policy is as follows.

At the beginning of the ith frame, the average channel gain of the mth user, αm
i , can be

estimated at its associated BS. Denote ĩ as the index of last video segment that has been

transmitted before the ith frame. Then, the indices of segments to be transmitted are {̃i+1, ...}.

If αm
i < αm

med, then the mth user is in bad channel condition. No data will be transmitted in

the ith frame if the video segment to be played in the i+1th frame has been transmitted before

the ith frame. Otherwise, one segment will be transmitted in the ith frame. Thus, the required

average service rate can be expressed as follows,

ŝmi =







0, if ĩ ≥ i+ 1,

1
∆T

Rm
i+1, otherwise.

(25)

If αm
i ≥ αm

med, then the mth user is in good channel condition. Two segments will be transmitted

in the ith frame if the buffer has enough space for two segments. One segment will be transmitted

if the buffer only has space for one more segment. If there is no enough space, no data will be

transmitted. The required average service rate is given by

ŝmi =



















1
∆T

(Rm
ĩ+1

+Rm
ĩ+2

), if Qm
i +Rm

ĩ+1
+Rm

ĩ+2
− Rm

i ≤ Qmax,

0, if Qm
i +Rm

ĩ+1
−Rm

i > Qmax,

1
∆T

Rm
ĩ+1

, otherwise,

(26)
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where Qm
i and Qmax are the queue length of the mth user at the beginning of the ith frame and

the maximal buffer size, respectively.

The average power and bandwidth assigned to each VoD and RT user in the ith frame can be

jointly optimized from the following problem,

min
P̄m
i ,Km

i ,

m=1,...,MD+MR

MD+MR
∑

m=1

(

1

ρ
P̄m
i + PcK

m
i

)

, (27)

s.t. Km
i FD

(

P̄m
i

Km
i

)

≥ ŝmi , m = 1, ...,MD, (27a)

−
Km

i

θmτ
ln

[

FR

(

P̄m
i

Km
i

)]

≥ Em
B (θm) , m = MD + 1, ...,MD +MR, (27b)

(13c), (13d) and (13e),

where the optimal power allocation policies in (14) and (15) are adopted.

Compared with problem (18), the only difference lies in the QoS constraints of VoD users on

the average service rate in (18a) and (27a). In problem (18), s̄mi is optimized implicitly through

optimizing Km
i and P̄m

i according to all average channel gains in the prediction window. In

problem (27) the value of ŝmi is only determined by the average channel gain in the ith frame

and the threshold. According to the way we obtain ŝmi (i.e., (25) and (26)) in the heuristic policy,

the average rate s̄mi will satisfy constraint (18a) if constraint (27a) is satisfied. Thus, a feasible

solution of problem (18) can be obtained with the heuristic policy.

Because the average service rate constraint in (27a) is a special case of the effective capacity

constraint in (27b) with θm → 0 [41], many existing algorithms can be applied to find the

solution of problem (27) [4]. This indicates that except the cost in predicting the “ruler” for

each VoD user (i.e., αm
med) at the CP, the heuristic policy needs the same complexity as existing

non-predictive counterparts. After obtaining average power and bandwidth assigned to each VoD

and RT user in each frame, the optimal power allocation policies in (14) and (15) can be used

at each time slot. The heuristic policy is summarized in Table I.

Remark 4. With the heuristic policy, future information is required only when we determine ŝmi

by the “ruler”, which is the median of the future average channel gains in the prediction window

of the mth VoD user, αm
med. To predict αm

med, we can design a fully connected neural network
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(NN), which input is the historical average channel gains of VoD users denoted as x and the

output is the channel median denoted as y. The NN is trained with the training set {x(n), y(n)}Nn=1

to minimize the cost function J(W,b) = 1
N

∑N

n=1 |ŷ
(n) − y(n)|2 + ν

2
‖W ‖2F, where W and b are

the weight matrix between layers of the NN and the bias of neurons, y(n) is the label, ŷ(n) is the

output with input x(n), and the regularization term is added to reduce overfitting. By contrast,

to predict the fine-grained average channel gain in each frame of the prediction window (say

