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Secrecy Spectrum and Energy Efficiency Analysis in
Massive MIMO-Enabled Multi-Tier Hybrid HetNets

Anum Umer, Syed Ali Hassan
Qiang Ni

Abstract—Massive multiple antenna systems in conjunction
with millimeter (mmWave) communication have gained tremen-
dous attention in the recent years owing to their high speed
data delivery. However, security in these networks has been over-
looked; thereby necessitating a comprehensive study. This paper
analyzes the physical layer security performance of the down-
link of a massive multiple-input multiple-output (MIMQO)-based
hybrid heterogeneous network (HetNet) where both mmWave
and sub-6 GHz small cells coexist. Specifically, a tractable
approach using stochastic geometry is proposed to analyze the
secrecy outage probability, secrecy energy efficiency (SEE) and
secrecy spectrum efficiency (SSE) of the hybrid HetNets. Our
study further characterizes the impact of large antenna arrays,
directional beamforming gains, transmit power, and cell den-
sity on the above mentioned secrecy performance measures. The
results show that at low transmit power operation, the secrecy
performance enhances for higher small cell density. It has also
been observed that the higher directivity gains at mmWave cells
lead to a drop in secrecy performance of the network; thus a
tradeoff exists between better coverage or secrecy.

Index Terms—Heterogeneous networks, millimeter wave, sub-6
GHz bands, massive MIMO, stochastic geometry, secrecy outage,
secrecy energy efficiency, secrecy spectrum efficiency.

I. INTRODUCTION

WING to the widespread usage of intelligent devices and
O exponential growth in wireless data traffic, the conven-
tional sub-6 GHz communication ways are almost saturated
and are incapable of meeting the increase in traffic demands.
New access technologies under the umbrella of fifth generation
(5G) communications are gearing up in both academia as well
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as industry. The key enablers for 5G networks at the physical
layer include heterogeneous cellular networks (HetNets) with
massive multiple-input multiple-output (MIMO) technology
and millimeter wave (mmWave) communication at 10 to
300 GHz radio frequency bands with bandwidths as high as
2 GHz [2]-[4]. The HetNets create a layer of overlay deploy-
ment of small cells of low-powered base stations (BS), variable
communication ranges, and operating frequencies on the exist-
ing sub-6 GHz macro cells thus providing enhanced coverage
and throughput to the end users by bringing network closer to
them [5].

Massive MIMO technologies produce highly directional
beam gains and enhanced radio spectral efficiency in HetNets
by deploying large-scale antenna arrays at the transmitting
nodes. On the other hand, mmWave communication, takes
place at a smaller wavelength than the conventional microwave
networks, provides higher spectral efficiency while being sen-
sitive to blockages and certain materials such as concrete cause
severe propagation losses and thereby higher path loss which
limits the coverage size of mmWave cells. Because of the
mmWave small wavelength, a large number of antennas can
be deployed in a small area. Using these directional antenna
arrays, beamforming can be implemented at mmWave BSs to
compensate for path loss since measurements show signifi-
cant differences in line-of-sight (LoS) and non-line-of-sight
(NLoS) path loss properties [4], [6]. Beamforming gains also
tend to overcome the additional noise power and out-of-cell
interference in mmWave communication [7].

While talking about 5G communications, the main focus is
on maximizing the coverage probability and achievable rate
at the end user. However, the idea of end user’s information
integrity and secrecy is equally important and it presents
the gap in recent studies, which is investigated in this
study. Physical layer security (PLS) can be a less com-
plex solution for the protection of confidential information in
complex wireless networks [8]. Particularly, PLS in massive
MIMO-enabled hybrid HetNets with mmWave small cells is
important since the aforementioned networks present the most
common deployment scenario for the future 5G communica-
tion networks. This paper analyses the PLS in massive MIMO-
enabled hybrid HetNets by digging into unique advantageous
properties of massive MIMO and mmWave channel.

A. Related Works and Motivation

Major research developments have been made recently in
the area of PLS for wireless networks where the secrecy
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outage probability and secrecy rate are the important tools
of investigation. The effects of fading on secrecy outage
probability, which is the probability that the confidentiality
of information sent to legitimate receiver has been compro-
mised, is studied in [9], [10]. Techniques such as cooperative
jamming, Wyner codes, beamforming, and artificial noise
can improve the secrecy by degrading eavesdropper’s chan-
nel as investigated in [8], [12]. Spectrum allocation and
transmit beamforming are designed for a two-tier HetNet
to improve secrecy rate in [13]. The stochastic modeling
of secrecy outage probability and network throughput of a
HetNet is studied in [14]. An access threshold-based secrecy
mobile association policy for a K-tier HetNet is proposed
in [15]. The authors in [16] studied secure transmission
based on coordinated multipoint scheme in HetNets. The
secrecy rate and energy efficiency in massive MIMO-based
heterogeneous centralized radio access network (C-RAN)
is analyzed in [17] where it is shown that the central-
ized and distributed large-scale antenna systems collec-
tively contribute to improved secrecy. Authors investigate
the artificial noise aided physical layer security in mas-
sive MIMO multiple access channels where legitimate users
and eavesdoppers have large antenna arrays and derive use
insights [40].

All of the aforementioned literature focuses on PLS analysis
of HetNets based on conventional sub-6 GHz low frequency
tiers. Since the propagation properties of mmWave commu-
nication are different from sub-6 GHz channels, traditional
studies and results in PLS do not necessarily apply to mmWave
communication systems. For instance, secrecy behavior of a
point-to-point mmWave link is studied in [18], which shows
that mmWave has an enhanced secrecy in contrast to sub-
6 GHz conventional systems. The large available bandwidth
at mmWave frequencies and large-scale antenna arrays pro-
viding high directivity gain can pave the way for high speed
secure links achievable [18]. In [19], the authors have inves-
tigated the impact of blockages on the secrecy rate in a
network with both mmWave and sub-6 GHz BSs in the
presence of eavesdroppers. Secrecy outage probability for
mmWave network is analyzed when the users and eavesdrop-
ping nodes are single antenna omnidirectional transceivers
in [20]. In [21], mmWave secrecy beamforming schemes
are proposed to maximize the secrecy sum rate in two-way
amplify-and-forward MIMO relaying networks. Physical layer
security in large-scale mmWave ad hoc networks is analyzed
in [22] where it is assumed that the eavesdroppers are ran-
domly located and can intercept the confidential information
if they reside in a single beam. We would like to highlight
that the aforementioned work in the recent literature solely
focuses on the secrecy outage analysis of mmWave cellu-
lar networks only or mmWave overlaid sub-6 GHz networks.
According to the best of our knowledge, there is no ana-
Iytical work in the literature which investigates the secrecy
spectrum efficiency (SSE) and secrecy energy efficiency (SEE)
for massive MIMO-enabled hybrid HetNets incorporating both
sub-6 GHz and mmWave small cells in the presence of
eavesdroppers.

