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Abstract—In this paper, we develop a framework to maximize
the network energy efficiency (EE) by optimizing joint user-
base station (BS) association, subchannel assignment, and power
control considering an in-band full-duplex (IBFD)-enabled small-
cell network. We maximize EE (ratio of network aggregate
throughput and power consumption) while guaranteeing a min-
imum data rate requirement in both the uplink and downlink.
The considered problem belongs to the category of mixed-integer
non-linear programming problem (MINLP), and thus is NP-
hard. To cope up with this complexity and to derive a trade-
off between system throughput and energy utilization, we first
restate the considered problem as a multi-objective optimization
problem (MOOP) aiming at maximizing system’s throughput
and minimizing system’s energy consumption, simultaneously.
This MOOP is then tackled by using ε-constraint method.
To do so, we first transform the binary subchannel and BS
assignment variables into continuous ones without altering the
feasible region of the problem and then approximate the non-
convex rate functions through majorization-minimization (MM)
approach. Simulation results are presented to demonstrate the
effectiveness of our proposed algorithm in improving network’s
EE compared to the existing literature. Furthermore, simulation
results unveil that by employing the IBFD capability in OFDMA
networks, our proposed resource allocation algorithm achieves
a 69% improvement in the EE as compared to the half-duplex
system for practical values of residual self-interference.

Index Terms—In-band full-duplex (IBFD), energy
efficiency (EE), mixed-integer non-linear programming
(MINLP), multi-objective optimization (MOOP), resource
allocation, majorization-minimization (MM).

I. INTRODUCTION

In-band full-duplex (IBFD) communication is a well-known
technique to enhance the spectral and energy efficiency of
emerging fifth generation (5G) wireless networks, by allow-
ing a user to send and receive data simultaneously in the
same time and frequency (albeit at the cost of additional
self-interference (SI))[1],[2]. Energy efficient radio resource
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management algorithms generally aim to maximize the system
throughput and minimize the corresponding energy consump-
tion, without differentiating between the priority of these
competing objectives. However, under certain circumstances,
handling the precedence of multiple objectives over each other
becomes crucial. For example, it is more beneficial for network
devices enabled with renewable energy to exploit network’s
resources for improving their quality-of-service (QoS) rather
than focusing on minimizing their energy utilization. Accord-
ingly, finding a trade-off between spectral efficiency (SE) and
energy efficiency (EE) in IBFD communication through multi-
objective optimization is crucial, specially since IBFD is in
fact a promising technology to improve both of these metrics
in UL as well as DL of cellular wireless networks [3], [4].

A. Related Works

Recently, a plethora of research works considered IBFD
communication to improve systems’ performance [5]–[13].
For instance, the problem of system throughput maximization
in IBFD networks was investigated in [5]–[9], [11]. In [5]–
[7], joint subchannel and power allocation with one full-
duplex base station (BS) and multiple half-duplex (HD) user
equipment was considered. In [5], the aforementioned problem
was addressed when full channel state information (CSI) is
known as well as when BS obtains limited CSI through
channel feedbacks. In [6], an iterative algorithm for joint
subchannel and power allocation was proposed, which deals
with the power allocation after obtaining subchannel allocation
through variable relaxation. To avoid the time-complexity of
the iterative algorithms, authors of [7] employed decompo-
sition method and dealt with power control after obtaining
subchannel allocation policy by using a heuristic approach.
Similarly, in [8] and [9], system throughput maximization was
investigated for two-tier heterogeneous networks. In [8], the
problem of subchannel assignment, power control, and duplex-
ing mode selection was addressed using heuristic algorithms,
while in [9], only the problem of power allocation was in-
vestigated considering both SI and cross-tier interference. The
authors in [10] considered throughput maximization via joint
subchannel assignment and power control in non orthogonal
multiple access-FD system and obtained both locally optimal
and suboptimal solutions.

In [11], the problem of decoupled uplink (UL)-downlink
(DL) user association in a two-tier full duplex cellular network
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was considered and a geometric programming approach was
proposed to maximize network throughput. Furthermore, a
distributed many-to-one matching game based solution was
proposed. However, the subchannel allocation was completely
overlooked. In [12], two distributed power allocation algo-
rithms, one for minimizing network aggregate power con-
sumption and one for maximizing network’s throughput, were
proposed. However, QoS was guaranteed in terms of users’
minimum signal to interference plus noise ratio (SINR). In
[13], subchannel and power allocations were optimized to
maximize EE of a single cell IBFD network, while considering
SI. A heuristic approach for obtaining subchannel allocation
was proposed and then the power allocation problem was
addressed using Augmented Lagrangian method.

None of the aforementioned resource management algo-
rithms for IBFD networks considered multi-objective opti-
mization. Recently, IBFD communications was considered in
a single cell simultaneous wireless information and power
transfer (SWIPT) network with IBFD BS and HD users in
[14]. The goal of the modeled multi-objective optimization
problem (MOOP) was to derive a trade-off between mini-
mizing UL and DL transmit powers as well as maximizing
harvested energy. This problem was then optimally solved
using semi-definite program relaxation. In [15], a framework
for deriving a trade-off between EE and SE was proposed for
a system with IBFD small base stations (SBS) and HD users.
The length of the time-slot allocated to each user-pair and
users’ UL and DL data rates were considered as variables and
it is guaranteed that users’ assigned time-slot is longer than
a minimum value. Furthermore, in [1], the problem of joint
subchannel assignment and power control is studied to strike
a balance between EE and SE in a single cell IBFD network.

B. Contributions

To the best of our knowledge, the problem of joint BS, sub-
channel assignment and power allocation for EE maximization
in a small-cell IBFD network under QoS and power feasibility
constraints has not been investigated so far. Most of the
aforementioned literature focus either on the throughput max-
imization [5]–[11] with no energy efficiency considerations
or minimization of system’s aggregate power consumption
[12], [14] with no considerations to achievable throughput.
Furthermore, except for [8] and [9], all aforementioned works
consider single cell networks and, subsequently, the devel-
oped algorithms may not be directly applicable to large-scale
networks with co-channel interference. Moreover, in [5]–[8],
not only users’ QoS requirements is completely ignored, but
also subchannel and power allocation problems are addressed
separately, which results in performance degradation.

