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Abstract—Fixed low-resolution Analog to Digital Converters
(ADC) help reduce the power consumption in millimeter-wave
Massive Multiple-Input Multiple-Output (Ma-MIMO) receivers
operating at large bandwidths. However, they do not guaran-
tee optimal Energy Efficiency (EE). It has been shown that
adopting variable-resolution (VR) ADCs in Ma-MIMO receivers
can improve performance with Mean Squared Error (MSE) and
throughput while providing better EE. In this paper, we present
an optimal energy-efficient bit allocation (BA) algorithm for
Ma-MIMO receivers equipped with VR ADCs under a power
constraint. We derive an expression for EE as a function of
the Cramer-Rao Lower Bound on the MSE of the received,
combined, and quantized signal. An optimal BA condition is
derived by maximizing EE under a power constraint. We show
that the optimal BA thus obtained is exactly the same as that
obtained using the brute-force BA with a significant reduction
in computational complexity. We also study the EE performance
and computational complexity of a heuristic algorithm that yields
a near-optimal solution.

I. INTRODUCTION

Today’s telecommunication networks contribute to 2% of

the total carbon dioxide emissions [1], [2]. The radio access

network contributes about 92% of the total power consumption

[3], [4]. Studies show that 5G base stations require about

three times the power of 4G base stations [3]. One of the

5G standards’ goals is to improve the overall network energy

efficiency (EE). The 5G standards have set a goal of 100x

improvement in network EE compared to the existing 4G-

LTE networks [5]. Massive Multiple-Input Multiple-Output

(Ma-MIMO) technology is considered both at sub-6Ghz and

millimeter wave (mmWave) frequencies. In both scenarios,

a large number of antennas help to increase the capacity of

the system. Millimeter-wave Ma-MIMO is considered for the

back-haul wireless interconnects between the Base Stations

(BS), to achieve high throughput and spectral efficiency. How-

ever, this comes at the cost of increased power consumption,

resulting in poor EE [6], [7].

As envisioned by the 5G standards, network densification

ramifications are a complex heterogeneous network (HetNet)

consisting of many small- and medium-sized cells, and macro-

cells. The Single-User (SU) Ma-MIMO framework forms

the backbone of communication links between the back-haul

HetNet elements [8]. By splitting the precoding and combining

between analog and digital domains (hybrid precoding and

combining), the number of RF paths can be reduced consid-

erably as compared to the number of transmit and receive

antennas [9], [10]. Despite adopting hybrid combing at the

receiver, the system’s overall energy efficiency is poor because

the analog to digital converters (ADC) operating at such large

bandwidths and high bit-resolution consume a large amount

of power [6], [9], [11]. In addition to power consumption,

high-resolution ADCs operating at high sampling frequencies

produce huge amounts of data that are difficult to handle.

Using fixed low-resolution ADCs is a popular approach

adopted in Ma-MIMO receiver architectures to mitigate large

power demands [12]. However, an optimal EE performance

is necessary to meet the stringent demands set out by the 5G

standards [3], [5]. Adopting variable-resolution (VR) ADCs in

Ma-MIMO settings yields such benefits [13]–[16].

A. Previous Works

Low-resolution ADC MIMO receiver architectures using 1-

bit and fixed n-bit frameworks have been studied extensively

over the last few years [12], [17]–[20]. Overall, the 1-bit ADC

receiver architecture in MIMO receivers has been shown to

improve EE; however, at the cost of performance at medium

to high SNR regimes for a broad set of system parameters

like the number of transmit or receive antennas, the order of

modulation used, and channel distribution. For example, it has

been shown that despite improved deployment cost, there is

considerable rate loss in the medium to high SNR regimes with

1-bit ADC architectures [12]. It has also been shown that by a

small increase in the resolution of ADCs (eg., with 3 bits) on

all RF paths, significant performance gains can be achieved

for a broad range of system parameters [21]. Also, there is

performance degradation due to channel estimation using low-

resolution ADCs [22]. A practical channel estimation approach

under the impact of ADC quantization is considered in [23],

[24] (in addition to the data transmission stage). The uplink

performance evaluation of a multiuser Ma-MIMO system with

spatially correlated channels using low-resolution ADCs at the

base station is presented in [25].

All the papers above use fixed-bit-resolution ADCs on the

receiver’s RF paths. Since the resolutions of ADCs are fixed

and low, an optimal EE performance is not guaranteed for

a given channel. From the simulations in [13]–[16], it can

be seen that by varying the ADC resolutions on each RF

path for a given channel condition and receiver power budget,

optimal performance is obtained. Thus, employing VR ADCs

on the receiver’s RF paths can be advantageous. The VR ADCs

employed should have the ability to change bit resolutions

across coherence time. Here, the novel VR ADC architec-

tures and mixed-ADC-bank hardware structures proposed in
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previous works can be considered [26], [27]. An ADC Bit

Allocation (BA) mechanism that decides on the bit resolution

to be used on a given RF path and coherence duration is

consequential in achieving optimal EE. Another advantage of

employing VR ADCs along with an optimal BA scheme is that

a high-resolution ADC can be brought into the signal path

during the pilot signal acquisition, thereby removing the ill

effects of low-resolution ADCs on channel estimation. Also,

the absence of doppler due to the communication between

fixed network elements in a wireless backhaul ensures longer

coherence durations even at mmWave frequencies [28], [29].