B. Approach and Contributions

This paper studies the PLS in proposed three tier hybrid
HetNet with massive MIMO in macro tier and sub-6 GHz
and mmWave frequency small cells. We propose a tractable
approach for SSE and SEE analysis that accounts for the
key features of massive MIMO technology, mmWave chan-
nel, number of transmitting antennas, beamforming gains and
node densities. The main contributions and insights are listed
as follows.

e We model the proposed downlink of a three tier hybrid
HetNet with massive MIMO-enabled macro tier incor-
porating sub-6 GHz and mmWave frequency small cells
with the aid of stochastic geometry, which character-
izes the random spatial distributions of transmitting BSs,
legitimate users and eavesdroppers. The secrecy out-
age probability for each of three tiers is derived to
quantify the effects of important system parameters.
Our results show that at high antenna gains, secrecy
outage of the network increases and a tradeoff exists
between enhanced coverage or secrecy performance. With
increased number of antennas at massive MIMO-enabled
Macro BSs (MBSs), secrecy performance of the network
decreases.

e We develop an analytical tractable framework for the
evaluation of average achievable ergodic rate for each
of three tiers and eavesdroppers to determine average
achievable secrecy rate of the network. Based on aver-
age achievable secrecy rate, the secrecy oriented spectrum
and energy efficiency performance of the massive MIMO-
enabled three tier hybrid HetNet is derived. Our results
demonstrate that increasing the number of antennas at
MBSs results in a drop in SSE and SEE of the network.
By increasing the transmit power of small cell BSs, SSE
and SEE of the network improve.

II. SYSTEM MODEL

In this work, we consider the time-division duplex (TDD)-
based downlink transmission scheme in a hybrid HetNet
where spatially distributed access points (or BSs) transmit
the information to the legitimate users in the presence of
multiple malicious eavesdroppers. The macro cells operating
at sub-6 GHz constitute tier 1, whereas small cells operat-
ing at sub-6 GHz and small cells operating at mmWave band
constitute tier 2 and 3, respectively. It is assumed that the loca-
tion of BSs follow a two dimensional homogeneous Poisson
point process (HPPP) with intensity ®; and density A; where
k € {1,2,3}. Similarly, the location of legitimate users and
eavesdroppers are modeled as HPPP with intensity ®,, and its
density A\, and ®. with density A, respectively. It is assumed
that the MBSs are provided with multiple antennas forming
an array while the small cell BSs, legitimate users and eaves-
droppers are equipped with a single omni-directional antenna.
Massive MIMO is adopted at the macro cells such that each
MBS has N antennas that can communicate simultaneously
with U users (N > U > 1) with equal power distribution
among all users [23].
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In this work, we assume perfect synchronization and down-
link channel state information (CSI) is known at the MBS and
focus on zero-forcing precoding. Because in the practical TDD
massive MIMO systems, the downlink CSI can be obtained
through channel reciprocity based on uplink training. The main
focus of this work is to carry out the detailed performance
analysis of massive MIMO-enabled three-tier hybrid hetero-
geneous networks for the perfectly estimated CSI case. The
imperfect CSI or outdated CSI can adversely affect the system
performance [24]-[25] and its impact on the performance anal-
ysis is not main scope of this work. It is assumed that each
MBS uses linear zero forcing beamforming (ZFBF) to trans-
mit U data streams with equal power assignment [26]. In the
k" tier, each BS has the total transmit power Pj and path
loss exponent «.. In accordance with Slivnyak’s Theorem, the
analysis of the network is performed for a typical user located
at the origin and an open access scheme is assumed where
the user can connect to any tier BS based on the maximum
average received power.

A. Received Signal Power Model

1) mmWave Network: In mmWave networks, since
mmWave signals are transmitted with narrow beamwidths,
therefore, the effects of multipath fading is not that severe
as the delay spread of the channel is small. It is also clearly
outlined in [2, 5] that the small-scale fading can be ignored in
the analysis carried out for the mmWave network. For an ana-
Iytical tractability, in this work the Nakagami fading model
is considered. Using the Nakagami fading model, the enve-
lope of the fading has the probability density function (PDF)
given as

N, _
Ny yNa=lexp{—Nyy}
I'(Ng)

|h|Nf|h‘(y7Nq) £ ; Vy>oa (D
where N, is the Nakagami fading parameter wherein ¢ €
{Lm, Ny} and T'(Ny) is the gamma function. Here L;, and
Ny, represent the LoS and NLoS propagation environments,
respectively, and the Nakagami parameter is characterized
for each environment differently. In the assumed system
model, the small scale fading between the mmWave small
cell BS and the typical user is considered to be indepen-
dent Nakagami fading with Nakagami fading parameter Ny,
and Ny, for LoS and NLoS links, respectively. Both Ny, |
and Ny _ are considered as positive integers for the ease of
tractability.

We perform our analysis on a typical outdoor user where
a typical user at the origin O is LoS to the mmWave small
cell at A if and only if there is no blockage intersecting the
link OA. By employing independent thinning theorem, ®3 is
divided into <I>§’” and @év'” = O3 /<I>§'” using LoS proba-
bility function, p(x), as independent PPPs of LoS and NLoS
mmWave small cells, respectively [27]. Thus, <I>3’” and @év m
have the densities p(z)A3 and (1 — p(z))As, respectively. The
LoS probability function, p(x), is a measure of probability that
a link of length x is LoS while NLoS probability of a link is
1—p(x). The LoS probability function p(x) can be obtained by
field measurements or from stochastic blockage models. Using

T

stochastic blockage models, p(x) is defined as, p(t) = e P
where (3 is the dependent on statistics of blockages and x
is the link distance between the serving BS and the typical
user.

The mmWave tier BSs use directional beamforming for
data transmission for compensating the notable path loss at
mmWave frequencies. The antenna pattern is approximated
using a sectored model, where the array gains are assumed to
be constant for all angles in the main lobe and another constant
in the side lobe. Beam direction is assumed to be independent
and uniformly distributed between (0, 27]. Hence, the effec-
tive antenna gain distribution, GT7 R, at a typical receiver, r,
for an interferer, ¢, is given as,

97’025
2
0,21 — 07)
2
(2r 4_7T9r)9t @
2
(2m —6,) (27 — 0y)
472 ’
where M; is the main lobe gain with beamwidth 6;, m;
donates the side lobe gain and 0; is the half power beamwidth
(or 3-dB beamwidth where j € {¢,r}). We assume that
the typical transmitting BS, ¢, and receiver, r, are perfectly
aligned thus maximum directivity gain M, M; can be achieved.
Likewise, the antenna gain seen at the eavesdropper e €
{EV1,EVy,...,EVg}! from serving BS, ¢, is defined as

eeet

My, M; with prob.

Mymz with prob.
Grr=
myM; with prob.

mymz  with prob.

M My withprob.
472
o Memy¢ withprob. W ;
T,e = i 3)
meM; withprob. Lzew’*
(27 2 00)(27 — 6)

472 ’
where M., me and 0. are the main lobe gain, half power
beamwidth and the side lobe gain at the eavesdropper e,
respectively.

2) Sub-6 GHz Network: The channel modeling in the sub-
6 GHz network can be formulated in a similar manner to that
of the mmWave network with the exception that the antennas
in sub-6 GHz BSs are omni-directional with the transmission
power of P; with the path loss exponent «;,Vi € {1,2}.
We assume that the Macro BS operating at sub-6 GHz are
equipped with N antennas whereas Small cell BS operat-
ing at sub-6 GHz are equipped with a single antenna, i.e.,
N = 1. It is important to highlight that for the sub-6 GHz
network, 4 is assumed to be independent and identically dis-
tributed (i.i.d.) complex Gaussian random variable with zero
mean and unit variance, which is the same as assuming the
fading to be Nakagami with N, = 1. An i.i.d Rayleigh fading
channel is considered for the massive MIMO enabled macro-
cell BS and small cell BS operating at sub-6 GHz band with
the typical user. It is worthwhile to mention that for single
input single output (SISO) transmission (for the case of sub-
6 GHz small cells tier or tier 2), there is no precoding and

memy withprob.