Considering the above literature review, our contributions
can be summarized as follows:
• To the best of our knowledge, joint optimization of user

association (or BS assignment), power and subchannel
assignment in the presence of IBFD communications has
not been considered in the previous literature. In [5]-
[10] and [12], only subchannel and power allocations are
considered and are based on the alternating optimization

where the variables are decomposed and optimized sep-
arately in an iterative manner. Since transmit power and
subchannel allocation are closely intertwined variables,
joint optimization of these resources can considerably
enhance the performance of the system. In contrast to
[5]-[10], and [12], in this paper, we exploit the benefits
of joint resource allocation and investigate a joint opti-
mization scheme for BS and subchannel assignment and
power allocation for EE maximization.

• BS assignment in IBFD communications requires con-
sidering both the UL and DL channel conditions, the
severe SI, and inter-cell interference, which are all tightly
dependant on the other optimization variables (transmit
power and subchannel allocation variables). Due to these
complexities, the problem of BS assignment for EE
maximization in IBFD networks has not been properly
addressed in previous literature. For instance in [11],
which is one of the very few papers that focus on user
association in IBFD networks, not only the objective
function is maximization of system throughput, but also
the UL and DL connections are completely decoupled
from one another. Since the major benefit of IBFD
communications is the capability of considering both UL
and DL simultaneously, we consider coupled UL and
DL IBFD communication without using any alternating
optimization techniques.

• To solve the EE maximization problem, we propose
a multi-objective optimization (MOOP) framework. By
doing so, we exploit numerous benefits of multi-objective
optimization. Also, we obtain a Pareto front that we
will prove to contain the locally optimal solution of the
original non-convex problem. We present the computa-
tional complexity analysis of the proposed algorithm and
demonstrate that this complexity is much lower for our
algorithm compared to the conventional algorithms.

• Simulation results illustrate that our proposed algorithm
outperforms the state-of-the-art algorithms in terms of
EE. Also, by employing the IBFD in OFDMA networks
with efficient SI cancellation, our proposed algorithm
achieves a 69% improvement in the EE as compared to
the half-duplex system for practical values of residual SI.

The rest of this paper is organized as follows. The system
model is introduced in Section II. In Section III, problem
formulation and the proposed solution is presented. The time
complexity and performance of the proposed algorithm are
evaluated in Section IV and Section V, respectively. Finally,
Section VI concludes this paper.

II. SYSTEM MODEL AND ASSUMPTIONS

In this paper we consider OFDMA small-cell network with
B SBSs and N users, which are all capable of performing
IBFD communications. We assume that the entire frequency
band is partitioned into K subchannels each with bandwidth
ω. Furthermore, the set of SBSs, users, and subchannels are
denoted by B = {1, 2, ..., B}, N = {1, 2, ..., N}, and
K = {1, 2, ...,K}, respectively. It is also assumed that all
the subchannels are perfectly orthogonal to one another and
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Fig. 1. The considered network model of small-cells enabled with IBFD transmission.

no inter-subchannel interference exists. We also consider that
a subchannel is exclusively assigned for the communications
of a single user in both UL and DL in each cell. The joint
BS and subchannel assignment variable is denoted by an,b,k
where

an,b,k =

{
1, If BS b allocates subchannel k to user n,
0, otherwise.

(1)
Even though this exclusive subchannel allocation assump-

tion may degrade the overall network’s performance, due to
the inter-user interference from an UL user over the user that
uses the same subchannel for DL communications, it is highly
unlikely for an optimal solution to assign a subchannel to
two different nodes [16]. We further assume that pn,b,k and
qn,b,k are the DL and UL transmit powers of user n to SBS
b, over subchannel k, respectively, and that p ∈ R1×NBK and
q ∈ R1×NBK are vectors containing DL and UL transmit
powers, in that order. Note that, hs,s′,k denotes the channel
coefficient between sender s and receiver s′ over subchannel
k. As such, the DL SINR of user n in cell b over subchannel
k is formulated as

γdln,b,k(p, q) =
pn,b,khb,n,k

qn,b,k∆u︸ ︷︷ ︸
residual SI in DL

+ Idln,b,k︸ ︷︷ ︸
inter-cell interference in DL

+σ2
,

(2)
where σ2 and ∆u denote the noise density and SI-cancellation
factor of user devices, respectively. Since subchannel k is used
for communications of user n in both directions, UL and DL
signals will interfere with one another, which results in SI.
In equation (2), the term that represents this residual SI in
DL is clearly specified. Furthermore, Idln,b,k represents the DL
inter-cell interference that user n in cell b experiences over
subchannel k and is calculated as given in (3).

Idln,b,k =
∑

b′∈B,b′ 6=b

∑
m∈N ,m 6=n

am,b′,k

(
pm,b′,khb′,n,k+qm,b′,khm,n,k

)
.

(3)

Similarly, we define the UL SINR of user n in cell b over
subchannel k as

γuln,b,k(p, q) =
qn,b,khn,b,k

pn,b,k∆bs + Iuln,b,k + σ2
, (4)

with ∆bs and Iuln,b,k denote SI-cancellation factor of SBSs
and inter-cell interference of user n in UL over subchannel
k, respectively, where

Iuln,b,k =
∑

b′∈B,b′ 6=b

∑
m∈N

am,b′,k

(
pm,b′,khb′,b,k + qm,b′,khm,b,k

)
.

(5)
Note that SI is not the only additional type of interference

that networks’ nodes have to deal with in IBFD networks. In
fact, as the result of increased frequency reuse factor in IBFD
communications, inter-cell interference is also significantly
intensified. For instance, as can be seen in (3) and (5), in IBFD
communications, users as well as SBSs can cause interference
on one another, whereas in traditional HD systems, due to the
separation of UL and DL frequency bands, such interference
did not exist.