This relaxes the requirement for faster switching of ADC bit

resolutions between coherence frames and makes the adoption

of VR ADCs in the mmWave wireless backhaul more amicable

[27].On the other hand, the hardware cost of the novel VR

ADC architectures may be higher. However, the energy saving

and the long term positive environmental benefits of achieving

optimal EE underscores the initial higher cost disadvantage.

A BA mechanism based on minimizing the Mean Square

Quantization Error (MSQE) under the receiver power con-

straint is presented in [13]. A BA mechanism based on

the mean squared error (MSE) minimization under a power

constraint using a Genetic Algorithm was proposed in [14]. An

optimal BA based on MSE minimization for a SU mmWave

Ma-MIMO channel under a power constraint was derived in

[15]. A similar Algorithm based on channel capacity max-

imization was derived in [16]. In a more recent paper by

Kaushik et al., a joint BA and hybrid beamforming strategy

is proposed [30]. In this work, the BA is jointly designed for

both digital to analog converts (DAC) and ADCs, along with

hybrid precoder and combiner, thus effectively improving the

overall EE. It is also shown that the DAC/ADC BA is dynamic

during operation and achieves higher EE when compared

with existing benchmark techniques that use fixed DAC and

ADC bit resolutions [30]. The authors in [30] propose a

novel alternating direction method of multipliers to optimize

hybrid precoder, combiner, and BA matrices jointly for both

ADC/DAC, thus achieving lower computational complexity.

In the proposed work, we focus mainly on the optimal ADC

BA for EE, and hence the computational complexity of our

proposed algorithm may not be as good as that of [30].

B. Our Contribution

The contributions of this paper are as follows:

• We propose an ADC BA scheme whose solution is

precisely the same as that obtained using the brute-force

or exhaustive search (ES) BA with an order of magnitude

reduction in multiplication complexity. This provides for

optimal EE performance under a power constraint for a

SU Ma-MIMO wireless back-haul framework.

• For the first time, we derive an analytical expression

for EE as a function of the Cramer-Rao Lower Bound

(CRLB) on MSE of the received, quantized, and com-

bined signal. Using this expression, we derive the pro-

posed ADC BA algorithm.

• We also propose a heuristic algorithm using simulated

annealing (SA) that is near-optimal. The parameters of the

SA algorithm can be tuned to trade off the EE optimality

and computational complexity.

Notation: The column vectors are represented as boldface

small letters and matrices as boldface uppercase letters. The

primary diagonal of a matrix is denoted as diag(·), and all

expectations E[·] are over the random variable n, which

is an AWGN vector, i.e., E[·] = En[·]. The multivariate

normal distribution with mean µ and covariance ϕ is denoted

as N (µ,ϕ) and CN (0,ϕ) denotes a multivariate complex-

valued circularly-symmetric Gaussian distribution. The trace

of a matrix A is shown as tr (A) and the N × N identity

matrix as IN . The term h(x) defines the differential entropy

of a continuous random variable x. The superscripts T and H
denote transpose and Hermitian transpose, respectively. The

terms I, R, and C indicate the set of integer, real, and complex

numbers, respectively.

The rest of this paper is organized as follows. Section II

describes the system model and parameters. In Section III,

we derive the optimal BA conditions for EE. The Section IV

describes the two proposed Algorithms based on the optimal

condition derived in Section III. In Section V, we present the

simulation results, and in Section VI, we study and compare

the computational complexities, followed by the conclusions

in Section VII. Theorems and their proofs are presented in the

Appendices.

II. SIGNAL MODEL

The signal model for a typical SU Ma-MIMO transceiver

with hybrid precoding and combining is shown in Figure

1. This signal model forms an underlying framework for

wireless backhaul communication link between basestations

in a HetNet [6], [7]. In Figure 1, FD and FA denote the

digital and analog precoders, respectively. Similarly, WH
D and

WH
A represent the digital and analog combiners, respectively.

The vector x is an Ns × 1 transmitted signal vector with unit

average power. Let Nrt and Nrs denote the number of RF

chains at the transmitter and receiver, respectively. Also, Nt

and Nr represent the number of transmit and receive antennas,

respectively. The channel matrix H = [hij ] is an (Nr × Nt)
matrix representing the line of sight mmWave Ma-MIMO

channel with properties defined in [29] (chapter 3, pages 99-

125).

WH
D

n

x̃x

ỹ zy

+

r

FD FA

(Nt × Nrt)(Nrt × Ns)

H

(Nr × Nt)

(Nrs × Nr)

WH
A

Qb(z)
(Nrs × Nrs)(Ns × Nrs)

Fig. 1: Signal Model.

The transmitted signal x̃ and the received signal r are

thus known as x̃ = FAFDx and r = Hx̃ + n. Here, n

is an Nr × 1 noise vector of independent and identically

distributed (i.i.d.) complex Gaussian random variables such

that n ∼ CN (0, σ2
nINr

). The received symbol vector r is
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analog-combined with WH
A to get z = WH

A r and later digi-

tized using a variable-bit quantizer to produce ỹ = Qb(z) =
Wα(b)z+nq [13]. This signal is combined using the digital

combiner WH
D to produce the output signal y = WH

D ỹ. The

quantizer is modeled as an Additive Quantization Noise Model

(AQNM) [11], [31]. Here b = [b1b2b3....bN ]T is a vector

whose entries bi indicate the number of bits (on both I and

Q channels) that are allocated to the ADC on RF path i. The

bits bi ∈ I take values between 1 and Nb. The vector nq has

a distribution of CN (0,D2
q) and is uncorrelated with z [11],

[31].