1E is the total number of eavesdroppers.
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the channel gain for the both interfering and direct link fol-
low exp (1) distribution which is same as I'(1, 1) distribution.
If the desired link is established between the transmitter and
receiver, Gp gp = Gy Gy, where Gy, is user’s gain and G(')
denotes the main lobe gain for k& € {1,2}. It is also important
to highlight that the effective antenna gain G'r g for the sub-
6 GHz links are not affected by the half-power beamwidth and
the side lobe gain. As the legitimate users (or eavesdroppers)
are equipped with a single omni-directional antenna so the
effective antenna gain Gy, (or Ge) is equal to 1, G g = Gy.

B. Downlink User Association

In this work, it is assumed that the legitimate user connects
to the BS that provides maximum average received power [28].
Thus, the typical user located at the origin will connect to tier
Jj only if

j = arg max
ke{1,2,3}

max
ke{1,2,3}

C Py, GT7RZL’70"“

Qg

= arg PpGp ge=%,

where the normalized transmission power of the k' tier is

given by P, = Cj, x P}, = (4]73:62. Ac is the carrier wavelength
corresponding to the carrier %\féquency fe» CY is the frequency
dependent path loss at a reference distance of 1 m given by
(%;)2 and the path loss between typical user and serving BS
for the separating distance x is given by x %,

The average received power for a user establishing connec-
tion with the MBS, M (from ®; or tier 1) denoted by Pj"®
can be expressed as,

PP = Gy e, 4)
where Gy is the antenna array gain expressed as (N—U+1)
for ZFBF transmission [26]. Using the orthogonality property
of ZFBF, each user is provided with the same number of spatial
degrees of freedom given by (N—U+1). The average received
power for a user establishing connection with small cell BS
can be expressed as,

pave _ EG[Iial,

! where

le{2,3}, ®)
where () can be defined as follow:

G — 1, sub — 6 GHz small cell,
L= G R, defined in (2), mmWave small cell.

C. Signal-to-Interference Plus Noise Ratio (SINR) Model

In this subsection, we analyze SINR of the considered
three tier HetNet. It is observed that the secrecy performance
improves manyfolds when the eavesdropper channel is dis-
torted because of interference. It is important to highlight that
the eavesdroppers are the users who are acting malicious.
It is also important to note that the sub-6 GHz users oper-
ate at lower frequency with higher wavelength which makes
it infeasible to equip the users (eavesdropper or legitimate
users) with more than one antenna. For a fair comparison,
it is assumed that all the users are equipped with a single

antenna. In this work, we have also assumed that the eaves-
dropper acts on its own which means they do not cooperate
with each other, i.e., the SINR for the eavesdropper is coming
from the most malicious user. This assumption also validates
that each eavesdropper has only one antenna.

The received SINR between a typical receiver and any
eavesdropper? establishing a connection with the serving
MBS, where M € <i>1 can be expressed as

EUl|ho,M“)o|2GMl’7al

2 _ ’
o2 + ZUGE%“LU,M‘O“ Gyzy oy Is

(6)

SINR, =

X Py, ool Geas
SINR; = e[ Geae @)

P 2 —a ’
o2 + Zveaﬁl‘hv,MwA vav,e T4 Ig

where ho o, = [} ..., hlY,] € C1*N is the downlink chan-
nel between the v sub-6 GHz MBS to the typical user with
the subscript o. Each entry in h, , is independently identically
distributed (iid) complex Gaussian random variable with zero
mean and unit variance. The separate encoding scheme is con-
sidered at each MBS, vt MBS sends an information symbol
via a linear ZFBF vector @, = [w), ..., w!] with unit norm,
ie., ||wy|| = 1,v € ®1, where ®; is the set of interfering
BSs, i.e., interference from all other macrocell BSs exclud-
ing the serving macrocell BS such that <i>1 U®; = ®; and
N<< oo is the number of antennas at v** MBS. Ig is the inter
cell interference from the small cell operating in sub-6 GHz
band given by Y, cq, P2lhs|>2s 2. hs, hy ar. ho s are the
small scale fading gains at the typical user from the interfering
channel such that hs ~ exp(1), from the interfering MBS such
that h, 37 ~ I'(U,1) and from serving MBS for U users such
that h, pr ~ T'(N — U + 1,1) [26]. Here, the fading gain at
eavesdropper at the separation distance z. from the serving
BS is denoted by h. ps ~ exp(1). Similarly, 25 and =z, are
the distances measured from the typical user to small cell BS
s € ®g and from the typical user to MBS v € ®1, and o is
the thermal noise.

The received SINR between a typical user and any eaves-
dropper at separation distance . establishing connection with
the small cell BS operating at sub-6 GHz band, where S € @5
can be defined as

D 2,.—ag
SINRG = — Palfo,sl"a . ®
o- + 25652P2|h575|21:5 *+ L

Polhe,s|?ze
o2 + ZSEEQEMS,SPI’;?

SINR§ = 9)

2+IM

2There is a possibility that all or several eavesdroppers can cooperate with
each other by combining their observations forwarded to the central entity
to decode the message of the legitimate user. This cooperation among the
eavesdroppers can result in a group of cooperating eavesdroppers, i.e., |Ue|
resulting in a powerful user with an access to Ue antennas whose aggregate
received power is the summation of the received power on all the antennas
leading to the maximum secrecy outage. This cooperating mechanism is men-
tioned here for the sake of completeness, but it is not the main focus of this
work. It is also assumed that the eavesdropping channels and legitimate user
channels are independent of each other, thus the eavesdropper with the highest
received SINR is the most malicious one and it dominates the secrecy rate.
Therefore, the SINRs discussed in this subsection are for the most malicious
eavesdropper, i.e., SINR = max.cq,{SINR?} where i € {M, S, m}.
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where 7 is the intercell interference from macro cells given
by Y pea, P—U1|hv|2xv_o‘1. Here, hs g, ho g, he,g and hy are
the small scale fading gain from the interfering channel such
that hy g ~ exp(1), hy g ~ exp(1), he g ~ exp(1) and hy ~
I'(U,1). Here, zs and z, are the distance measured of the
typical user from small cell BS s and MBS v, respectively.

The received SINR between the typical user and any eaves-
dropper establishing connection with mmWave small cell
denoted by b, can be expressed as

J— (9)
P3 My M| ho |2z~
SINRgn = — 3T t‘ 0,m| & _a(q)a
02+ P33 ge (L Nony 21ed? Gillum [Pz
(10

Py Gelhem2es
e* _ 3Uellle,m|” Te
SINR,, = @

q
- —Q
02 + PSZ(]G{Lm,Nm}ZZEEg Gl|hlvm|2xl,e 3
(11)
where Ao m and he g, are small scale fading gain, G; and
G are the directivity gains of interfering BSs, given by (2)

and (3) and ¢ € {Ly,, Ny, } identifies the interfering link as
either LoS (L) or NLoS (N), respectively.

D. Power Consumption Model
The total power consumption at MBS in each channel is
given by
3
Pl — gy S O(U) (At NA),
t=1

12)

where p; is load independent circuit power or static hardware
power consumption of MBS, €; is power amplifier efficiency,
parameters A; and A; depend on transceiver chains, coding,
decoding and precoding [29].
The total power consumption in small cells of tier 2 and
tier 3 is given by
total p l
P, =p+— for 1e€{23}, (13)
€]
where p; is load independent circuit power of SBS, [ € {2,3}

and ¢; is power amplifier efficiency of the small cell BS of
the /-th tier.