αm
i ), recurrent neural networks need to be used for predicting fine-grained trajectory [23]. For

training and testing the prediction, we consider mobile users with trajectories in [23], the only

difference is that the length of each road segment is 1 km and the random stoping time at the

red lights is 1 ∼ 30 s here to reduce training time. For a one minute-long prediction window,

after tuning the hyper-parameters of our NN and the long short term memory model proposed in

[23], the results are as follows. When the users move along a road with minimal distance from

BSs as 200 m, the average relative error (i.e., prediction errors normalized by the true values in

the test set divided by the number of test samples) of α̂m
med is 42% and that of α̂m

i is 170%. The

EE loss caused by prediction errors for the heuristic and optimal policies are 5.4% and 65%,

respectively. 2000 and 56000 training samples are required for predicting αm
med and αm

i , and the

training time for predicting αm
med is about 8‰ of that for predicting αm

i .

TABLE I

THE HEURISTIC POLICY

Input: Rm
i

, i = 1, ..., NL, m = 1, ...,MD, Qmax, αm

med, m = 1, ...,MD.

Output: Pm

i
and Km

i
, i = 1, ..., NL, m = 1, ...,MD.

1: i := 1, ĩ := 1, and Qm
1 := Rm

1 , m = 1, ...,MD.

2: while i ≤ NL do

3: if ĩ < NL + 1. then

4: while m ≤ MD do

5: if αm

i
≥ αm

med then

6: ŝm
i

:= 1

∆T
(Rm

ĩ+1
+Rm

ĩ+2
), ĩ := ĩ+ 2, if Qm

i
+Rm

ĩ+1
+Rm

ĩ+2
−Rm

i
≤ Qmax.

7: ŝm
i

:= 1

∆T
Rm

ĩ+1
, ĩ := ĩ+1, if Qm

i
+Rm

ĩ+1
+Rm

ĩ+2
−Rm

i
> Qmax and Qm

i
+Rm

ĩ+1
−Rm

i
≤ Qmax.

8: ŝm
i

:= 0, if Qm

i
+Rm

ĩ+1
−Rm

i
> Qmax.

9: else

10: ŝm
i

:= 1

∆T
Rm

i+1, ĩ := ĩ+ 1, if i = ĩ.

11: ŝm
i

:= 0, if ĩ > i.

12: end if

13: end while

14: ŝm
i

:= 0.

15: else

16: Solve problem (27), and obtain Pm
i

and Km
i

, m = 1, ...,MD.

17: end if

18: end while

19: return Pm
i

and Km
i

, i = 1, ..., NL, m = 1, ...,MD.
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V. SIMULATION RESULTS

In this section, we evaluate the EE of the proposed ideal policy and heuristic policy. We

consider both scenarios with perfect and imperfect predictions of average channel gains.

We compare the proposed policies (with legends “Ideal” and “Heuristic”) with four baselines.

• Non-predictive joint resource allocation (legend “Baseline 1”): This is extended from a

policy only considering RT users in [4] by jointly optimizing average transmit power and

bandwidth in each frame for VoD and RT users. For VoD users, the segments to be played

in the ith frame are transmitted in the i− 1th frame (i.e., s̄mn
i−1 =

1
∆T

Rm
i ).

• PRA only with future average channel gains for VoD users (legend “Baseline 2”): This is

extended from a policy only considering VoD users in [13]. The unknown distances between

BS and RT users are set as cell radius in all frames, and then the resource allocation for

VoD and RT users are jointly optimized.

• Decoupled PRA in two timescales (legend “Baseline 3”): This is extended from a two-

timescale policy only considering VoD users in [33]. The extended policy optimizes band-

width allocation at the beginning of prediction window (equivalent to allocating the number

of time slots in [33]), where transmit power is equally allocated to all subcarriers (i.e.,

Pmax/Kmax) in order to predict average rate. In each time slot, the transmit power is allocated

to subcarriers with (14) and (15) (similar to subcarrier allocation in [33]).