Hence, the relationship between the transmitted signal vec-

tor x and the received symbol vector y at the receiver is given

by

y = WH
DWα(b)W

H
AHFAFDx+WH

DWα(b)W
H
An

+WH
Dnq,

(1)

where the dimensions of matrices are FD ∈ CNrt×Ns , FA ∈
CNt×Nrt , H ∈ CNr×Nt , WH

A ∈ CNrs×Nr , WH
D ∈ CNs×Nrs ,

and Wα(b) ∈ RNrs×Nrs .

With the diagonal BA matrix Wα(b), we intend to design

the precoders FD, FA, and Combiners WH
D , WH

A , along

with the ADC BA Wα(b) for a given channel realization H.

We assume perfect CSI at the transmitter. We further assume

that Nrs = Ns and the extension to the case Nrs 6= Ns is

straightforward.

III. ENERGY-EFFICIENT BIT-ALLOCATION DESIGN

We first present an expression for the CRLB on the MSE

that can be achieved on the received, combined, and quan-

tized signal y in (1). We then derive the expression for the

information rate as a function of the CRLB. The CRLB is a

function of the hybrid precoder, hybrid combiner, and the BA

matrix. We derive the expression for EE using the information

rate. An optimal BA condition is arrived by maximizing the

EE under a power constraint.

A. CRLB on MSE as a function of BA

Having designed the precoders such that Fopt ≈ FAFD

with the constraints described in [15], we can rewrite (1) as

y = WH
DWα(b)W

H
AUΣx+WH

DWα(b)W
H
An+WH

Dnq,
(2)

with the SVD of the channel matrix as H = UΣFH
opt. Using

(2), we derive the expression for MSE δ as

δ , tr (E[(y − x)2])

MSE(x) = E[(y − x)2]

= p(K− INs
)2 + σ2

nGGH +WH
DD2

qWD,

(3)

where K = WH
DWαW

H
AUΣ, E[xxH ] = pINs

, G =
WH

DWαW
H
A , E[nnH ] = σ2

nINr
, E[nqn

H
q ] = D2

q .

Note that p is the average power of symbol x, D2
q =

WαW1−αdiag[WH
AH(WH

AH)H + INrs
], and E[nnH

q ] = 0.

For simplicity of notation, we refer to Wα(b) as Wα. The

expression for the MSE(x) in (3) can be shown as [15]

MSE(x) = σ2
nΣ

−2 +WH
DD2

qWD. (4)

The CRLB for (4) is derived as [15]

I−1(x̂) = σ2
nΣ

−2 +K−1WH
DD2

qWD(KH)−1. (5)

An optimal BA condition based on the CRLB minimization

is derived in [15] by minimizing (5) with respect to the BA

matrix Wα under a power constraint PADC.

b∗ = argmin
︸ ︷︷ ︸

b∈I
Ns×1;

PTOT≤PADC

{

Σ−2

[

σ2
nINs

+W−2
α D2

q

]}

. (6)

PTOT is the total power consumed by the ADCs with bit

allocation b and is shown to equal 2
∑N

i=1 cfs2
bi , where c is

the power consumed per conversion step and fs is the sampling

rate in Hz [20].

B. Energy efficiency as a function of bit allocation

In this section, we first derive the expression for the

information rate of the SU mmWave Ma-MIMO channel

encompassing the channel matrix H, the hybrid precoders FD,

FA, and the hybrid combiners WH
D , WH

A along with the BA

matrix Wα. We then use the information rate to arrive at an

expression for EE. Equation (1) can be simplified as

y = Kx+ n1, (7)

where n1 = WH
DWαW

H
An+WH

Dnq . Here n is an additive

noise vector that is multivariate Gaussian distributed as n ∼
CN (0, σ2

nINr
). Inspired by [11], [20], [31], [32], we assume

that nq has Gaussian distribution such that nq ∼ N (0,D2
q).

This results in n1 having the distribution N (0,Φ) where

Φ = σ2
nGGH + WH

DD2
qWD [15]. We assume that x and

n1 are independent, and is a valid assumption because of the

following reasons. The input symbol vector can be modeled

as x ∼ CN (0, pINs
) [11], [13]. This can be achieved using

efficient Gaussian scramblers [33]. It is straightforward to

see that n1 and x are independent, given that n1 and x

are multivariate Gaussian vectors that are uncorrelated. The

information rate for the given Ma-MIMO channel can be

written as

R(b) = I(x;y) = h(y) − h(y|x)

= h(y) − h(Kx+ n1|x)
(a)
= h(y) − h(n1),

(8)

where I(x;y) is the mutual information of random variables

x and y, and K is a function of BA vector b. (a) holds if

and only if both nq and x are Gaussian. Hence, ensures y

is Gaussian. However, under the assumption that either nq or

x being non Gaussian, finding a closed form expression of

the considered information rate (8) is an open problem. Now,

if y ∈ CNs , then the differential entropy h(y) is less than

or equal to log2 det(πeQ) with equality if and only if y is

circularly symmetric complex Gaussian with E[yyH ] = Q

[34]. As such,

Q = E
[

(Kx+ n1)(Kx+ n1)
H
]