E. Secure Transmission Characterization

In this proposed network scenario, it is assumed that all
tier links are eavesdropped. We consider the case of passive
eavesdropping where eavesdroppers do not perform any active
attacks to deteriorate downlink transmission information. To
protect the confidential information from intrusion, a secrecy
coding scheme called Wyner code is adopted at each link such
that each BS encodes its data using Wyner coding scheme
before transmission [30]. Based on this scheme, two kinds
of code rates need to be specified before data transmission
at the transmitter, i.e., the rate of the transmitted confidential
message signal R,,, and rate of transmitted code words R,
where the cost of maintaining the confidential message secrecy

is R, — Ry, [30]. We assume that rates R, and R,, remain
fixed during information transmission [31], [32]. Depending
on the choice of R,, and R, at the BS, the secrecy outage
events may occur and due to quasi-static channel it is not
possible to ensure perfect secrecy.

In order to prevent the secrecy outage event, the wiretapping
capacity of the channel between the serving BS and eavesdrop-
per R¢ should be less than the rate R, — R,;,, meaning that the
received SINR at any eavesdropper is above a certain thresh-
old. In this trend, the secrecy outage probability is defined as
PE (7e) = Pr(SINRJ > 7). SSE is the measure of the aver-
age secrecy rate per unit bandwidth and it is used to define
the spectrum efficiency in terms of secrecy measure in a 3-tier
massive MIMO enabled hybrid HetNet. SEE is defined as the
secrecy performance of a 3-tier massive MIMO enabled hybrid
HetNet achieved with unit energy consumption.

III. SECRECY PERFORMANCE EVALUATION

The secrecy transmission capacity constraint is defined as
the average achievable rate of successful transmission of con-
fidential information [30], [33]. In the proposed 3-tier massive
MIMO-enabled hybrid HetNet, the average achievable secrecy
rate for each tier k is defined as

Rgy, = [Ry — RE]T for ke {1,2,3}, (14)

where Rj, = E[logy(1 4 SINR})] is the average achievable
ergodic rate of the channel between the serving base station of
tier k and the typical receiver node, R}, = E[log2(1+SINRf: )]
is the average achievable ergodic rate of the channel between
the serving base station and most malicious eavesdropper and
[y]* = max{0, y}.

Since the eavesdropper nodes are non-colluding, i.e., they
intercept the confidential information message passively with-
out actively intruding the transmission, the CSI of eavesdrop-
per node is unknown at the serving BS. Thus the ergodic
transmission rate of the serving BS is only dependent on
the CSI of the link between itself and legitimate intended
receiver. In this work, we considered the case of most mali-
cious eavesdropper, hence, the average achievable ergodic rate
in a random wiretap channel cannot exceed Rj.

A. Achievable Ergodic Rate

Using the mathematical notations defined in (14), we first
derive the achievable ergodic rate at the intended legitimate
user as follows.

Lemma 1: When the legitimate typical user is associated
with MBS, the exact achievable average ergodic rate between
the serving BS and the most malicious eavesdropper is given
by [39, Th. 3] [38]

RY = Pr(R{ > ve)
= Prllogs(1+ SINR§;) > 7e),
R¢ = Pr(SINRS, > 27 — 1),

1 oo
R¢ = —— Pr(SINR¢ Ye _ 1
! 111(2)/0 r(SINRj > e = 1),
1 oo pl
Rf = / C(VE) d’Ym
1n(2) 0 14 ve
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1L [%1=Pg,(ve)
e SO e
= I AL 15
1 1n2 1+’Ye Ve ( )
where PL (v) is CDF of SINRS, given as,
Pslo(’Ye)
NN
—-1— o R !
exp( 271'/\62 <z)( 1)
=1
o0
></ reexp{ % ffl C%} dre>,
0 P1
(16)
where 131 % C and C2 are given as,
~ c
u U 0o (uPlr_al)
4112m12( >/ o rdr
=1 \°© Te (1 + uPlr_O‘l)
and
[e’] ? —Qp
d=2n [ o % <>d
<7(N—l};-24—1)151> 2, 0‘2 1+ uPor—a2

where u = (M)
Proof: A detal]led proof is provided in Appendix B. |
Lemma 2: The achievable ergodic rate at the intended
legitimate user associated with MBS is given by
L [®PL()
E 1+~

Ry = dry, a7
where PC fO PC 7, %) fx, (z)dz is the complementary
cumulative dlstrlbutlon function (CCDF) of SINRY,. Here,
[x, () is the probability density function (PDF) of the distance
between the serving MBS and typical user and Pé (v, ) is the
conditional coverage probability for given distance x between
the typical user and serving MBS.

Proof: A detailed proof is provided in Appendix C. u

By substituting (15) and (17) in (14), we can finally calcu-
late the average achievable secrecy rate for sub-6 GHz macro
tier.

Lemma 3: The achievable ergodic rate at the intended legit-
imate user establishing connection with sub-6 GHz small cell
BS can be expressed as

L[> PE(v)
In2 1+~
where P%(y) = ' P2(v,2)fx,(z)dz is the CCDF of
SINRY. Here, fx,(z) is the PDF of the distance between
the serving sub-6 GHz small cell BS and typical user and

P% (v, z) is the conditional coverage probability of the typical
user. The PDF of distance, fy,(z), is given as,

Ry = d~, (18)

27T Ao
sz (l’) = AQ

xexp( — oz’ — 2mA3D(z)

1)370‘2 )2/a1>

19)

P{(N —
_77/\1( 1( ?(]U+
)

where As is the association probability that a user is connected
to sub-6 GHz small cell BS given by

o0
Ay = 271')\2/ xexp( — TAoz? — 27 A3D(x)
0

s 2/(11
) )da:,

(20)

o2

1
«@

where D(x) is given by (A4), dy(z) = (EG) Lz°L and

P
op(x) = (G2
Condmonal coverage probability, P2 &(7, @), is defined as,

a2
)cxN TAN |

yolz®

P%’(’Y7I) = exp <_

. 2
yz*2 Py ) BEANTY

U
2 U
— 2T\ E < )
P2 z=1 z
U Py

e (D
UPo aq

2
B z——,1-U
(B @) 1)[ a1 ]

— 2w A9y ™?

2
-2 2
[a2 ,hz—;—ﬂ>, @1)
(6%)] (&%)

((N U‘H)P 202).

where H(z) =

Proof: The proof follows on the similar lines from
Lemma 1. However, for better understanding, readers can
follow the proof from Appendix C. |

Lemma 4: When the legitimate typical user establishes
connection with sub-6 GHz small cell, the exact achievable
average ergodic rate between the serving BS and the most
malicious eavesdropper is given by

e 1 0017]3820(76)

= d 22
2 1n2 1 + Ve Ve ( )

where P2 (7.) is the CDF of SINR? given as,

—ﬁ—éh@,

(23)

Pszo(’ye)

o
=1—exp <—27T)\e/ Te€Xp {—
0

where

g 2
YeTe O
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[ee) ﬁ —Q9
2= 271'/\2/ (W> rdr,
re \ 14+ uPor—2

where u = (M)

Proof: Tt can E)e proved by following the approach used in
Lemma 2. |

By substituting (18) and (22) in (14), we can thus calculate
the average achievable secrecy rate for sub-6 GHz small cell
tier.

Lemma 5: The achievable ergodic rate at the intended
legitimate user associated with mmWave small cell BS is
given by

1 [ PA()
=— d 24
R3 n2 1+'Y v ( )
where P3(v) = X A3 ,Pg%(y), is the CCDF of
q€{L,N}

SINRY, P Lm( ) and Pg’N’" (v) are the conditional cov-
erage probabllltles when the typical user, associated w1th
mmWave small cell tier, forms a link with the BS in <I>3
and <I> ™, A3 4 are the probabilities of typical user connecting
with LOS or NLoS link, respectively.