Based on the Shannon formula, the data rate of user n in
cell b over subchannel k in DL and UL is given, respectively,
as follows:

rdln,b,k(a, p, q) = an,b,k log2 (1 + γdln,b,k(p, q)), (6)

and

ruln,b,k(a, p, q) = an,b,k log2 (1 + γuln,b,k(p, q)), (7)

where a ∈ Z1×NBK denotes the joint BS, subchannel assign-
ment vector. Accordingly, the total data rate of user n in DL
can be formulated as follows:

Rdl
n (a, p, q) =

∑
b∈B

∑
k∈K

rdln,b,k(a, p, q). (8)

Similar to (8), the total data rate of user n in UL, de-
noted by Rul

n (a, p, q), is obtained as Rul
n (a, p, q) =
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∑
b∈B

∑
k∈K r

ul
n,b,k(a, p, q).To guarantee users’ QoS, a min-

imum data rate represented by Rdl
min in DL and Rul

min in UL,
should be provided for each user and we have

Rdl
n (a, p, q) ≥ Rdl

min, ∀n ∈ N ,
Rul

n (a, p, q) ≥ Rul
min, ∀n ∈ N .

(9)

The total network throughput, denoted by RT (a, p, q), is
obtained as follows:

RT (a, p, q) =
∑
n∈N

(
Rul

n (a, p, q) +Rdl
n (a, p, q)

)
, (10)

To compute the total energy consumption of network, we
use the following energy consumption model in which both
transmit power consumption and circuit energy consumption
of devices are taken into account, and there are coefficients
that represent the efficiency of power amplifiers in network
devices, i.e.,

ET (a, p, q) =∑
b∈B

∑
n∈N

∑
k∈K

an,b,k(
1

κ
pn,b,k +

1

ψ
qn,b,k) +NP u

c +BP bs
c .

(11)
In the above equation, P u

c and P bs
c denote the circuit energy

consumption of user device and SBS, respectively, and κ and
ψ are power amplifier efficiency in SBS and user device, in
that order. In this paper, we define EE as the ratio of system
throughput to the corresponding network energy consumption,
and denote it by η(a, p, q), where

η(a, p, q) =
RT (a, p, q)

ET (a, p, q)
. (12)

III. PROBLEM STATEMENT AND PROPOSED SOLUTION

In this section, we will first mathematically model the
optimization problem of joint BS, subchannel assignment, and
power allocation for EE maximization, and state the main
challenges in tackling this problem. Then, we present our
proposed algorithm to tackle the stated problem.

A. Problem Formulation
The problem of joint BS, subchannel assignment and power

allocation for maximizing system’s EE under QoS and maxi-
mum transmit power constraints, is formally stated as below:

max
a, p, q

η(a, p, q)

subject to:

C1 :
∑
n∈N

∑
k∈K

an,b,kpn,b,k ≤ pmax, ∀b ∈ B,

C2 :
∑
b∈B

∑
k∈K

an,b,kqn,b,k ≤ pumax, ∀n ∈ N ,

C3 : Rdl
n (a, p, q) ≥ Rdl

min, ∀n ∈ N ,
C4 : Rul

n (a, p, q) ≥ Rul
min, ∀n ∈ N ,

C5 :
∑
n∈N

an,b,k ≤ 1, ∀b ∈ B, k ∈ K,

C6 : an,b,k ∈ {0, 1}, ∀b ∈ B, n ∈ N , ∀k ∈ K.

C7 : an,b,k +
∑

b′∈B,b 6=b′

an,b′,k′ ≤ 1, ∀n ∈ N , b 6= b′, ∀k, k′ ∈ K.

(13)

In the optimization problem (13), constraints C1 and C2 are
related to transmit power feasibility. Constraint C1 indicates
that the total transmit power of SBSs should not exceed their
maximum threshold which is denoted by pmax, and C2 restricts
users maximum transmit power to pumax. It is worth mentioning
that since we are considering IBFD communications, we have
to take both user devices’ and BSs’ maximum transmit power
thresholds into account. In constraints C3 and C4, a minimum
rate requirement is guaranteed for each user in DL and UL,
respectively. Constraint C5 indicates that each subchannel
can be allocated to at most one user in each cell and in
C6, the binary nature of subchannel allocation variable is
implied. Finally, C7 ensures that a given subchannel can be
assigned to a given user by only one BS. That is, each user
in the network is restricted to connect to only one BS through
optimization process.

Due to the binary joint BS and subchannel allocation
variables, the interference included in rate function, and the
fractional form of the objective function, problem (13) is
a mixed-integer non-linear programming (MINLP) problem
which is generally difficult to solve. The challenges that make
the above optimization problem complicated are listed below.
• Objective function η(a, p, q) is in the fractional form

with respect to p and thus non-convex.
• Since the multiplication of two variables is non-convex,

in constraint C1, the term an,b,kpn,b,k, and in C2,
an,b,kqn,b,k pose a challenge in tackling (13). Moreover,
since in both rdln,b,k(a, p, q) and ruln,b,k(a, p, q), joint
BS and subchannel assignment variable is multiplied by
a function of transmit power (as given in (6) and (7)),
constraints C3 and C4 are also non-convex.

• The SI as well as the inter-cell interference incorporated
in the rate function, make both constraints C3 and C4

non-convex.
• Presence of binary joint BS and subchannel assignment

variable, a, which turns (13) into MINLP.
In the following section, we first restate problem (13) as a
MOOP, whose purpose is to maximize system throughput and
minimize energy consumption, simultaneously. Afterwards,
our proposed algorithm would be presented.

B. Equivalent MOOP formulation of the Objective Function

As given in (12), EE is the ratio of system’s aggregate
throughput and energy consumption. Since both RT (a, p, q)
and ET (a, p, q) are positive functions of a, p and q, we
can conclude that maximization of η(a, p, q) is equivalent
to maximizing RT (a, p, q) while minimizing ET (a, p, q),
simultaneously. To this end, we reformulate (13) as an equiv-
alent MOOP that is given in (14).

f1 : min
a, p, q

ET (a, p, q)

f2 : max
a, p, q

RT (a, p, q)

subject to: C1 − C7.

(14)

The first objective of the optimization problem (14), f1, is to
minimize system energy consumption, and the second one, f2,
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is to maximize system’s throughput and its constraint set is the
same as that of (13).

Proposition 1. The solution to the MOOP given in (14) in-
cludes the solution of the EE-maximization problem introduced
in (13) as a special case.

Proof. Please see Appendix A.

Even though the MOOP (14) contains two competing ob-
jective functions, we can still find a solution for it that satisfies
the predefined conditions of Pareto optimality. In contrast
to the Dinkelbach method, which is only applicable to an
optimization problem with fractional function, MOOP can be
adopted for any optimization problem even if the number of
objective function exceeds two [17], [18]. Moreover, MOOP
provides a SE-EE trade-off with lower computational com-
plexity compared to the Dinkelbach method.