= pKKH +Φ. (9)

Note that Φ = σ2
nGGH +WH

DD2
qWD.
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Thus, the differential entropies h(y) and h(n1) satisfy

h(y) ≤ log2 det(πeQ) = log2 det

(

πe
(

pKKH +Φ
))

,

h(n1) ≤ log2 det(πeΦ).
(10)

We show that n1 is a circularly symmetric jointly Complex

Gaussian vector using Theorem 1 in the Appendix. Hence, we

can write

h(n1) = log2 det(πeΦ). (11)

Thus, the information rate I(x;y) achieved can be written as

R(b) = h(y)− h(n1)
(b)
= log2 det(πeQ)− log2 det(πeΦ)

= log2 det
(

pKKHΦ−1 + INs

)

,

(12)

where (b) follows from the assumption that the input symbol

vector x is circular symmetric Gaussian vector that could be

modeled as x ∼ CN (0, pINs
) [11], [13]. It is straightforward

to see that (12) is a general case of (17) in [9] when the BA

is infinite-bits on all ADCs. We simplify (12) to write the

information rate as

R(b) = log2 det
(

pKKHΦ−1KK−1 +KK−1
)

= log2 p
Ns det

(

KHΦ−1K+
1

p
INs

)

= Ns log2 p+ log2 det
(

(I−1(x̂))−1 +
1

p
INs

)

.

(13)

Note that I−1(x̂) is the CRLB (15) in [15] achieved by the

MSE δ in (3). Now, we define EE as a function of BA as [35]

ηEE(b) =
R(b)

p(b)
(bits/Hz/Joule)

=
Ns log2 p+ log2 det

(

(I−1(x̂))−1 + 1
p
INs

)

PT + PR + 2
∑N

i=1 cfs2
bi

,

(14)

where p(b) is the total power consumed. Here PT , PR are the

power consumed at the transmitter and receiver respectively.

The net ADC power consumption is ( 2
∑N

i=1 cfs2
bi) . The

expression for p(b) can be effectively written as

p(b) = 2cfs × (
PT + PR

2cfs
+

N∑

i=1

2bi). (15)

The transmitter power can be modeled as PT = Pout
ηPA

+ PCIR

[1], [2]. The terms Pout, ηPA, and PCIR represent the transmit

power, efficiency of the power amplifier, and basestation

circuit power respectively. The receiver power is modeled as

PR = NrNsPPS +NrPLNA +NsPVCO. The terms PPS, PLNA,

and PVCO correspond to the power consumed by a single

device phase shifter, Low Noise Amplifier and local oscillator

respectively [9].

It is to be noted that the power consumption attributed

towards the BA algorithm itself is highly hardware and

implementation dependent. To this effect, we consider the

computational analysis of the proposed algorithm in terms of

number of multiplications and additions, which is discussed

in Section VI.

C. Hybrid combiner structure

Phase shifters or splitters impose constraints on the design

of the analog combiner WH
A [9]. We express the constrained

analog combiner as W̃H
A . The digital combiner compensates

the imperfections in the analog combiner, that is WH
A =

WDW̃H
A (20) in [15]. We design the constrained analog

combiner W̃H
A and the digital combiner WD, such that

WH
A = UH = WDW̃H

A . This is obtained by solving the

optimization problem using method described in [36].

(W̃opt
A ,Wopt

D ) = argmin
︸ ︷︷ ︸

W̃A,WD

‖U− W̃AWH
D‖F ,

such that W̃A ∈ WRF , ‖W
H
DW̃A‖

2

F = Ns

(16)

WRF is the set of all possible analog combiners architecture

based on phase shifters. This includes all possible Nr × Ns

matrices with constant magnitude entries.

D. Maximizing the EE

Let b∗ be the optimal BA that maximizes the EE in (14),

where

ηEE(b) =

max
︸︷︷︸

b
∗,PTOT≤PADC

{
Ns log2 p+ log2 det

(

(I−1(x̂))−1 + 1
p
INs

)

p(b)

}

.

(17)

Thus b∗ is derived as

b∗ = argmax
︸ ︷︷ ︸

b∈I
Ns×1,

PTOT≤PADC

{

1

p(b)
log2 det

(

(I−1(x̂))−1 +
1

p
INs

)
}

.

(18)

By substituting K into (5) and by designing the structure of

the hybrid combiner as described earlier, we can simplify the

expression for CRLB as

I−1(x̂) = σ2
nΣ

−2+

Σ−1UH(WH
A )−1W−1

α D2
qW

−1
α W−1

A UΣ−1

= σ2
nΣ

−2 +Σ−2W−2
α D2

q.

(19)

We now compute the Inverse of CRLB
(

I−1(x̂)
)−1

as

(

I−1(x̂)
)−1

=
(

σ2
nΣ

−2 +Σ−2W−2
α D2

q

)−1

= diag

(
σ2
1

σ2
n + g(b1)l1

, · · · ,
σ2
Ns

σ2
n + g(bNs

)lNs

)

,
(20)

Substituting
(

I−1(x̂)
)−1

in (18), we have

b∗ = argmax
︸ ︷︷ ︸

b∈I
Ns×1,

PTOT≤PADC

1

p(b)

Ns∑

i=1

{

log2

(

q(bi) + 1
)}

,
(21)
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where q(bi) =
pσ2

i

σ2
n+g(bi)li

. The term log2

(

q(bi) + 1
)

can be

expanded for two scenarios given below.