The conditional coverage probabilities, P %(y,x) can be
evaluated by
Ny N
3, j
Pt = 3o ()
j=1 /
o y (63
—jingz*iyo’ >
X exp| ———— , )| f
[ e (FRET - G0 oo
(25)
where Cy ; (v,z) is shown in (26) and (27), at the bottom
aL"L aNTVL
of the page, where 1, (z) = z%Vm, oy (z) = 2%m,
_1
F(Ng,z) = 1 —1/(1 + )¢ and 5y = Ng(N,!) Mo, q €

{Lm, Np }. Parameters a; = a; /M, My, a; and p; are defined
in Section II-A.
Proof: A detailed proof is provided in Appendix D. |
Remark 1: For the special case of Rayleigh small scale
fading, the conditional coverage probability, Pg’q(’y) can
be approximated by setting Nj = Ny, = 1 and

NL,, = 1N, = 1 as follow:
—jngeiryo’

P = [ e (I - Cysto0) (o)

where Cyj, ¢ € {Lm, Nm} can be approximated from (26)
and (27) by replacmg NL =Ny, =1L, =nn, =1

Lemma 6: When the legitimate typical user is associ-
ated with mmWave small cell, the exact achievable average
ergodic rate between the serving BS and the most malicious
eavesdropper is given by

i oolfpgo(’ye)

§ = d 2
3= 1o T+ e Yes (28)
where P2 (v.) is the CDF of SINRS, given as,
P?o (ve)
e -2 Y Z( ) 1+
JE{Lm,Nm} 1=1
0 Z'Ye reaj 0.2
>< e - T = d )
/0 T'e€XP e CS,] (re) Te
(29)

where pz(re) = e(=57¢) is the LoS probability function and
pn(re) =1 — e(=F7) is the NLoS probability function for
the eavesdropper wiretapping the transmission from serving
mmWave BS to the intended receiver node. Here, (37, =
Crj(VesTe) and (3 ,, = Cn j(Ve, Te) Where Cp, i(7Ve,Te)
and Cly;,, j(7e,re) can be computed by setting v = 7, and
r = re in (26) and (27), respectively.

Proof: It can be proved by following the approach used in
Lemma 2, separately, for LoS and NLoS link. By substitut-
ing (24) and (28) in (14), we can thus calculate the average
achievable secrecy rate for mmWave tier. |

B. Special Cases

Example 1: By setting N = U = 1, the association prob-
ability of MBS, sub-6 GHz small cells and mmWave small
cells can be given, respectively, by:

- 2/ s
9] P a1
Aq :27r)\1/ xexp(—ﬂ)Q( Zi ) —7T)\1:v2
0

Py

-\ 2/as
— 273 <P3> D(x)) dz,
Py

(30)

o0
Ay = 277/\2/ mexp( — TAox? — 2w 3D(x)
0

— 2/an
Pz

—71'/\1( 17 ) )dw,
)

and F(Ng,z) =1 — 5. (€29)
[ roo : A O 00 . A O
INL,y, Gy T =m INL,, GYT—=m
C ) =27 F(N, —_—m t)tdt F(N —m (1 —p(t))tdt
L (02 wgzpl_/m (19 PP Yoty + [ N (0 P20 ) 1) ]
(26)
00 : A QU ) . A QLN
JTIN,, GiYT ™ JNIN,, Gy T~
C ) =27\ F(N, —_n t)tdt F( N, —=m ) (1— p(t))tdt
N (12 mm - (1, P02 Y st [y, PO ) 4 ]

27)
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[e.e]
Az p,. = 271'/\3/ zp(x)exp{(—2w A3 M (z)
0

= Z(z) = Y(z))}, (32)

Az N, =1—A1— A — A3, (33)

where D(x) is given by (18), Z(z) = WAl(?lmPT(?m)Q/al and

Y(z) = 7hg (Pﬂa1 )2/6“2 This change in setting is equal
to the previous reslult corresponding to the cellular network
in [19].

Case 1: Similarly, for the case of same path-loss exponents
for all k tiers, i.e., a1 = ag = a3, = Q3 N,, = Q, the asso-
ciation probabilities and D(x) in (18) can be further simplified
as below:

m?

2/

> Py 2 2
Aq :27r)\1/ zexp| —mAo| = T — T\
0 Py
2/
P
- 27r)\3< 3) (m)) dz,
Py

(34)

oo
Ay = 271)\2/ xexp( — Thox? — 27 3D (z)
0

2/
- m1<2) >dz, (35)

oo
Az, = 27r/\3/ ap(z)exp{(—27 A3 M ()
0
— Z(z) = Y(2))},
where Z(z) = 77)\1(15;;)2/0‘3:2 and Y (z) = wAz(%)Q/O‘x2.
A3 N, =1—-A1—Ay— A3, (37)

(36)

and,

SN, () Orm (2)
D(z) = / tp(t)dt +/ t(1—p(t))dt, (38)
0 0

D 1

Example 2 For the spemal case, when both MBS and sub-
6 GHz small cells operate at different frequency bands, hence
there is no cross-tier interference, i.e., only co-tier interference
from same tier BSs and all tiers have same path-loss expo-
nent «, the coverage probability of tier k can be simplified as
follow:

1 n

[11]

o 2 Uz ~yUx®
X exp — — —
Py Py
! .

< L @)”
where 71 = N — U. In (39), E(e),@(l)(i) and ﬁ(j)(i) are
given by (40)—(42), shown at the bottom of this page.

Case 2: Similarly, P%('y,x) can also be found by using
N = 1and U = 1 in (27). Similarly, P} (v¢) and P2 (ve)
can also be obtained accordingly.

Example 3: For the mmWave tier operating in noise lim-

ited regime, 02 >> (I, + Iy), the coverage probability from
Lemma 5 can be expressed as follow:

> S ()

¢€{Lm,Nn}j=1

</ exp(W)fq( ), (43)

by equating Cy ;(7v,2),q € {Lm, Nm} to zero and fq(a:) =
A3,q X f q(x )

Case 3.1: Similarly, for the case in mmWave tier when
the LoS interference is far more dominant than the NLoS
interference, i.e., Ir, >> Iy , the coverage probability from
Lemma 5 can be expressed as follow:

)

(39)

Pi(v) =

Ro- Y S (™)
qE{L7n1Nm}.7 1
o] a 2
—JngE*ino 2
></0 exp(]\(m — Cq,j(%a:))fq(:v)dm
(44)
where
CLy,j(v@ —27T)\3sz
00 : A om QL
></ F(NLW,%)tP(t)dt,
T m
(45)
CNp i (7, T —27TA3sz

00
X / *Nm
z “Lm

] 0 aNm
F(NLWW) (b dt.

Pl Y, r) = NLmtaLm
L) = Z e Z I (46)
. U U ?1 ¥4 Pil *Z+§ 2
:(e)z27rAlzZ_l(z>(U> e (—eU> B _eixfa {z—a,l— U} (40)
- U
—(1) fngU 2-a -2 2 R
DI PG L LA ¥ O QFl[ Uat2- 2 a} (1)
1
() 2(U4j-1!()7Fs .
U )_27T)‘1( )a (U*l) o B( yiz—e) |J —1-U-] (42)
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Case 3.2: Similarly, for the case of dense mmWave network
corresponding to the interference limited regime, i.e., (1, +
Iy,,) >> o2, where all the users would end up having LoS
connections with their mmWave small cell, i.e., Iy, ~ 0. For
the dense deployment of mmWave small cells, the coverage
probability from Lemma 5 can be expressed as follow:

N

Pi(y) = i(_l)jﬂ (Mm)

=1 J

0 Mr Mt

<

_ ch,jw>)fq<x>dx, )

where
4
Clyj(1:2) =223 pi
=1

o0 - . aj,
INL, Gyx—=m
F{N;  —2——— |tp(t)dt.
XA ( L NLm tO‘Lm ) p( )
(48)

C. Secrecy Outage Probability

The total secrecy outage probability, Ps,, for the proposed
three tier network with massive MIMO enabled MBS and
mmWave small cells, is defined as

3
Pso =Y PhAy, (49)
k=1

where Ay, is the association probability of tier k.