Definition 1. Assume that X denotes the feasible region of
the optimization problem

min{f1(x), f2(x), ..., fn(x)} subject to: x ∈ X .

A point x∗ ∈ X , is Pareto optimal, if and only if for any
other point x ∈ X , we have fi(x) ≥ fi(x∗) ∀i ∈ {1, 2, ..., n},
with at least one fi(x) > fi(x

∗) ∀i ∈ {1, 2, ..., n}.

In order to obtain the Pareto optimal fronts for (14), we
employ ε-constraint method, in which one of the objective
functions is chosen as the primary objective and the rest of
objective functions are moved to the constraint set [19]. Since
system throughput, RT (a, p, q), is by itself a function of
system’s transmit power, it can be said that the effect of
energy consumption on system’s EE is generally much more
substantial than that of system throughput. Thus, in this paper
we keep f1 as the primary objective function and move f2
to the constraint set. Using the ε-constraint method, the new
optimization problem would be:

f1 : min
a, p, q

ET (a, p, q)

subject to:

C0 : RT (a, p, q) ≥ ε,
C1 − C7.

(15)

Remark 1. Since ε-constraint method generates the whole
Pareto fronts [19], the solution set obtained by solving (15)
contains the solution of EE-maximization problem (13).

Constraint C0 in (15) requires the total throughput of the
network to be greater than ε. Due to the multiplication of
variables, a with both p and q, the objective function of (15)
is still non-convex and thus challenging to address.

Significance of ε: It is obvious that the feasibility of (15), as
well as the closeness of its solution to the solution of problem
(13), greatly depends on the value of ε. This fact turns ε into
a sensitive parameter, whose value plays a major role both
in prioritizing the objective functions in (14) and finding an
energy efficient trade-off between them. Moreover, we are still
faced with the same challenges in dealing with the non-convex
constraint set of (13).

In the following subsection, we introduce our proposed
algorithm for dealing with the non-convexity of feasible set
in (15). Next, in section IV, we present our proposed method
to estimate the value of ε that results in EE maximization.

C. Equivalent Reformulation of Constraints Involving Binary
and Continuous Variable Product

In order to address the non-convex optimization problem
(13), we first deal with the problem of variables multiplication
in constraints C1 and C2. In the left-hand side of these
constraints, it is implied that if subchannel k is not allocated
to user n in cell b (an,b,k = 0), the transmit power of this user
over k should be zero in both UL and DL (pn,b,k = qn,b,k =
0). Based on this explanation, we can restate C1 and C2 as
below:

C ′1 :
∑
n∈N

∑
k∈K

pn,b,k ≤ pmax, ∀b ∈ B, (16)

C ′′1 : pn,b,k ≤ an,b,kpmax, ∀b ∈ B, ∀n ∈ N , ∀k ∈ K, (17)

C ′2 :
∑
b∈B

∑
k∈K

qn,b,k ≤ pumax, ∀n ∈ N , (18)

C ′′2 : qn,b,k ≤ an,b,kpumax, ∀b ∈ B, ∀n ∈ N , ∀k ∈ K. (19)

It is clear that the feasible region defined by (16) and (17) is
equal to that of constraint C1. Thus, we can substitute C1 with
C ′1 and C ′′1 without altering the feasible set of (15). Similarly,
constraint C2 is replaced by (18) and (19). Through this
method, we can easily deal with the non-convex constraints
C1 and C2, by using their equivalent convex forms [20].

Furthermore, since in (17) and (19), users are restricted to
transmit only over their assigned subchannels (if an,b,k = 0,
qn,b,k and pn,b,k must be zero), SINR of users and thus their
data rate over subchannels that are not allocated to them would
be zero. Therefore, we can restate (6) and (7) as rdln,b,k(p, q) =

log2(1 + γdln,b,k) and ruln,b,k(p, q) = log2(1 + γuln,b,k), respec-
tively. Similarly, we can omit an,b,k from (11) and restate the
objective function of (15), ET (a,p,q), as an affine function
that is given by

ET (p, q) =
∑
b∈B

∑
n∈Nb

∑
k∈K

(
1

κ
pn,b,k +

1

ψ
qn,b,k) +NP u

c +BP bs
c .

(20)

D. Equivalent Reformulation of Binary Constraints

Another challenge in solving (15) is the integer joint BS and
subchannel assignment variable, an,b,k. This binary variable
turns (15) into a MINLP, which is difficult to solve in an
acceptable time span. To address this issue, we take an
approach similar to [21], [22], and replace constraint C6 with
the following inequalities:

C ′6 : 0 ≤ an,b,k ≤ 1, ∀b ∈ B, ∀n ∈ N ,∀k ∈ K, (21)

C ′′6 :
∑
b∈B.

∑
n∈N

∑
k∈K

(an,b,k − a2n,b,k) ≤ 0, (22)

In C ′6 it is stated that the variable an,b,k is continuous with
values in the range [0, 1]. However, in C ′′6 the value of an,b,k
is restricted to 0 and 1, since the only two numbers that fit
in (22), belong to the set {0, 1}. Therefore, the intersection of
constraints C ′6 and C ′′6 , is a region that is equivalent to that of
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C6. Nevertheless, as C ′′6 is concave and greater than or equal
to zero, this constraint does not comply with the standard form
of inequality constraints in convex optimization problems.

To deal with this issue, we remove constraint C ′′6 from the
constraint set and instead add it as a penalty function, with a
weighting factor, denoted by λ, to the objective function. In
fact λ acts as a penalty factor to penalize the objective function
when an,b,k is not binary. After this modification, we get the
equivalent reformulation of the original problem as follows:

min
a, p, q

ET (p,q) + λ
(∑

b∈B

∑
n∈Nb

∑
k∈K

(
an,b,k − a2n,b,k

))
subject to: C0, C

′
1, C

′
2, C

′′
1 , C

′′
2 , C3, C4, C5, C

′
6, C7.

(23)

Remark 2. It can be easily demonstrated that the optimization
problem (23) is equivalent to (15). For more details refer to
[20].