Case 1: For the case of 0 ≤ q(bi) < 1, we have log2

(

q(bi)+

1
)

≃ q(bi)
ln 2 . For proof refer to Lemma 1 in the Appendix.

Thus, the maximization in (21) can be written as

b∗ = argmax
︸ ︷︷ ︸

b∈I
Ns×1,

PTOT≤PADC

1

p(b)

Ns∑

i=1

pσ2
i

σ2
n + g(bi)li

. (22)

Case 2: For the case 1 ≤ q(bi) < ∞, we show that

log2

(

q(bi) + 1
)

=

(

1 − 1
q(bi)

)

P + L(p, σ2
i , σ

2
n). For proof

refer to Lemma 2 in the Appendix. P and L(p, σ2
i , σ

2
n) are

independent of bi. Hence, the maximization in (21) can be

simplified to

b∗ = argmax
︸ ︷︷ ︸

b∈I
Ns×1,

PTOT≤PADC

1

p(b)

Ns∑

i=1

(

1−
1

q(bi)

)

(23)

Combining the two scenarios, the b∗ that guarantees optimal

EE performance under a power constraint p(b∗) ≤ PADC can

be written as

b∗ = argmax
︸ ︷︷ ︸

b∈I
Ns×1,

PTOT≤PADC

1

p(b)

{
∑

bi∈X

q(bi) +
∑

bi∈Y

(

1−
1

q(bi)

)}

,

(24)

where X =
{

bi | q(bi) < 1
}

, Y =
{

bi | q(bi) ≥ 1
}

, and

|X |+|Y|= Ns.

IV. BIT ALLOCATION ALGORITHM

We propose two algorithms to solve the optimal EE condi-

tion derived in (24): (i) An algorithm that ensures optimal BA

(ii) A simulated annealing based heuristic technique yielding

near-optimal solution. We described the algorithms below.

A. Algorithm for optimal solution (Q-search)

The term q(bi) =
pσ2

i

σ2
n+g(bi)li

is evaluated and stored. Here,

σi is the diagonal element of Σ, σ2
n is the noise power, g(bi) =

f(bi)
1−f(bi)

where f(bi) is depends on the quantization error on

the ith RF path [13]. The values for f(bi) are indicated in [20]

and li is the ith element of diag(INs
+WH

DΣ2WD). For a

given Ns and Nb, we form a set Bset of all possible bj’s that

satisfy the ADC power budget PADC.

Bset ,

{

bj = [bj1, bj2, . . . , bjNs
]
T

for 0 ≤ j < NNs

b |

1 ≤ bji ≤ Nb and

Ns∑

i=1

cfs2
bji ≤ PADC

}

.
(25)

We call this the Q-search method as described in Algorithm 1.

1p = − log2(2cfs)− log2 (
PT+PR
2cfs

+
∑Ns

i=1 2
bi ).

2log2() is indexed using lookup table [37]

Algorithm 1 Q-search Algorithm

1: procedure Q-SEARCH(Bset,Ns,Q(Nb, Ns),Ptot(sizeof(Bset)))
2: Bset ← Solution Space
3: Ns ← Number of RF paths
4: Q(Nb, Ns)← Table precomputed using (24).
5: Ptot(sizeof(Bset))← Table of − log2 (p(bj))∀bj ∈ Bset.
6: for j=0;j++;until j<sizeof(Bset) do

7: m←
∑Ns

i=1 Q(bj(i), i)
8:

1p← Ptot(bj)
9:

2Kf (bj)← SHIFTLEFT(1, (log2(m) + p))
10: end for
11: index← max(Kf )
12: b

∗ ← Bset at index
13: return b

∗ ⊲ Optimal Bit Allocation Vector
14: end procedure

procedure COMPUTEQ(p,σ2
n,S(Ns),g(Nb),l(Ns),Nb,Ns)

2: p← Received Signal Power

σ2
n ← Noise Power

4: S(Ns)← Table of the square of the singular Values of H.
g(Nb)← Table of quantization Errors ⊲ Refer [15], [20]

6: l(Ns)← Table containing diag(INs +W
H
DΣ

2
WD)

Nb ← ADC bit range
8: Ns ← Number of RF paths

for i=1;i++;until i≤ Ns do
10: for bi=1;bi++;until bi ≤ Nb do

q ←
pσ2

i

σ2
n+g(bi)l(i)

12: Q(bi, i)← q if q < 1

Q(bi, i)←

(

1− 1
q

)

if q ≥ 1

14: end for
end for

16: return Q(Nb, Ns)
end procedure

B. Simulated annealing

The SA is a metaheuristic technique used to solve global

optimization problems. While it does not guarantee an optimal

solution, tuning its parameters such as the cooling factor can

ensure near-optimal solutions [38]. The SA algorithm has a

reduced complexity compared to the Q-search method and

is discussed in Section VI. The details of the Algorithm 2
presented below can be found in [38].