D. Secrecy Spectrum Efficiency

For the proposed 3-tier hybrid HetNet with massive MIMO
in macro tier and mmWave small cells, using the law of total
expectation and from [11], [15], the tractable lower bound on
the SSE is given by

3
SSE" =) " A; x SSE,
k=1
where SSE1 = U x Rgy is SSE for massive MIMO enabled
macro tier and SSE;, = Rgy, for k € {2,3} is SSE for small

cell tiers, respectively. Average achievable secrecy rate Rgy
for each tier k is defined in (14).

(50)

E. Secrecy Energy Efficiency

For the sustainable and optimal operation of the proposed
3-tier hybrid HetNet with massive MIMO in macro tier and
mmWave small cells, theoretical understanding of SEE and
SSE is equally important. Thus, the SEE for the proposed
network is lower bounded as [23], [36]

3
SEE" =)~ Ay x SEEy,
k=1

(G
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Fig. 1. Secrecy outage probability of the 3-tier network versus 7. (dB) for
Ag = A3 =30\, N =5.

where SEE; = prtfjl is SEE for massive MIMO enabled
1
macro tier and SEE; = % for £ € {2,3} is SEE for

small cell tiers, respectively.kAverage achievable secrecy rate
Rgy, for each tier k is defined in (14).

IV. SIMULATION AND NUMERICAL RESULTS
In the considered simulation setup, a 3-tier HetNet is

assumed with MBS density A\; = , Whereas Ao

(5002 x 7)
and A3 are considered to be multiples of MBS density. The
sub-6 GHz tiers are assumed to be operating at a carrier
frequency of 1 GHz, 10 MHz bandwidth, path loss expo-
nents a1 = 3.5, ag = 4 and transmit power P; = 46 dBm
and P> = 30 dBm, respectively. The density of eavesdrop-
per is taken as A = 1 x 1075, unless stated otherwise. For
mmWave tier, the operating frequency is 28 GHz, 100 MHz
bandwidth, path loss exponent for LoS, a;;, = 2 and for NLoS,
any = 4 and transmit power P3 = 30 dBm. Nakagami fading
parameters for mmWave tier, Ny and Ny, are taken as 2
and 3, respectively. Array gains for all angles in main lobe
are taken as M, = 10 dB and M, = 10 dB and for the
side lobes m, = —10 dB and m; = 0 dB. The main lobe
beamwidth is taken to be 6, = 90° and 6; = 30°. A noise
power o2 = —90 dBm is taken with a noise figure of 10 dB.
The blockage parameter, 3, is 1/ = 141.4 meters [35]. We
assume coefficients of energy efficiency of power amplifier as
€1 = €2 = €3 = 0.38 [23], load independent circuit power as
p1=4W, A =48 Ay =0,A3 =208 x 1078 A; =1,
Ay =9.5 x 108 and A3 =6.25 x 10~8 [29]. Load indepen-
dent circuit power for small cell tiers is taken as po = 13.6 W
and p3 = 13.6 W, respectively [37]. Monte Carlo simulations
are used to validate the analytical results.

Fig. 1 shows the plot for secrecy outage probability,
obtained from (49), versus the SINR threshold at the eaves-
dropper for varying eavesdropper antenna gains for the
mmWave tier. We observe that the secrecy outage probabil-
ity decreases with . whereas the higher directivity gains
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Fig. 2. Secrecy outage probability of the 3-tier network as the function of
Ae for v =40 dB, N = 5.

causes an increase in the secrecy outage. An interesting obser-
vation is that with highly directional beamforming antennas,
the secrecy outage increases. This happens because, although
highly directional beamforming at mmWave tier prompts
enhanced coverage probability at the legitimate users, but
the eavesdroppers nodes will also benefit with having higher
gains. Henceforth, there is a more possibility that their SINR
goes above the predefined threshold limit. Thus, the confi-
dential information secrecy may be compromised. The result
demonstrates the existence of a tradeoff pinpointing that it
is unrealistic to use high directional beams at mmWave BSs
to improve connection outage while overlooking its effect on
secrecy outage. Moreover, analytical results have been shown
to be in close agreement with the theoretical results.

Fig. 2 shows the effects of the density of eavesdropper
nodes on the behavior of secrecy outage probability, obtained
using (49), for different small cell BS densities and directional
antenna gains at the eavesdroppers. We see that by increas-
ing the eavesdroppers density, the secrecy outage probability
increases implying that a large number of eavesdroppers harm
the network secrecy. However, the secrecy of the network
increases with an increase in the small cell BS density. This
is due to the fact that higher small cell density results in
higher overall network interference prompting uncertainty at
any eavesdropper and its SINR falls below the threshold,
i.e., secrecy outage probability improves. Moreover, by keep-
ing the small cell density fixed, lower directional antenna
gains at the eavesdropper improves the secrecy capacity of
the network transmissions. To summarize, the lower direc-
tional gain and increased cell density collectively negates the
possibility of eavesdroppers’ SINR being above the threshold.

Fig. 3 illustrates the secrecy outage probability, obtained
using (49), versus the threshold for varying number of anten-
nas at the MBSs. We see that the secrecy outage probability
increases with the number of antennas at MBS. This is due to
the fact that MBSs have higher transmission power in contrast
to the small cell BSs resulting in better transmission at legiti-
mate as well as eavesdropper nodes, therefore, eavesdroppers
are more likely to have SINR well above threshold. Moreover,
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Fig. 3. Secrecy outage probability versus . (dB) for G = 15 dB,
A9 = A3 = 30A;.
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Fig. 4. SSE versus varying small cells BS density as multiple of MBS density
for A3 = A9, Ge = 15dB, N =40, U = 5.

MBSs give higher array gains at higher antenna density and
the users are more averse to be offloaded to small cells. Hence
the interference of the network drops that prompts less uncer-
tainty at the eavesdroppers. Further, the figure shows that there
is no huge increment in secrecy outage probability after the
number of antennas is increased past a certain limit due to
the fact that the user association with tiers does not have any
significant variation.

Fig. 4 shows the effects of varying small cells BS den-
sity of tier 2 and tier 3 on SSE. We observe that the SSE
of the network increases with the density of small cells and
it decreases slightly when the density of eavesdropper nodes
increases. The SSE of the network elevates because with
increased small cell density, the average cell radius decreases
and more users are offloaded to small cells leading to better
transmission to the intended legitimate user. With a decrease
in the cell sizes, the distance between the intended user and the
transmitting nodes decreases prompting stronger links between
them and hence achieving higher secrecy rate. As for the
mmWave cells, the LoS probability function p(R), is a function
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Fig. 5. SEE versus varying small cells BS density as multiple of MBS
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of distance, therefore, when distance decreases, LoS associa-
tion probability increases such that the users are now more
likely to form low path loss LoS links with mmWave BSs
than NLoS links. The association of users with MBSs declines
though they are high power entities but have low BS density
than the small cells. Moreover, interference in the network
increases because of super dense transmitting nodes which is
why the increase in eavesdroppers density has insignificant
impact on SSE.