E. Convex Approximation of the Objective Function via
Majorization-Minimization

To tackle the non-convexity of objective function in the
above problem, we first rewrite the objective function as
follows:

e(a, p, q) = e1(a, p, q)− λe2(a), (24)

where e1(a, p, q) = ET (p, q) +
λ
(∑

b∈B
∑

n∈N
∑

k∈K an,b,k
)

and
e2(a) =

(∑
b∈B

∑
n∈N

∑
k∈K a

2
n,b,k

)
. The equality given

in (24) consists of two convex functions, e1(a, p, q) and
λe2(a). However, the subtraction of these convex functions
is not necessarily convex. To tackle this issue, we find a
convex approximation for e(a, p, q) by using majorization
minimization (MM) method [23]. In this method, a series
of surrogate functions are constructed that approximate
the originally non-convex function. Here, we use Taylor
approximation for constructing our surrogate function. To do
so, in iteration number t we will have:

ẽ2(a) = e2(at−1) +∇ae
T
2 (at−1)(a− at−1). (25)

Now we can replace e2(a) with its affine approximation,
ẽ2(a) and since subtraction of a convex function and an
affine function is convex, the problem of non-convex objective
function would be solved. Thus we will have

min
a, p, q

e1(a, p, q)− λẽ2(a)

subject to: C0, C
′
1. C

′
2, C

′′
1 , C

′′
2 , C3, C4, C5, C

′
6, C7.

(26)
Even after the above transformations, due to the non-

convexity of rate functions Rul
n (p, q) and Rdl

n (p, q), op-
timization problem (26) is still intractable. Let us rewrite
Rdl

n (p, q) as follows:

Rdl
n (p, q) = fdln (p, q)− gdln (p, q), (27)

where

fdl
n (p, q) =

∑
b∈B

∑
k∈K

log2(pn,b,khb,n,k + qn,b,k∆u + Idln,b,k + σ2),

(28)

and

gdln (p, q) =
∑
b∈B

∑
k∈K

log2(qn,b,k∆u + Idln,b,k + σ2). (29)

Now we can use MM approach and approximate gdln (p, q) as
follows:

g̃dln (p, q) =gdln (qt−1,pt−1) +∇qg
T (qt−1).(q− qt−1)+

∇pg
T (pt−1).(p− pt−1) (30)

Thus the convex approximation of DL rate function,
Rdl

n (p, q), would be

R̃dl
n (p, q) = fdln (p, q)− g̃dln (p, q). (31)

Similarly, the approximate UL data rate is

R̃ul
n (p, q) = fuln (p, q)− g̃uln (p, q), (32)

where,

ful
n (p, q) =

∑
b∈B

∑
k∈K

log2(qn,b,khn,b,k + pn,b,k∆bs + Iuln,b,k + σ2),

(33)

g̃uln (p, q) =guln (pt−1,qt−1) +∇pg
T (pt−1).(p− pt−1)+

∇qg
T (qt−1).(q− qt−1) (34)

and

guln (p, q) =
∑
b∈B

∑
k∈K

log2(pn,b,k∆bs + Iuln,b,k + σ2). (35)

Regarding the above transformations, we define the approx-
imate total data rate of system as:

R̃T (p, q) =
∑
b∈B

∑
n∈N

(R̃dl
n (p, q) + R̃ul

n (p, q)). (36)

Finally, after these modifications, the resulting convex op-
timization problem would be:

min
a, p, q

e1(a, p, q)− λẽ2(a)

subject to:

C0 : R̃T (p, q) ≥ ε,

C ′1 :
∑
n∈N

∑
k∈K

pn,b,k ≤ pmax, ∀b ∈ B,

C ′2 :
∑
b∈B

∑
k∈K

qn,b,k ≤ pumax, ∀b ∈ B, ∀n ∈ N ,

C ′′1 : pn,b,k ≤ an,b,kpmax, ∀b ∈ B, ∀n ∈ N , ∀k ∈ K,
C ′′2 : qn,b,k ≤ an,b,kpumax, ∀b ∈ B, ∀n ∈ N , ∀k ∈ K,
C3 : R̃dl

n (p, q) ≥ Rdl
min, ∀n ∈ N ,

C4 : R̃ul
n (p, q) ≥ Rul

min, ∀n ∈ N ,

C5 :
∑
n∈N

an,b,k ≤ 1, ∀b ∈ B, ∀k ∈ K,

C ′6 : 0 ≤ an,b,k ≤ 1, ∀b ∈ B, ∀n ∈ N ,∀k ∈ K,

C7 :
∑
b∈B

an,b,k ≤ 1, ∀n ∈ N , k ∈ K.

(37)

Optimization problem (37) is a convex optimization problem.
In order to solve this problem and obtain a locally optimal
solution for problem (15), here we employ the difference
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of convex functions (DC) programming [24]. In DC pro-
gramming, the iteration starts from a feasible initial point
and iteratively solves the optimization problem and obtains
a locally optimal solution eventually [10], [24], and [23].

Proposition 2. The solution obtained for (37) by incorporat-
ing DC approximation at the end of each iteration, is a locally
optimal solution for the original problem (13). Our proposed
algorithm to solve (37) is presented in Algorithm 1.

Proof. See Appendix B.

Algorithm 1 Proposed Algorithm to solve Eq. (37)
1: Obtain the value of Rmax by solving optimization problem

(38).
2: Initialize iteration number t = 1, δ = 0, and step size ν,

with a positive value, and ηt = 0.
3: while (δ ≤ 1)
4: Set δ = δ + ν.
5: Calculate ε using (39).
6: Initialize i = 0, maximum number of iteration Imax,

penalty factor λ� 1 , and p0, q0, and a0.
7: Repeat
8: Update ẽ2(a), g̃dln (p, q), and g̃uln (p, q) using (25),

(30), and (34), respectively.
9: Solve problem (37) and obtain ai, pi, and qi.

10: Set i = i+ 1.
11: Until convergence or i = Imax

12: Set a∗ = ai, p∗ = pi, q∗ = qi.
13: ηt(a∗,p∗,q∗) = R̃T (p∗,q∗)

ET (p∗,q∗)
.