V. SIMULATIONS AND RESULTS

We simulate the mmWave channel using the NYUSIM

channel simulator for two channel scenarios. In one, we have

2 dominant scatters, and in other we have one dominant scatter

[39]. The parameter configurations for the simulations is given

in Table I . We consider Nb = 4, Ns = 8, and Ns = 12 in

our simulations. We run the simulations to evaluate the EE

(ηEE) derived in (14) (Figures 2-5), and the information rate

R derived in (13) (Figures 6-9) at various SNRs for Ns = 8
and Ns = 12. Monte-Carlo simulations are run with 1-bit

ADCs (represented using lines-(a)) and 2-Bit ADCs (line-(b))

across all RF paths. The simulations are also run using the

proposed Q-Search (line-(d)), SA (lines-(e) and (f)), and ES

(line-(c)) method.

The Q-search Algorithm always yields the optimal BA. That

is, the BA solution evaluated using the proposed Q-search

method is exactly the same as that of the ES method. The
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Algorithm 2 Simulated Annealing

1: procedure SA(Bset,Ns,Q(Nb, Ns),P(sizeof(Bset)),T0,r,m)
2: Ns ← Number of spatial-multiplexed paths
3: Bset ← Solution Space
4: Q(Nb, Ns)← Table precomputed using (24).
5: P(sizeof(Bset))← Precomputed total power ∀bj ∈ Bset.
6: T0 ← Initial Temperature
7: r ← Cooling factor
8: m← Number of searches at a given temperature t
9: t← T0 Initialize Temperature

10: btest ← Select a initial solution from Bset

11: cost← 1

P(btest)

∑Ns

i=1 Q(btest(i), i)

12: (copt,b
∗)← (cost,btest)

13: while t > 1.0 do
14: for m times do
15: bnew ← SearchNeighbour(btest, Bset)
16: cnew ←

1

P(btest)

∑Ns

i=1 Q(bnew(i), i)

17: δ ← cnew − cost
18: Pa ←

1

1+e
−

δ
t

19: if rand() ≤ Pa then ⊲ rand() ∼ U(0, 1)
20: (cost,btest)← (cnew,bnew)
21: if cnew > copt then
22: (copt,b

∗)← (cnew ,bnew)
23: end if
24: end if
25: end for
26: t← rT
27: end while
28: return b

∗ ⊲ Optimal bit allocation vector
29: end procedure

procedure SEARCHNEIGHBOUR(btest,Bset)
2: btest ← Current solution

Bset ← Solution space
4: bnew ← LookupNewSolution(randn(),btest)

return bnew ⊲ Return new solution
6: end procedure

performance of the SA Algorithm with cooling factors 0.9

and 0.5 are indicated using the lines (e) and (f), respectively.

We observe that the BA solution evaluated using SA is near-

optimal with significantly reduced computational complexity

compared to the Q-search method. The computational com-

plexity analysis for these methods are discussed in Section VI

and summarized in Table II.

Parameters Value/Type

Frequency 28Ghz

Environment Line of sight

T-R seperation 100m

TX/RX array type ULA

Num of TX/RX elements Nt/Nr 64/128

TX/RX antenna spacing λ/2
ηPA 40%
PCIR 10W

PPS 50mW

PLNA 70mW

PVCO 15mW

c 1432fJ/conversion step [40]

Sampling Frequency 400Mhz

TABLE I: Channel parameters for NYUSIM model [39].

VI. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we evaluate the computational complexity

in terms of the number of multiplications and additions for

the following Algorithms (i) ES BA (ii) proposed Q-search

method (iii) proposed SA Algorithm with two cooling factors.

(i) ES Bit-Allocation: It can be seen that ES BA requires

γ(N2
s + 2Ns) complex multiplications, 3N2

s real multiplica-

tions, and γ(Ns(Ns − 1) + Ns) complex additions. Here γ
is the number of EE (ηEE) evaluations and is approximately

the cardinality of Bset, which is NNs

b . Thus ES BA has a

multiplicative and additive complexity of O(NNs

b ) and thus is

NP-Hard.

(ii) Q-search Method: The term q(bi) in (24) is precomputed

for given Nb and Ns. This consists of a table of Nb × Ns

real values Q(Nb, Ns). This requires the computation of

li = diag[WH
DΣ2WD + INs

] that require in 3N2
s real multi-

plications and 2N2
s +Ns(Ns − 1) real additions. To compute

Kf(bj) and Ptot() as described in Algorithm 1 for all BA’s

in Bset we require 2µ(Ns + 1) real additions. Thus, a total of

3N2
s+3NsNb real multiplications and 3N2

s+NsNb+µ(Ns−1)
real additions are required. Here µ is the number of evaluations

of Kf (bj), which is approximately the cardinality of Bset,

which is NNs

b .

The table consisting of the term − log2(2cfs) −
log2(

PT +PR

2cfs
+
∑Ns

i=1 2
bi) is precomputed and stored as Ptot()

for all BA’s in Bset. This only requires additions and no mul-

tiplications. The term PT+PR

2cfs
is independent of BA. The term

∑Ns

i=1 2
bi is effectively computed as

∑Ns

i=1 SHIFTLEFT(1, bi).
The log2() can be performed using shift operation and a

lookup table [37]. The ratio
R(b)
p(b) is computed without multi-

plication as illustrated on the line-9 of Algorithm 1. Thus Q-

search method suffers from considerable additive complexity

of O(NNs

b ). However, it has an order of magnitude reduction

in multiplicative complexity, which is O(N2
s ) compared to

ES BA. Besides, the Q-search method requires only real

multiplications.