Fig. 5 includes the plots for SEE, given by (51), versus
the small cells density. We observe that with increasing Ao
and \s, the SEE also increases. This can be attributed to the
increasing SSE, shown in Fig. 4, over the identical power con-
sumption. With increasing A2 and A3, more users are offloaded
to small cell BSs that are low power nodes compared to macro
cells BSs. This may lead to a power efficient network but it
comes at small cell BSs deployment cost. Thus, the eleva-
tion of average achievable secrecy rate leads to improvement
of SEE. As the interference in the network increases because
of super dense transmitting nodes, therefore, an increase in
eavesdroppers density has no prominent effect on SEE.

Fig. 6 shows the effects of number of transmitting antennas
at the MBS on the SSE of the proposed three tier network
over different small cell densities. We see that the network
SSE drops with increasing number of transmitters at MBSs
and it improves significantly with increased small cell density.
This occurs because with increased N, radio spectral efficiency
of MBSs increases but since MBSs have higher transmission
power in contrast to small cell BSs therefore transmission to
eavesdropper nodes in the network improves significantly that
elevates R¢. Moreover, with increase in number of antennas
at MBSs, cell association gets biased towards them because
of their high array gains, and few users connect with BSs of
sub-6 GHz and mmWave small cells. In this way the overall
interference in the network drops leading to better reception
at eavesdropper nodes.

In Fig. 7, we see the variation in SEE of the network given
by (51) with increasing number of antennas at MBSs and we
observe that with increasing N, SEE declines. This is due to the

SSE (bits/sec/Hz)
wW
o

Fig. 6. SSE versus different number of antennas at macro BS for G, = 15 dB,
U=>5.
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Fig. 7. SEE versus different number of antennas at macro BS for G, = 15 dB,
U=>5.

fact that SSE decreases over the identical power consumption,
as shown in Fig. 6. With increase in transmitting nodes at
MBSs, less users are offloaded to small cells. Since MBSs
have higher transmission power as compared to the small cell
BSs leading to a power inefficient network. Thus SEE drops
with the elevation of average achievable rate at eavesdropper
nodes. Interference in the network increases with small cell
density that leads to drop in R¢ thus SEE improves with it.
Fig. 8 shows the effects of transmitting power of small cell
BSs on the SSE of the assumed three tier network over dif-
ferent small cell densities. It is observed that the SSE of the
network improves with the small cells BSs transmit power and
improvement becomes more significant as the small cell BSs
density is increased. The reason is that since small cells have
smaller coverage area, associated users are located at distance
closer to BSs, therefore when BSs transmit power is increased,
they get to deliver stronger signal strength with low path loss
to the associated users that enhances the average achievable
rate of the legitimate users. This results in significant enhance-
ment of secrecy rate of the entire network. Average distance
between transmitting and receiver nodes decreases when small
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Fig. 8.  SSE versus transmit power of small cells BSs for P3 = Po,
Ge =15dB, U =5, N = 30.
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Fig. 9. SEE versus transmit power of small cells BSs for P3 =
Ge =15dB, U =5, N = 30.

cells become more dense that enhances the transmission rate
between them. This justifies the increase in SSE with increase
in small cell density.

In Fig. 9, we see the variation in SEE of the network given
by (51) with increasing transmit power of small cell BSs and
we observe that with increasing Pp and P3, SEE inclines.
This can be attributed to the increase in SSE over the identi-
cal power consumption, as shown in Fig. 8. Since small cells
BSs are lower power nodes compared to MBSs therefore, this
prompts a power efficient network.

V. CONCLUSION

In this paper, considering the unique features of massive
MIMO and mmWave communication, we concentrated on
characterizing the secure communication in massive MIMO-
enabled three tier hybrid HetNet by using PLS. We derived
the secrecy outage probability and achievable ergodic rate at
each network tier and eavesdropper. A tractable approach was
developed to evaluate network-wide SSE and SEE. Simulation
results highlight the impact of number of antennas at MBS,

transmit power, node density, antenna gains and eavesdroppers
density on secrecy performance. Study has revealed that at
low transmit power operation, secrecy performance enhances
at higher small cell density. We have found that when node
density is high, network-wide interference elevates that dom-
inates the secrecy performance. Moreover, higher gains at
mmWave cells lead to a drop in secrecy performance thus a
tradeoff exists between better coverage and secrecy. Number
of antennas at MBS cannot be increased beyond limit as it
may lead to deterioration of secrecy performance of the over-
all network. Therefore, the number of antennas at the massive
MIMO macro cells and directivity gains at mmWave cells need
to be carefully analyzed and chosen for secrecy performance
enhancement of the entire network.

APPENDIX A
DETAILED DERIVATION OF ASSOCIATION PROBABILITY
AND PDF OF DISTANCE

Proof of Association Probability: Using [38, Lemma 3], we
donate k as the tier index with which legitimate user connects.
When P,.; > Py for n € {1,2,3} and n # [ a typical user
associates with [t tier, i.e., k = [. Therefore,

Al = PU{} = l] = ]ERl |:HD[PT',Z > ma;(ann}

n,n
[ 3
=Egp | [ PlPri>Pral
| n=1,n#l
[ 3 o5 a L
Pp G RO\ o
P 1Pk (St
| n=1,n#l 14l
bl PGy R\ o
= H PR, > — L fR (x)dx,
PG !
0 n=1,n#l 1=
Q
(A.1)

where (a) is based on Section II-B. The probability P[R,, >

PpGuR L . s
(ﬁicl)an] is evaluated using the null probability for a
1 Gy

2-D PPP given by, exp{—AA}, where A donates density of
PPP in area A.

3 o\ an
Q= H P |BS no nearer than M in nMtier
PG

n=1,n#l

2 2
{oer(75)”
= H expR —Anm
Py
n=1,n#l

+ exp{—27A3D(z)},
Ir,(z) = 2)\l7rxexp{f/\l7rzz}.

(A2)
(A3)

For the mmWave tier case, let us assume ¢ € {L, N}, R3 4 be
the distance of typical user to the closest BS in ®g 4. Since,
transmission power is same for all links of tier 3 therefore
association of typical user to ®3, is based on link length.
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Since mmWave BSs are assumed as independent tiers of LoS
and NLoS BSs therefore,

W (z)
= IP[PT,Z > P7‘73}
= IP[P,,«’Z > EGm_aL]P[PT,l > P3Gz~ V]

P 1

P3G\ oL J2Ye: oL
=P 1:>(3> Lx% ]P’a:>( 3 ) TN

Py Py

6N(I) 5L(£E)
tp(t)dt+/ t(1—p(t))dt]|,,
0

D(z)

(i) exp{—2A3m /
0

(A4)

where oy (z) = (P;G)“ani or(z) = aN xa1lv and
(a) follows from null probability with ball centered at origin
having radius 0y (z) and 07,(z) respectively, and p(f) is the
LoS probability function. Similarly, by substitution of D(x)
from (A.4) and fg,(7) from (A.3) into (A.2), Ay, A2 and A3
can be computed.

Proof of PDF of distance: For any tier k for k € {1,2,3}

P[Xk > I]
P[R), > =, userassociatedwithtierk]

(ZaG)yan

Pluserassociatedwithtierk]
P[Xk > w]

2 [0 <Iexp{ﬂ' S A <P1fk‘”‘) g }+D(I)> dz
_ I

Hence, the conditional PDF of distance to serving BS, given
that the user is connected with k™ tier, fx,(z) can be
evaluated as

d
with it, PDF of distance for each tier are evaluated. Association
probability per tier is strongly affected by the transmit power
of BSs of each tier, number of antennas at MBS and small
cells BS density.