14: end

IV. CHOICE OF ε AND COMPUTATIONAL COMPLEXITY OF
ALGORITHM 1

As explained in the previous section, constraint C0 in
optimization problem (37) asserts that the total throughput of
network, R̃T (a, p, q), should be greater than or equal to ε.
To further clarify the impact of ε on the optimization problem
(37), let us consider the following cases:

i) if ε = 0, optimization problem (37) minimizes network’s
energy consumption.

ii) if ε = Rmax, assuming Rmax is the maximum system
throughput, the solution obtained for (37) would be the
solution of network throughput maximization problem.

iii) if ε ≥ Rmax, the optimization problem (37) would be
infeasible.

iv) if 0 < ε < Rmax, the problem (37) would be a multi-
objective optimization problem.

Regarding the above cases, it can be deduced that the
optimization problem (37) and its obtained solution is ex-
tremely sensitive to the value of ε. Furthermore, any change
in the priority of the objective functions can be achieved by
manipulating the value of this parameter. Namely, when the
chosen value for ε is high, more emphasis is put on system
throughput maximization, while lower values of ε results in
higher priority for system energy consumption minimization.

Furthermore, according to the above three cases we can also
conclude that for an specific value of ε, a trade-off between
system’s throughput and aggregate energy consumption would
be derived that results in maximum EE. To find this specific
value of ε, when our goal is to maximize EE, we proposed
the following algorithm.

From cases (i) and (ii), we can perceive that the maximum
value that ε can take without making (37) infeasible is Rmax.
Since Rmax is maximum system throughput, we can obtain its
value by solving the following optimization problem:

max
a, p, q

R̃T (p, q)− λ
(∑

b∈B

∑
n∈Nb

∑
k∈K

an,b,k − ẽ2(a)
)

subject to: C0, C
′
1, C

′
2, C

′′
1 , C

′′
2 , C3, C4, C5, C

′
6, C7.

(38)
which is in fact the optimization problem of maximizing
system’s throughput. By solving the optimization problem in
(38), the maximum value of ε to avoid infeasibility of the
problem can be determined.

A. Choosing ε for Energy Efficiency Maximization

Since different values of ε results in different trade-offs
between system’s throughput and energy consumption, to
maximize network’s EE, we should find a value for ε that
corresponds to the maximum R̃T (a, p, q) to ET (a, p, q)
ratio. To find this specific value of ε, we use the equality
below:

ε = δRmax, (39)

where δ is a positive value in the range of (0, 1]. Depending
on the value of δ, the ratio between system’s throughput and
energy consumption varies, however, for an specific δ this ratio
reaches a maximum value. This observation is due to the fact
that EE is by itself a trade-off between system’s throughput
and energy consumption. Therefore, by testing different values
of δ (different ET (a, p, q) to R̃T (a, p, q) ratio), we can
find the point in which maximum EE is achieved.

B. Computational Complexity Analysis

In this subsection, we investigate the computational com-
plexity of our proposed algorithm. In optimization prob-
lem (37), we have 3KNB decision variables and B(1+K)+
N(K + B + 3KB + 2) convex constraints. Hence, the time
complexity of this problem is of order O(KNB)3(B(1+K)+
N(K + B + 3KB + 2)) which is polynomial. It is worth
mentioning that an exhaustive search for an optimal scheme,
merely for subchannel allocation, would require the exami-
nation of all BNK possible choices, which is considerably
higher than the complexity of our proposed solution. Further-
more, by employing D.C. programming with the interior point
method, the approximate number of required iterations would
be

I =
log(B(1+K)3+N(K+B+3KB+2

t0% )

log(µ)
,

where t0 is the initial point, 0 ≤ % � 1 is the stopping
criterion, and µ is used for updating the accuracy of the method
[17], [25].
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TABLE I
SIMULATION PARAMETERS

Parameters Value

σ2 -120 dBm

pmax 32 dBm

pumax 23 dBm

Rdl
min 4 bps/Hz

Rul
min 2 bps/Hz

Pu
c 0.1 W

PSBS
c 1 W

κ 38%

ψ 20%

λ 106

Path loss exponent 3

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of our proposed
resource allocation algorithm through extensive simulations
and compare the performance with the existing research works
in [13], [14] , [15]. In our simulations, we consider OFDMA
small-cell network with B = 3 SBSs each with radius 100
m and K = 32 subchannels. We further assume that there
are N = 12 users randomly distributed in the network. The
channel gain between a transmitter and a receiver is calculated
using independent and identically distributed Rayleigh flat
fading and the figures shown in this section are obtained by
estimating the average of results over different realizations of
path-loss as well as multi-path fading. The large scale fading of
the communication channel is computed according to the path
loss formula and the small scale fading is modeled by Rayleigh
fading and is formulated as Path-loss=PL0

+10θ log(d), where
d denotes the distance between user and BS PL0

is the constant
path-loss coefficient (128.1) dB which depends on the antenna
characteristics, and θ denotes the path-loss exponent(in our
case θ is equal to 3. Without loss of generality, we assume
that SBSs’ and users’ SI-cancellation factors are the same and
∆u = ∆bs = ∆ = -70 dB and the step size ν in Algorithm. 1
is set to 0.1. The remaining parameters are given in Table I.

A. Impact of SI Cancellation

We first examine the effect of SI-cancellation factor, ∆,
on energy efficiency of IBFD networks. In Fig. 2, system
energy efficiency vs. δ for different values of ∆ is presented.
We also draw a comparison between EE of IBFD and HD
communications. For HD case, we assume that half of the
existing subchannels are reserved for DL and the other half
for UL communications, exclusively. In HD case, after dealing
with the non-convex feasible set of EE maximization problem
according to our proposed method, the resulting problem is
dealt using Dinkelbach method which attains the optimal
solution.

As observed in Fig. 2, by decreasing ∆, system EE would
increase. This is due to the fact that lower values of ∆
correspond to lower SI and thus higher EE. Furthermore, in
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Fig. 2. System energy efficiency vs. δ for different values of SI cancellation
factor ∆.

each IBFD case, for a specific δ, EE reaches its peak and
then decreases. However, the value of δ for which maximum
EE is obtained, varies from one case to another. For instance,
when ∆ = −110 dB, the maximum EE is achieved when
δ = 0.6 while for ∆ = −70 dB, system EE peaks at
δ = 0.4. This observation can be explained by considering
the amount of data rate that a user can attain by consuming
a unit of energy. When ∆ = −110 dB, because of the lower
SI, users would be able to achieve a notable data rate, even
while transmitting with a nominal transmit power. In this case,
since the substantial growth in system throughput is worth the
slight increase in system power consumption, the δ for which
maximum EE is attained leans toward higher values.