(iii) SA Algorithm: The terms Q(Nb, Ns) and Ptot() is

precomputed and stored similar to the Q-search method. Thus

resulting in 3N2
s real multiplications and 2N2

s +Ns(Ns − 1)
real additions. However, in SA the Kf (bj) is not evaluated

for all b
′s
j ∈ Bset as in Q-search method. The number of

evaluations (µ) of Kf(bj) depends on the initial temperature

T0 and the cooling factor r. From Algorithm 2, it can be seen

that µ =
⌈
log 1

T

log r

⌉

and this results in m
{⌈

log 1
T

log r

⌉

+1
}

(2Ns+5)

real additions. Here m is the number of search at a given

temperature t. Hence, the additive complexity of SA can

be tuned to O(ND
s ) using the parameters T and r. The

complexity degree of Ns is D and can be derived using the

relationship T , r−ND−1
s . In our simulations, we fix T and

set r = 0.9 and r = 0.5 that correspond to additive complexity

of O(N3
s ) and O(N2

s ), respectively. The generation of random

numbers is carefully designed and has O(1) complexity. The

computation of the acceptance probability Pa, which is a

sigmoid function is a lookup table with O(1). In conclusion,

the SA Algorithm has a real-multiplication complexity of

O(N2
b ) and an additive complexity that depends on the initial

temperature T and cooling factor r.
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Number of complex multiplications

Ns
Exhaustive Search O(NNs

b )
High

Q-search method O(N2
s )

Low
Sim. Annealing (r=0.9)

O(N2
s ) Low

Sim. Annealing (r=0.5)
O(N2

s ) Low

8
1,502,400 288§ 288§ 288§

192§

12
223,865,040 576§ 576§ 576§

432§

Number of complex additions

Ns
Exhaustive Search O(NNs

b )
High

Q-search method O(NNs
b )

Medium
Sim. Annealing (r=0.9)

O(N3
s ) Medium

Sim. Annealing (r=0.5)
O(N2

s ) Low

8 1,218,822 30,272† 2,916† 396†

12 193,616,609 3,198,552† 6,516† 780†

§ Real multiplications.† Real additions

TABLE II: Computational complexity in terms of total number of multiplications and additions.

VII. CONCLUSION

For a given power budget, an EE-optimal receiver with

reduced computational complexity is crucial to meet the targets

set by the 5G standards in terms of the network energy

efficiency and spectral efficiency. In this paper, we propose

an EE-optimal BA algorithm whose solution is precisely the

same as the exhaustive search, with an order of magnitude

improvement in multiplicative complexity. Also, we propose a

heuristic algorithm using simulated annealing, whose parame-

ters can be tuned to trade off EE optimality with computational

complexity. Both algorithms are based on our optimal EE con-

ditions expressed as a function of BA under a power constraint.

We analyze the computational complexities of the proposed

methods against ES. The computational complexity of SA is

significantly lower than the Q-search method. However, this

comes at the cost of no optimality guarantees.

APPENDIX

Theorem 1. If n1 = WH
DWαW

H
An + WH

Dnq , where n

is n ∼ CN (0, σ2
nINs

) and nq ∼ N (0,D2
q) with D2

q =
WαW1−αdiag[W

H
AH(WH

AH)H+INs
], then it can be shown

that n1 is a circularly symmetric complex Gaussian (CSCG)

vector. That is, n1 ∼ CN (0,Φ).

Proof. The condition for the random vector n1 to be CSCG

is [41]

E[n1] = E[n1n
T
1 ] = 0. (A.26)

Here, E[n1n
T
1 ] is the pseudo-covariance. We first prove that

nq is CSCG distributed as nq ∼ N (0,D2
q). Given D2

q =
E[nqn

H
q ] = WαW1−αdiag[W

H
AH(WH

AH)H + INs
]; with

Wα, W1−α and diag[WH
AH(WH

AH)H +INs
] being positive

real diagonal matrices, effectively results in the covariance

matrix D2
q being positive real diagonal.

A necessary and sufficient condition for a random vector nq

to be a CSCG random vector is that it has the form nq = Aw

where w is iid complex Gaussian, that is w ∼ CN (0, INs
)

and A is an arbitrary complex matrix [41], [42]. Since D2
q is

a positive real diagonal matrix, we can express

nq = Dqw, (A.27)

where w ∼ CN (0, INs
). This leads to E[nq] = DqE[w] = 0

and E[nqn
T
q ] = DqE[wwT ]Dq = 0. Hence nq is circularly

symmetric jointly Gaussian random vector. nq ∼ CN (0,D2
q).

Using (A.27), we can express n1 as

n1 = WH
DWαW

H
An+WH

DDqw (A.28)

Since we have n and w as i.i.d complex Gaussian vectors, we

can write

E[nnT ] = E[wnT ] = E[nwH ] = E[wnH ] = 0,

E[nnH ] = σ2
nINs

, E[wwH ] = INs
.

(A.29)

Thus, we arrive at

E[n1] = WH
DWαW

H
AE[n] +WH

DDqE[w] = 0.

E[n1n
T
1 ] = GE[nnT ]GT

+GE[nwT ]DqWD +WT
DDqE[wnT ]GT

+WT
DDqE[wwT ]DqWD = 0.

(A.30)

Also,

E[n1n
H
1 ] = Φ = GE[nnH ]GH +GE[nwH ]DqWD

+WH
DDqE[wnH ]GH +WH

DDqE[wwH ]DqWD,

= σ2
nGGH +WH

DD2
qWD.