• Decoupled PRA for two services (legend “Baseline 4”): This is extended from a two-

timescale policy that optimizes resource allocation for file-downloading users with the

residual bandwidth and power after serving RT users [17]. To obtain the residual resources,

we first assign bandwidth to RT users with fixed transmit power on each subcarrier as

Pmax/Kmax. In this way, the residual bandwidth is proportional to the residual power,

as assumed in [17]. By solving problem (18) with given residual resources, the resource

allocation for VoD services in two timescales is jointly optimized.

By comparing with Baseline 1, we can illustrate the gain of improving EE by harnessing future

average channel gains. By comparing with Baseline 2, we can show when the future average

channel gains of RT users is helpful. By comparing with Baseline 3, we can show the EE loss

from decoupling the optimization in the two timescales. By comparing with Baseline 4, we can

show the EE loss due to reserving resources for RT service.
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Since the predicted average channel gains, denoted as {α̂m
i , i = 1, ..., NL}, are not error-

free, the ideal policy needs to adjust resources to ensure QoS. With {α̂m
i , i = 1, ..., NL},

resource allocation plan {P̂m
i , K̂m

i , i = 1, ..., NL} can be obtained by solving problem (18).

At the beginning of the ith frame, if the average channel gain estimated at the BS αm
i 6= α̂m

i ,

then we apply a simple adjustment that does not need to solve another optimization problem:

the BS adjusts average transmit power according to αm
i P̃

m
i = α̂m

i P̂
m
i , and K̂m

i does not change.

Such a modified ideal policy to address prediction errors is referred to as extended ideal policy.

A. Simulation Setup

For VoD services, we consider SVC in [36] (each segment includes one base layer and five

enhance layers). The bit rate of each layer can be found in [50]. The average streaming rate of

each VoD service is around 2 Mbits/s. For RT services, the packets of each user arrive at the

buffer of BS according to a Poisson process with average rate λa = 500 packets/s. The size of

each packet follows an exponential distribution with average 1/λu = 4 kbits/packet. Hence, the

average data arrival rate of each RT service is 2 Mbits/s.

All the users move along a road with minimal distance from BSs as 100 m, where the distance

between two adjacent BSs is 500 m. In the scenario with perfect prediction, the velocities of users

are constant, i.e., 20 m/s. In the scenario with imperfect prediction, the velocities are random

variables, as to be detailed later. To save transmit power, each user is accessed to its nearest BS.

The path loss model is 35.3+37.6 log10 D dB, where D is the distance in meters between a user

and its accessed BS in a frame. The circuit powers of different components are obtained from

those measured in the year of 2012 in [42], where the scaling law in [51] is further applied to

predict Pc and P0 in 2020. The prediction window is with duration NL∆T = 60 s. The results

for the scenarios with perfect and imperfect prediction are respectively obtained from 100 and

1000 simulation trails. In each trail, the user trajectory in the prediction window, the packet

arrival and packet size of RT services, and Rayleigh fading channels are randomly generated.

Matlab is used for the simulation. The simulation parameters are listed in Table II. This setup

will be used in the sequel unless otherwise specified.

B. Perfect Prediction of Average Channel Gains

The EE achieved by different policies is shown in Fig. 2. In Fig. 2(a), the total number of

users is fixed as MD +MR = 5. In Fig. 2(b), the sum data rate required by all users are fixed as
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TABLE II

LIST OF SIMULATION PARAMETERS [42, 51]

Maximal transmit power Pmax 40.0 W Total number of subcarriers Kmax 512

Bandwidth of each subcarrier B 15 kHz Power amplifier efficiency ρ 38.8 %

Single-sided noise spectral density N0 -173 dBm/Hz Fixed circuit power consumption P0 136 mW/MHz