In contrast, when interference is high, the value of δ
corresponding to the maximum EE would get closer to its
lower values. Another important observation in Fig. 2 is the
superiority of IBFD communications’ performance compared
to HD in most cases. This improved performance is the
result of the higher flexibility of spectrum usage in IBFD
communications. Note that, as δ gets closer to its optimal
value (in peaks), the EE achieved using IBFD becomes higher
than EE of HD in all but one case which is when ∆ = −50
dB. In ∆ = −50 dB, SI cancellation is too low and thus the
performance of HD outperforms IBFD communications.

B. Comparison with the Existing Benchmarks

Due to the substantial impact of SI-cancellation factor,
∆, on the EE of IBFD networks, in Fig. 3, we compare
the performance of our algorithm (in single-cell scenario)
with three other existing schemes and an upper bound, while
considering different values for ∆. To derive an upper bound
for system EE and draw comparisons between our proposed
algorithm and some of the prominent relevant works, in Fig. 3
we consider a single cell network instead of the multi-cell
network and ignore SI to obtain the solution of (26) under this
new assumption. We also simulate the proposed algorithm in
[15], where a trade-off between EE and SE in a cell with an
IBFD BS, is derived. We should also note that even though in
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Fig. 3. System energy efficiency vs. SI cancellation factor ∆ compared to
the existing benchmark schemes and upper bound.

[13], SI is presented as an additive factor of the background
noise, to make a fair comparison, here we consider that SI is
modeled as an linear function of the transmit power (similar
to the model used both in [15] and this paper). Since, in
our proposed algorithm, we eventually restated our MOOP as
an equivalent single objective problem aiming at minimizing
system energy consumption, here we also compare the result
of our algorithm with that of [14], in which minimization of
system aggregate power is investigated.

As can be seen in Fig. 3, for lower values of ∆, the
performance gap between EE of the upper bound and that
of our algorithm is quite nominal. However, for higher values
of ∆, the increasing SI results in performance degradation in
our proposed algorithm, while the upper bound case remains
immune to ∆. Thus, the performance gap gets larger as the
value of ∆ increases. Furthermore, we can perceive from
Fig. 3 that our proposed algorithm can noticeably improve
the network EE, as compared to both [12] and [15]. The
considerable EE improvement compared to [12] is due to
two factors. Firstly, in [12] a heuristic approach is proposed
for subchannel allocation which does not necessarily result
in the optimal solution. Secondly, the Augmented Lagrangian
method which is used for power allocation, does not work
well when interference is taken into account (non-convex op-
timization problem) and converges to a sub-optimal solution.
As for the superiority of our solution over that of [15], we
should underline the fact that in [15], subchannel and power
allocation problem is decomposed and subchannel allocation
is again obtained through a heuristic algorithm. Needless to
say, this decomposition can considerably decrease the achieved
system EE.

C. Impact of the Number of Subchannels

In Fig. 4, the impact of number of subchannels on system
EE is investigated. It is obvious from this figure that as the
number of subchannels increases, system EE improves as well.
This is due to the fact that more subchannels in the network
means that there are more available subchannels that can be
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Fig. 4. System energy efficiency vs. δ for different values of the number of
subchannels K.
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Fig. 5. System energy efficiency vs. δ for different QoS requirement.

exploited for improving system EE. Moreover, similar to what
was previously explained for Fig. 2, around the optimal value
of δ the performance of IBFD exceeds that of HD. However,
the values of δ for which the EE of IBFD surpasses HD differs
from one case to another. For instance, compare K = 64 and
K = 16. When K = 16, from δ = 0.2 up to δ = 0.8, the EE
of IBFD becomes higher than HD, while for K = 64, only
for δ ∈ {0.5, 0.6, 0.7}, IBFD EE exceeds that of HD. This
observation once again underlines the significance of flexible
spectrum usage that is achieved in IBFD communications.

Consider the HD case when K = 16, where we have only
8 subchannels for UL and DL, which subsequently restricts
users’ access to a channel with a desirable condition. On
the other hand, in IBFD communications, it is possible for
some users to obtain their minimum data rate requirements
in both directions, using only a single subchannel. Therefore,
some of the subchannels may remain unallocated which can
be assigned to those users that have good channel condition
in them and can improve the overall network EE.
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D. Impact of QoS requirements

In Fig. 5, network EE for various QoS requirements is
depicted for both IBFD and HD communications. In Fig.
5, it is illustrated that as users’ QoS requirement increases,
EE decreases. The reason is that, when QoS requirement
is high, more subchannels have to be allocated to users,
especially those with poor overall channel condition, to meet
their minimum rate requirements. This, in conjunction with
necessity of higher transmit power for reaching a specific data
rate, would increase system energy consumption and decrease
the achievable data rate of system (lower achievable EE).
Furthermore, comparing the first two cases when minimum
DL data rate requirements are 4 and 6, respectively, with
their corresponding HD case, we can see that the performance
gain from IBFD is much higher in the first case. In fact as
mentioned before, since in IBFD communications we have
to deal with additional interference (such as user to user
and BS to BS interference), when level of interference gets
higher due to the increased QoS requirements, the performance
degradation in IBFD communication would be more intense.
However this explanation is not applicable when we compare
the trend of EE when Rdl

min = 4 with EE of the case where
Rdl

min= 8 (in which the EE of IBFD communications surpasses
the EE of HD for almost all values of δ). In fact, when Rdl

min=
8, the minimum data rate requirement is high enough to result
in scarcity of available resources. Thus, as can be seen, in this
case, the EE of IBFD is almost always higher than that of HD.

E. Performance Tradeoff Between EE-SE

Fig. 6 illustrates the trend of system EE with respect to
SE. It can be perceived that as the throughput of network
increases, EE starts to increase first and then sharply decreases.
In fact, system throughput is by itself a function of system
transmit power, thus any increase in the throughput may results
in higher energy consumption as well. The point at which
energy consumption exceeds SE gains, the overall EE starts
reducing. We also observe that the value of trade-off region
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Fig. 7. System energy efficiency vs. λ

decreases, as the SI cancellation factors decrease. The reason
is straightforward and it is because that the low level of SI
cancellation factors spend more power which results in a
degradation in the system SE as well as system EE.