- P[Xk‘ > I])a

APPENDIX B
DERIVATION OF LEMMA 1

The average rate, RR{, is calculated as,

1 [®1-=PL(ve)
e SO e
= - _—sollely B.1
11’12 1+’Ye 767 ( )
where
P (7e) = Pr(SINRS, <) =1 — Pr(SINR{ > )

Wy Ry |Ee,

[T (@ = Pr(SINR§; > 7))

ecd,

Wy By, {exp[ e / Pr(SINRS, > %)deH,
R2

(B.2)

where (b) gives the upper bound on (a) by using independence
of fading at each eavesdropper and generating functional of
PPP. Taking the integral expression from (B.2),

7 plh T_al
= /Pr PeM = > Ve
0 +Z = Uh] ML M(wj)-i-fs
Iy
° aq (2
+ Iy + 1
:/Pr(heM>'Ye7"e (Up M S))
1

N 0 .
i) ( ) 7’+1 / ,re (eXp{_ Z,ye r?10—2 })
1 Py
0

=
aq aq

X E(exp{—%rﬁ IM})E(exp{ 7%7"6 Is })dre7
P P1

where (a) follows from exponential distribution of he s,
binomial expansion and independence of Ij; and Ig.

The average achievable ergodic rate at the eavesdropper is
strongly affected by MBS transmit power and its distance from
MBS. For the macro tier,

Ly, (e)
=E |exp —ez hj v Ly ()
jECI)l

(i) exp(—/ < { 71 i METS })Aﬂmﬁdt)
(®) o (o)
= exp| —M27 ( >/ Utdt ,

@ 1+Pl et~ al)

(B.4)

where the generating functional of PPP is used to get (a) and
binomial expansion to arrive at (b) and e = exp{— %ZF’,%IM}

Similarly, L7 (e) is the Laplace transform of the PDF of
interference from the sub-6 GHz small cell tier is evaluated
as follows

‘C'IS (6)

=E|exp| —e Z PghqLg(zq)

qed2
0 ?t—ag
= exp _27TA2/ J— L aq e% tdt B
<7P2U i )“%aﬁ 1+ ePyt—az
(N-U+1)Pqy

(B.5)

where lower limit of integral is the distance between the typ-
ical user and the nearest BS of sub-6 GHz small cell tier.
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By substituting (B.4) and (B.5) into (B.3), the R.H.S of (B.3)
can be rewritten as

/R Pr(SINR§, > 7c)

N 0 [e% 2
N . 1
_ § : < '>(_1)H—1 / Teexp< 1YeTe
: 1 5 Pl

ePot ™2

o0
R A
1+ ePyt—02

)tdt dre,
PyU ag
<(N7 U+1)151>

(B.6)

(B.2) can be rewritten as follow:
PL(ve)=1- Eg, {exp{ Ae / Pr(SINR§, > 'ye)de”
R2

Pl (ve) =1 —exp <—271')\e /R2 Pr(SINR§, > 'y@)de>,
(B.7)

The final expression of (16) is obtained by substituting the
closed form expression of integral from (B.6) in (B.7) and
changing the variables e = u.

APPENDIX C
DERIVATION OF LEMMA 2

The average achievable ergodic rate at the typical user
associated with MBS can be defined as

oo pl
Ry = E[logy(1 + SINRY,)] = i/ ¢,

In2 1+7
/ Jo©
1n2

PC v, T le( )
1+~v

dy (C.1)

Conditional —coverage probability Pé (y,z) can be
computed as,
P& (v, @)

— Pr %hoMLoM(m) >

P
J2+Z]€<I> Uh] ML M(xj)-l-fs

L

I
e’} (o731 2 T
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0 1
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By using change of variables y = 2z, expanding the
derivative in (C.2) it can be rewritten as

N—-U . . o2
PL(v,z) = (G N e 51(%)
’ — JU(=1) dy ’
(C.3)

where L7(e) is product of Laplace transform of the PDF of
interference from macro tier and sub-6 GHz small cell tier.
On combining (B.4) and (B.5), we get L;() = exp(E(e))
given by (15) [24] and on substituting it in (C.3), using Faa di
Bruno’s formula, we get (14) [24] giving Pé (7, z). By substi-
tuting (C.3) into (C.1), we can calculate the average achievable
ergodic rate at the typical user associated with MBS which
completes the proof.

APPENDIX D
DERIVATION OF LEMMA 5

The average rate, R3, is calculated as
1 o
2 /0

and based on thinning theorem, we evaluate the coverage prob-
ability separately for LoS and NLoS PPPs. Given that user is
connected with BS in ig where ¢ € {L, N}, the conditional
coverage probability is computed as

[ PyMy Myho o™
3, _ 3MyMtho,m
PCQ(V)_A:’”Q/O P[ o2+ I, + Iy

Pi(y)

R p—
3 1+~
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E[logs(1 4+ SINRY)] =
(D.1)
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(D.2)

where

Ag =213 /OOO ap(x)exp{(—27 A3 M (z)
(z)

— Z(z) - Y ()}
oL
M(z) = (g tp(t)dt + [ (1= p(t)tdt), Z(z) = 7
(WW * and Y (2) = (g

Az n =1— A1 — Ay — A3,

are the probabilities of typical user connecting with LoS or
NLoS link.

2mAzz (1
Here, fy(z) = %exp{ 213 [3 t(
t))dt + f(;sN @) tp(t)dt} is the conditioned PDF of the dis-

tance between the typical user to the NLoS mmWave BS and

2T\ é

fulw) = T2 expl-oms [ p(t)dt + JoH
p(t))dt} is the conditioned PDF of the dlstance between the

typical user to the LoS mmWave BS [35].

Where I;, = Ezi€¢§7mGlhi,mR

?322 b m GyhimR; *N are the interference strengths from

and Iy =
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LoS and NLoS BSs, respectively. Since we assumed the
Nakagami fading therefore, A, s, is a normalized gamma ran-
dom variable with parameter N,, we obtain the approximation

- P[PTJ,MTMthO,mx—% > 7(02 Ty JN)}
xo‘q’y(02 + I+ IN)

=P|h > -
o P3Mth
(a) ngr®iy(o?+ I+ Iv) |\
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P3 M, M;
294 02
© Z ]+1( g)e”}%m}@
= j
_ jng=zinIy, _dngz®inly
Py My My Ep, |6 Pstri (D.3)

where (a) follows from [35, Lemma 6] and 7, =
Ny ,q € {L,N}, (b) from binomial expansion

Ng(Ng!)
and ®Y PPPs. Now

and (c) from the independence of <I>§J
calculating Ey, for ¢ = L we have

—«
Lz L'YZ 7Lclh7 mh; L
3

:EIL e

M,« My

oo

(d) —27 A3 E pi [ (1 Eg {e—janangdi
e =1 T

t_aL])p(t)tdt

—2mxapi | (1=1/(ndr(a/D°E N ) ) p(t)at

(e) H o ]
(D.4)

where (d) is obtained by Laplace transform of 63{4 [35], g in
(d) is a normalized Gamma random variable with parameter
Ny, a; is the gain a; normalized by M, M; where a; and p;
are given by (2) and (e) is the outcome of computing moment
generating functional of g, respectively.

Likewise, calculation of E Iy is similar where channel gain
is the normalized Gamma random variable with parameter
Ny . Final expression is given as

o
—2mAzpi [

<171/(jmdn<w>“ﬂN,Glt*“N) NN) (1—p(t))tdt
S () .

4
-11¢
i=1

(D.5)

Thus we obtain (26) from (D.4) and (D.5) by combining them
L

using linearity of integrals where 07,(z) = 2~ . For ¢ = N,
exactly similar steps are followed to obtain (27) which are not
outlined here due to the space limitations.
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