Circuit power consumption for one

subcarrier Pc

72 mW/MHz Duration of each frame ∆T and each

time slot

1 s and 5 ms

E(Rm
i /∆T ) + λa/λu = 10 Mbits, where the arrival data rate of RT user (or the streaming rate

of VoD user) varies. We can see that when there is no VoD user, the achieved EE of the ideal

policy and Baseline 1 are identical. The results are consistent with Observation 2, i.e., predicting

average channel gains cannot help improve the EE of the system only with RT users. When there

are both VoD and RT users, the achieved EE of the ideal policy could be 50 ∼ 100% higher

than the EE achieved by the baselines. The achieved EE of Baseline 2 is lower than Baseline 1

when the number (or arrival data rate) of RT users is large because the resources reserved for

the RT users are too conservative. The achieved EEs of Baseline 3 and Baseline 4 are much

lower than Baseline 1, which is a non-predictive policy that jointly optimizes resource allocation

for the two types of services. This result suggests the necessity of the joint optimization for two

types of services in the two timescales. Since Baselines 3 and 4 perform the worst almost in

all cases, we no longer provide their performance in the sequel unless necessary. The heuristic

policy performs closely to the ideal policy.
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(a) EE v.s. ratios of the number of VoD users.
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(b) EE v.s. streaming rate of VoD user, MD = MR = 1.

Fig. 2. EE achieved by different policies.

To show the throughput of the considered network in terms of maximal total number of RT and

VoD users without stalling, we provide the video quality with different numbers of users in Table
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TABLE III

NUMBERS OF LAYERS OF SCV WITH DIFFERENT NUMBER OF USERS

MD = MR ≤ 8 9 10 11 ≥ 12

Ideal 5 4.9667 4.8833 4.6500 NA

Heuristic 5 4.9167 4.7833 4.6167 NA

Baseline 1 5 4.8333 4.7500 4.5800 NA

Baseline 2 5 4.4833 4.0800 NA NA

III, which provides the average number of enhanced layers transmitted to VoD users. To obtain

the results, we first set the video quality at level 5 (all the 5 enhanced layers are transmitted)

and find the solutions with different policies. If the problem is infeasible, we reduce the video

quality of VoD users to a lower level until the problem is feasible. Finally, we calculate the

average video quality of VoD users in 100 minutes. “NA” means that at least in one frame, the

QoS of RT users cannot be satisfied or the data in base layer cannot be transmitted to VoD users

(i.e., playback interruption occurs). Due to the lack of space, we do not show the performance

when stalling occurs, which is acceptable in practice. We can see that the maximal total number

of users that the system can support with ensured QoS is 20 (i.e., MD = MR = 10) if using

Baseline 2, and is 22 if using other three policies. Again, the heuristic policy performs closely to

the ideal policy in term of the video quality. Since the EE can be improved only when the traffic

load is not high (say MD,MR < 10 for the considered setup), in the sequel we only consider

the scenario where the QoS of all VoD users can be ensured.
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Fig. 3. EE v.s. total number of users, where MD = MR.
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Fig. 4. Data transmitted in different frames, where the

average streaming rate of the VoD service and the average

data arrival rate of the RT service are set as 10 Mbps.

The EE of the system supporting different traffic loads is shown in Fig. 3. The results show

that EE achieved by the ideal and heuristic policies are much higher than that achieved by
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the baselines when the number of users is small. When the number of users approaches to the

maximal number of users that the system can support, the EE achieved by different policies are

almost identical. This is because when the network is fully loaded, the BSs need to serve the

users with maximal transmit power and bandwidth, and hence there is no chance to save energy.

To understand the behavior of the heuristic policy, we consider a simplified scenario with one

VoD user and one RT user. The amount of data transmitted in different frames and the amount

of video data played in each frame (with legend “video trace”) are shown in Fig. 4. The results

show that at the first several frames in the prediction window (i.e., the beginning of the service),

the data amount transmitted in each frame equals to the data amount to be played in the next

frame. After the first several seconds, both ideal and heuristic policies transmit data when the

large-scale channel gains are good. There is no stalling since the video segments are transmitted

before playback.

To understand why the resource allocation between VoD and RT services should be jointly

optimized, we again consider the simple scenario with one VoD user and one RT user. The

average transmit power and bandwidth assigned by the ideal policy and Baseline 4 in each

frame to each service are shown in Fig. 5. The results show that if the resource allocation is

jointly optimized, more subcarriers will be allocated to the RT users if the average data rate of

a VoD user (say the mth user), s̄mi , is zero in a frame (e.g., the user is located in cell-edge).