F. Impact of the Weight of Penalty Function

Another important parameter in our simulations is the
parameter λ. This parameter works as the weight of the penalty
function in the objective function of (37), in order to ensure
that the values of subchannel allocation variables would belong
to the set {0, 1}. In Fig. 7, the impact of this parameter on
system EE is illustrated. At first, since λ is small and thus
the cost of having non-binary subchannel allocation variables
is small, the value of these variables would not comply with
their binary nature. This means that at least for some of the
subchannels, the equality an,b,k − a2n,b,k = 0 would not hold.
In this case, it is possible for a portion of subchannel k to
be assigned to one user while the other portion is assigned
to others. This would increase the achievable data rate of
users and decreases system energy consumption, however, the
OFDMA nature of network would be violated. As λ increases,
each subchannel would be allocated to at most one user and the
value of subchannel variables would get closer to 0 or 1. This
would subsequently cause the reduction of system EE, as the
number of subchannels that a transceiver can use for sending
its data on, would be restricted. Nevertheless, after λ reaches
a specific value, here 106, EE converges to its final value
and remains unchanged regardless of any further increase in
λ. This is due to the fact that when λ is sufficiently large,
the penalty term would converge to zero and from there on,
increasing its weight would become negligible.

G. Convergence of Algorithm 1

The convergence of our proposed algorithm is investigated
in three cases in Fig. 8. In the first case, we assume that
users’ transmit power is initialized by their maximum transmit
power divided over number of subchannels, whereas in the
second and third case the initial transmit powers are set to the
maximum transmit power and zero, respectively. Even though
the rate of convergence differs from one case to another, in all
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Fig. 8. The convergence rate of Algorithm 1

the three scenarios only after a limited number of iterations
our algorithm converges to a locally optimal value.

VI. CONCLUSION

In this paper, we investigated the problem of joint BS, sub-
chanel assignment and power control for maximization of EE
in an OFDMA small-cell network with IBFD communications.
This problem was then reformulated into a MOOP which
enables us to prioritize system throughput maximization and
power consumption minimization, depending on our appli-
cations’ prerequisites. To obtain all the Pareto fronts in the
aforementioned problem, we used ε-constraint method. Fur-
thermore, in order to tackle the non-convexity of the constraint
set, MM approach was employed for approximating the non-
convex rate functions and a penalty function was also intro-
duced to handle the binary joint BS, subchannel assignment
variables. In the simulation results, the effectiveness of IBFD
communications, as well as the capability of our proposed
solution in improving EE of network were demonstrated
through extensive simulations.

APPENDIX A
PROOF OF PROPOSITION 1

In order to give a formal proof of Proposition 1, a general
fractional programming which can be formulated as below is
considered:

min
x

θ(x) =
f(x)

g(x)
: x ∈ X (40)

where X is a nonempty compact set belonging to Rn. Fur-
thermore, f(x) and g(x) are continuous real-valued functions
of x ∈ X and g(x) > 0, for all x ∈ X. To address the optimal
solution, we define the following function:

H(ψ∗) = min
x
{f(x)− ψ∗g(x) : x ∈ X} (41)

as the minimum value of f(x)− ψg(x) with each fixed ψ∗.
Based on Dinklebach method [26], it is proved that

ψ∗ =
f(x∗)

g(x∗)
= min

x

{
f(x)

g(x)
: x ∈ X

}
(42)

if and only if

H(ψ∗) = H(ψ∗, x∗) = min
x
{f(x)− ψ∗g(x) : x ∈ X} = 0.

(43)
Therefore, from (42) and (43), it can be concluded that the
optimal solution x∗ of (40) is the optimal solution of (41)
when ψ = ψ∗, where ψ∗ denotes the minimum value of (40).
On the other hand, we now formulate a general MOOP with
two competing objectives as follows:

min f(x) (44)
max g(x) (45)
s.t. x > 0

It should be noted that f(x) is the numerator of fractional
optimization problem in 40 while g(x) is its denominator.
By combining the competing objective functions (44) and
(45) into a single objective function through ε-method, the
objective functions in the MOOP can be changed into a single
optimization as:

min f(x) (46)
g(x) ≥ ε (47)

s.t. x > 0

By comparing (46) and (42), one can easily verify that optimal
set of (46) is inclusive of the solution for (42). The value of
ε that makes the minimum of the introduced single objective
optimization, would clearly yield a solution for the fractional
programming problem as well.

APPENDIX B
PROOF OF PROPOSITION 2

We start this proof by first demonstrating that the solution
obtained for optimization problem (37), through our proposed
algorithm, is a tight upper-bound for the problem (23).

First we should point out that as demonstrated in [27], the
rate approximations given in (31) and (32), are tight lower
bounds of the original rate functions. In conjunction with this
fact, we also have to consider that in the tth iteration, the
objective function of (37) would be e1(at, pt, qt)− ẽ2(at).
Therefore, we have:

e1(at+1, pt+1, qt+1)− e2(at+1) ≤ e1(at+1, pt+1, qt+1)

− e2(at)−∇ae
T
2 (at).(at+1 − at) = min

a,p,q
e1(a, p, q)

− e2(at)−∇ae
T
2 (at).(a− at) ≤ e1(at, pt, qt)

− e2(at)−∇ae
T
2 (at).(at − at)

= e1(at, pt, qt)− e2(at).

(48)

One can verify that as the DC iterations continue, the
objective function of (37) takes smaller values (until con-
vergence). Eventually, when at = at−1, pt = pt−1, and
qt = qt−1, the non-equality above would hold for equality.
From the previous two facts we can conclude that the obtained
solution for (37) would be a tight upper bound for (23) as well.

Furthermore, from Remark 2 we know that the optimization
problem (23) is equivalent to (15). Thus, the solution obtained
for (23) would also be a locally optimal point for (15). Finally,
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from Remark 1, we conclude that for the right value of ε, the
solution attained for (15) would also be a locally optimal point
for (14), which is by itself equivalent to the problem (13).
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