(A.31)

Thus, n1 ∼ CN (0,Φ) is a CSCG vector.

Lemma 1. The term log2

(

q(bi) + 1
)

for 0 ≤ q(bi) < 1, can

be approximated as log2

(

q(bi) + 1
)

≃ q(bi)
ln 2 .

Proof. We can write:

log2

(
pσ2

i

σ2
n+g(bi)li

+ 1
)

= 1
ln 2 ln

(
pσ2

i

σ2
n+g(bi)li

+ 1
)

.

We can approximate g(bi) as c2−dbi , where d = 2.0765, c =
2.40667. For the sake of simplicity, we will replace the

variable b ∈ INs×1 with x ∈ RNs×1.

We will now define f(p(xi)) = ln
(

pσ2
i

σ2
n+c2dxi li

+1
)

, where

p(xi) =
pσ2

i

σ2
n+c2dxi li

. For a geometric series below, with a
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common ratio of −p(xi), where 0 ≤ p(xi) < 1, we can write

1− p(xi) + p(xi)
2 − p(xi)

3 + .. =
1

1 + p(xi)
. (A.32)

ln(1 + p(xi)) =

∫
1

1 + p(xi)
d(p(xi)), (A.33)

substituting for 1
1+p(xi)

into the integral in A.33 from A.32,

we have

ln(1+p(xi)) = p(xi)−
p(xi)

2

2
+
p(xi)

3

3
−
p(xi)

4

4
+... (A.34)

Given that 0 ≤ p(xi) < 1, the higher powers of p(xi) are

negligible and thus the above series can be approximated as

f(p(xi)) ≃ p(xi). (A.35)

By re-substituting variable x ∈ RNs×1 with b ∈ INs×1, we

can effectively write

log2

( pσ2
i

σ2
n + g(bi)li

+ 1
)

≃
1

ln 2

( pσ2
i

σ2
n + g(bi)li

)

. (A.36)

Lemma 2. It can be shown that log2

(

q(bi) + 1
)

=
(

1 −

1
q(bi)

)

P + L(p, σ2
i , σ

2
n) for ∞ > q(bi) ≥ 1, where the terms

P and L(p, σ2
i , σ

2
n) are not functions of bi.

Proof. Consider the expansion for f(p(xi)) for ∞ > p(xi) ≥
1. We can approximate f(p(xi)) as

f((p(xi)) = ln
(

p(xi) + 1
)

≃ ln
(

p(xi)
)

. (A.37)

Rewriting f((p(xi)) as:

f((p(xi)) = − ln

(
1

p(xi)

)

for 0 <
1

p(xi)
≤ 2;

f((p(xi)) = − ln
(

g(xi)
)

where g(xi) =
1

p(xi)
;

or f((p(xi)) = −h(g(xi)) where h(g(xi)) = ln (g(xi));
(A.38)

Using the Taylor series at g(xi = x0) = 1 = 1
p(xi=x0)

with

the region of convergence R : ∞ > p(xi) ≥
1
2 , we have

h(g(xi)) = h(g(x0)) + h′(g(x0))(g(xi)− 1)

+
1

2
h′′(g(x0))(g(xi)− 1)2 +

1

6
h′′′(g(x0))(g(xi)− 1)3 + ..

(A.39)

Also:

h(g(x0)) = ln(1) = 0;

h′(g(xi)) =
1

g(xi)
=⇒ h′(g(x0)) = 1;

h′′(g(xi)) = −
1

[g(xi)]2
, h′′(g(x0)) = −1;

h′′′(g(xi)) =
2

[g(xi)]3
, h′′′(g(x0)) = 2; · · ·

(A.40)

substituting A.40 in A.39, we have

h(g(xi)) =
( 1

p(xi)
− 1
)

−
1

2

( 1

p(xi)
− 1
)2

+
1

3

( 1

p(xi)
− 1
)3

− ..

f(p(xi)) =
(

1−
1

p(xi)

)

−
∞∑

n=2

(−1)(n−1)

n

( 1

p(xi)
− 1
)n

(A.41)

Using binomial expansion for
(

1
p(xi)

− 1
)n

, we can write

( 1

p(xi)
− 1
)n

=

n∑

k=0

(
n

k

)
−1(n−k)

(p(xi))k
= Kn(p, σ

2
i , σ

2
n).

(A.42)

It is to be noted that for n ≥ 2 and larger values of k, the term

Kn(p, σ
2
i , σ

2
n) becomes less dependent on xi and is convergent

for p(xi) ≥ 1. So, we can write A.42 as

f(p(xi)) =
(

1−
1

p(xi)

)

+G(p, σ2
i , σ

2
n), (A.43)

Where G(p, σ2
i , σ

2
n) = −

∑∞

n=2
(−1)(n−1)Kn(p,σ

2
i ,σ

2
n)

n
and is a

converging series. By re-substituting variable x ∈ R
Ns×1 with

b ∈ INs×1, we can effectively write

log2

(
pσ2

i

σ2
n + g(bi)li

+1

)

= P

(

1−
1

pσ2
i

σ2
n+g(bi)li

)

+L(p, σ2
i , σ

2
n).

(A.44)

where P = 1
ln 2 and L(p, σ2

i , σ
2
n) =

G(p,σ2
i ,σ

2
n)

ln 2 .
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