However, with Baseline 4, the BS first assigns subcarriers (i.e., reserves resources) to RT service

without considering the bandwidth required by VoD service. To leave some bandwidth for VoD

service, the BS will not assign all the subcarriers to the RT service. With less bandwidth, more

transmit power is consumed by the RT service, and hence the EE of the system is low.

C. Imperfect Prediction of Large-scale Channel Gains

The prediction errors may come from many sources such as erroneous mobility route predic-

tion, inaccurate velocity prediction, user location estimation and constructed radio map. Here we

take the velocity prediction error as an example to illustrate the impact of imperfect prediction,

since it leads to the errors on average channel gains accumulative with frames and hence causes

more severe performance degradation than other types of prediction errors.

Markov chain is widely used to model the mobility of vehicles [12]. We use a discrete time

Markov chain to characterize the velocity of each user. Specifically, the velocity of each user
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Fig. 5. Coupled resource allocation between VoD and RT services, where the average streaming rate of the VoD service and

the average data arrival rate of the RT service are set as 10 Mbps. We use solid and dash lines and further add cross and dot

marks in these lines to distinguish different results.

lies in V = {v1, v2, ..., vU}, where ∆v , vu+1 − vu = 1 m/s, v1 = 0 m/s, and vU = 30 m/s, and

the velocities are constant within each frame of duration ∆T . With this model, the velocity of a

user may vary from 0 ∼ 30 m/s in the prediction window. Denote the velocity of the mth user in

the ith frame as V m
i . We set ∆v/∆T equal to the maximal acceleration of vehicles (e.g., 1 m/s2

[52]). The velocity can only transit between adjacent states (i.e., it can change ∆v after ∆T ). The

U ×U transition matrix of the Markov chain is denoted as U, where ui,j is the probability that

the velocity transits from vi to vj . For the considered scenario, u11 = uU,U = 1−q, ui,i = 1−2q,

i 6= 1, U , and ui,i+1 = ui+1,i = q, i = 1, ..., U − 1. When q = 0, the velocity is constant and

always equals to the initial value. By increasing the value of q, the prediction errors of velocities

in the upcoming NL frames increase. We do not study how to predict the trajectory of each

user, and apply a simple way to illustrate the performance of different policies. Specifically,

the predicted locations of the user are obtained by assuming that each user travels along the

predicted route with the initial velocity, setting as 20 m/s.4 The initial positions of the users

are uniformly distributed in the first cell. The median of each VoD user is computed from the

predicted average channel gains of the user in the window.

Since EE can be improved evidently when the traffic load is light, we set MD = MR = 5,

which is half of the maximal number of users that can be supported by the BSs.

The EE achieved by different policies5 is shown in Fig. 6, where the qualities of all the VoD

4According to simulations, the uncertainty of velocity modeled in the sequel will lead to 200 ∼ 300 % prediction errors on

average channel gains at the end of a prediction window with 60 seconds duration.

5We do not compare with the robust policies in [18,19]. This is because existing methods can only reformulate non-deterministic

linear constraints as deterministic constraints [53], but the constraint in (13a) is non-linear.
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users are the same (all six layers are transmitted before playback). Since the ideal policy is

optimized under the assumption of perfect prediction of average channel gains, it is no longer

optimal when the prediction is non-perfect. When q is large, the heuristic policy outperforms

the ideal policy. Even when q = 0.5, which leads to over 300% prediction errors on the average

channel gains at the end of the prediction window, the EE loss of heuristic policy is negligible.

VI. CONCLUSION

In this paper, we demonstrated the gain in maximizing EE of an OFDMA system with both

VoD and RT services by harnessing the prediction of average channel gains in a time window,

and investigated which kinds of future information are needed to improve EE. To this end,

an optimal two-timescale PRA policy was obtained, which needs fine-grained prediction as in

existing works. By analyzing the optimal policy, we found that using instantaneous channel gains

in future time slots can not improve EE. To reduce the training cost incurred by the fine-grained

prediction, a heuristic policy was proposed. This policy only needs the median of future average

channel gains of VoD users, and jointly optimizes the average power and bandwidth for RT

and VoD users in each frame. Simulation results showed that EE can be improved remarkably

by jointly optimizing resource allocation for the two types of services in the two timescales,

which suggests the necessity of sharing resources among different services. The heuristic policy

performs closely to the optimal policy if the prediction is error-free, and outperforms the optimal

policy if the prediction is with large uncertainty. This demonstrates that the EE gain over non-

predictive policies can be achieved by non-perfect coarse-grained prediction.

July 26, 2019 DRAFT



28

APPENDIX A

PROOF OF PROPOSITION 1

Proof: To prove Proposition 1, we first prove that fw
D

(

P̄m
i

Km
i
, g
)

is the optimal power alloca-

tion policy for VoD services. For arbitrary power allocation policy for RT services f ′
R

(

P̄m
i , Km

i , g
)

,

the optimal solutions of problem (13) with policies fw
D

(

P̄m
i

Km
i

, g
)

and f ′
D

(

P̄m
i , Km

i , g
)

are denoted

as {P̃m
i , K̃m

i , m = 1, ...,MD + MR, i = 1, ..., NL} and {Pm
i

′, Km
i

′, m = 1, ...,MD + MR, i =

1, ..., NL}, respectively. Then, we need to prove E∗
ave (f

w
D , f

′
R) ≤ E∗

ave (f
′
D, f

′
R), where

E∗

ave (f
w
D , f

′

R) =

MD+MR
∑

m=1

NL
∑

i=1

(

1

ρ
P̃m
i + PcK̃

m
i

)

;E∗

ave (f
′

D, f
′

R) =

MD+MR
∑

m=1

NL
∑

i=1

(

1

ρ
Pm
i

′ + PcK
m
i

′

)

.

Denote the average service rates achieved by the power allocation policies f ′
D

(

P̄m
i , Km

i , g
)

with

resource allocation planning {Pm
i

′, Km
i

′} as smi
′, m = 1, ...,MD +MR, i = 1, ..., NL.

To prove E∗
ave (f

w
D , f

′
R) ≤ E∗

ave (f
′
D, f

′
R), we need the following result: the water-filling policy

fw
D

(

P̄m
i

Km
i

, g
)

can minimize P̄m
i with given Km

i and average service rate s̄mi [48]. According to

this result, given Km
i

′ and smi
′, i = 1, ..., NL, the average transmit power is minimized with

fw
D

(

P̄m
i

Km
i
, g
)

. Denote the related minimal average transmit power for the mth user in the ith

frame as min(P̄m
i ). Then, min(P̄m

i ) ≤ Pm
i

′, m = 1, ...,MD, i = 1, ..., NL. Hence

MD
∑

m=1

NL
∑

i=1

[

1

ρ
min(P̄m

i ) + PcK
m
i

′

]

+

MD+MR
∑

m=MD

NL
∑

i=1

(

1

ρ
Pm
i

′ + PcK
m
i

′

)

≤

MD+MR
∑

m=1

NL
∑

i=1

(

1

ρ
Pm
i

′ + PcP
m
i

′

)

.

(A.1)

Moreover, with fw
D

(

P̄m
i

Km
i

, g
)

, the optimal resource allocation plan is {P̃m
i , K̃m

i , m = 1,...,MD+

MR, i = 1,...,NL}. Thus,
MD+MR
∑

m=1

NL
∑

i=1

(

1
ρ
P̃m
i + PcK̃

m
i

)

≤
MD
∑

m=1

NL
∑

i=1

[

1
ρ
min(P̄m

i ) + PcK
m
i

′

]

+
MD+MR
∑

m=MD

NL
∑

i=1

(1
ρ
Pm
i

′ + PcK
m
i

′). Further considering (A.1), we have E∗
ave (f

w
D , f

′
R) ≤ E∗

ave (f
′
D, f

′
R).

Similarly, given power allocation policy for VoD services fw
D

(

P̄m
i

Km
i
, g
)

, we can prove that

E∗
ave (f

w
D , f

w
R ) ≤ E∗

ave (f
w
D , f

′
R) . The proof is omitted for conciseness. Therefore, we can obtain

that E∗
ave (f

w
D , f

w
R ) ≤ E∗

ave (f
w
D , f

′
R) ≤ E∗

ave (f
′
D, f

′
R).
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APPENDIX B

PROOF OF PROPERTY 1

Proof: The proof of the convexity of (18a) is shown in the conference version [1].

We only prove the convexity of (18b). The left-hand side of (18b) is the perspective of

− 1
θmτ

ln
[

FR

(

P̄m
Si

)]

, where P̄m
Si

=
P̄m
i

Km
i

. To prove that the left-hand side of (18b) is jointly

concave in P̄m
i and Km

i , we only need to prove that − 1
θmτ

ln
[

FR

(

P̄m
Si

)]

is concave in P̄m
Si

. For

notational simplicity, we omit indices m and i of all the variables in this appendix. In the sequel,

we will prove that

d2
[

lnFR

(

P̄S

)]

d2P̄S

=

FR

(

P̄S

) d2FR(P̄S)
dP̄ 2

S

−

[

dFR(P̄S)
dP̄S

]2

[

FR

(

P̄S

)]2 > 0. (B.1)

Substituting (15) into (20), we can obtain that

FR

(

P̄S

)

= 1− e−ν + ν
β

β+1

∫

∞

ν

g−
β

β+1 e−gdg (B.2)

where the relation between ν and P̄S can be obtained from (16). Then, FR

(

P̄S

)

can be regarded

as a composition function FR

[

ν
(

P̄S

)]

, and thus

dFR

[

ν
(

P̄S

)]

dP̄S

=
dFR

dν

dν

dP̄S

,
d2FR

[

ν
(

P̄S

)]

dP̄ 2
S

=
d2FR

dν2

(

dν

dP̄S

)2

+
dFR

dν

d2ν

dP̄ 2
S

. (B.3)

From (16), we can derive the relation between P̄S and ν, i.e., dP̄S

dν
= −

φσ2
0

α(β+1)
ν−

β+2

β+1

∫

∞

ν
g−

β

β+1e−gdg.

According to the characteristic of inverse function ( i.e., dP̄S

dν
dν
dP̄S

= 1 at any point (ν, P̄S) ), we

can derive dν
dP̄S

from (16), i.e.,

dν

dP̄S

= −
α (β + 1)

φσ2
0

ν
β+2

β+1
1

∫

∞

ν
g−

β
β+1e−gdg

. (B.4)

From d2ν

dP̄S
2 =

d dν
dP̄S

dν
dν
dP̄S

, we can derive that

d2ν

dP̄ 2
S

=

(

α

φσ2
0

)2 [

(β + 2) ν
1

β+1
1

ϕ
+ (β + 1) ν

2

β+1 e−ν 1

ϕ2

] [

(β + 1) ν
β+2

β+1
1

ϕ

]

, (B.5)
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where ϕ =
∫

∞

ν
g−

β

β+1 e−gdg. From (B.2), we have

dFR

dν
=

β

β + 1
ν−

1

β+1ϕ,
d2FR

dν2
= −

β

(β + 1)2
ν−

β+2

β+1ϕ−
β

β + 1
ν−1e−ν . (B.6)

Substituting (B.4), (B.5) and (B.6) into (B.3), we can derive that

dFR

[

ν
(

P̄S

)]

dP̄S

= −
α

φσ2
0

βν,
d2FR

[

ν
(

P̄S

)]

dP̄ 2
S

=

(

α

φσ2
0

)2

β (β + 1) ν
β+2

β+1
1

ϕ
. (B.7)

Upon substituting (B.7), the numerator of (B.1) can be derived as follows,

(

1− e−ν
)

(

α

φσ2
0

)2

β (β + 1) ν
β+2

β+1
1

ϕ
+

(

α

φσ2
0

)2

βν2. (B.8)

Since ϕ =
∫

∞

ν
g−

β

β+1 e−gdg > 0, β = θτB
ln 2

> 0, (B.8) is positive, and hence we have (B.1).
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