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AFED-EF: An Energy-efficient VM Allocation Algorithm for
IoT Applications in a Cloud Data Center
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Member, IEEE, Jemal Abawajy, Senior Member, IEEE and Fangmin Li

Abstract—Cloud Data Centers (CDCs) have become a vital computing infrastructure for enterprises. However, CDCs consume
substantial energy due to the increased demand for computing power, especially for the Internet of Things (IoT) applications. Although
a great deal of research in green resource allocation algorithms have been proposed to reduce the energy consumption of the CDCs,
existing approaches mostly focus on minimizing the number of active Physical Machines (PMs) and rarely address the issue of load
fluctuation and energy efficiency of the Virtual Machine (VM) provisions jointly. Moreover, existing approaches lack mechanisms to
consider and redirect the incoming traffics to appropriate resources to optimize the Quality of Services (QoSs) provided by the CDCs.
We propose a novel adaptive energy-aware VM allocation and deployment mechanism called AFED-EF for IoT applications to handle
these problems. The proposed algorithm can efficiently handle the fluctuation of load and has good performance during the VM allocation
and placement. We carried out extensive experimental analysis using a real-world workload based on more than a thousand PlanetLab
VMs. The experimental results illustrate that AFED-EF outperforms other energy-aware algorithms in energy consumption, Service
Level Agreements (SLA) violation, and energy efficiency.

Index Terms—Cloud data center (CDC), Internet of Thing (IoT), Energy efficiency, Resource provision, Virtual machine allocation
(VMA), Service level agreement (SLA).
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1 INTRODUCTION

C LOUD Computing systems enable users on-demand
access to a shared pool of configurable resources. These

resources can be hardware (e.g., memory, CPUs, GPUs, net-
works, etc.) or software (i.e., services and applications). Gen-
erally, cloud computing systems are classified into Platform
as a Service (PaaS) [1], Infrastructure as a Service (IaaS) [2],
and Software as a Service (SaaS) [3]. PaaS provides Cloud
users only the hardware for development and deployment
where the users are responsible for installing and managing
the required operating system and applications. In IaaS,
the rented hardware comes with an operating system and
the necessary libraries installed. In contrast, SaaS provides
software on-demand, which means that the users do not
have to purchase the software’s original license.

Cloud Data Centers (CDCs) have become a popular
computing platform for enterprises. With the Internet of
Things (IoT) applications increasingly becoming popular,
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Cloud systems are receiving tremendous processing re-
quests from these IoT applications. These applications gen-
erate heterogeneous data traffic with different demands to
be analyzed and processed on CDCs. Each CDC consists of
several servers, virtual infrastructures, and physical cables
managing the informing traffic to the internet. CDCs utilize
a set of key technologies, e.g., virtualization and Service
Level Agreements (SLA) [4]. Virtualization facilitates the
task of sharing cloud computing resources (e.g., dividing
one powerful physical machine (PM) into a set of less
powerful virtual machine (VM)).

Although virtualization improves the PMs’ utilization by
creating a series of VMs for providing specific services to
meet the users’ requirements, it also brings a new problem
to cloud computing, namely, mapping VMs to the proper
PMs. This problem is known as the VM deployment prob-
lem, which is known to be an NP-problem [5]. Many issues
further complicate the VM deployment. For example, VMs
should be deployed to PMs, and the software components
should be deployed to VMs/containers [6]. Furthermore,
the existence of heterogeneous VMs and PMs within the
CDC complicates the VM deployment problem.

An optimal VM deployment is crucial for a cloud
provider to reduce operating costs. At the same time, it
important to increase the performance of the cloud user.
Several different methods for deploying VMs in PMs on
cloud computing systems have been proposed to achieve
these conflicting objectives. An approach that focuses on
improving the utilization of a given resource (e.g., central
processing unit (CPU) utilization or memory have been
discussed in [7] and in [8]) respectively. Since bandwidth is
vital for efficiently deploying IoT applications on clouds [9],
it is imperative to optimize the cloud platform band-
width [10]. A deterministic method (e.g., best-fit and first-
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fit) finds solutions in the shortest time, but usually, these
reported solutions are not close to optimal [11]. Besides,
it ignores the communications between VMs [12]. Meta-
heuristic based method such as genetic algorithms [13], ant
colony optimization (ACO) [14] and ant mating optimiza-
tion [15] are often utilized to search in the vast search space
of the possible solutions. Finally, these different methods can
be combined to provide more robust techniques [16]. These
algorithms can reduce the energy consumption within data
centers to a certain extent. However, they are not suitable
for the variable load. Besides, during VM deployment, the
SLA violations for the existing algorithms are still high and
needed to be further reduced. Nevertheless, none of these
approaches considers the QoS constraints to find a joint
energy-aware solution for VMA considering SLAs and QoSs
using an innovative threshold-based mechanism to tweak
the traffics.

Our aim in this paper is to develop a new framework
that mutually considers the energy of the PMs/VMs and
manage the incoming traffic in the CDCs. Specifically, we
address the following questions: i) Is it possible to provide
an adaptive traffic-aware framework in the CDC dealing
with network energy? (see Section 3.1 and Section 3.2.1) ii)
How can we preserve a set of QoS constraints in the steering
traffic of different IoT users? (see Section 3.2.1) And, iii)
How can we come up threshold-aware solution in such an
environment? (see Sections 3.2.2 and Section 3.2.4).

1.1 The goal of the paper and the contributions
The paper’s main goal is to decrease energy consumption
and ensure the high QoS within cloud data centers (CDCs).
To accomplish this, we propose an energy-efficient VM
allocation and deployment algorithm based on an adap-
tive energy-aware framework. Unlike other energy-aware
algorithms that only consider energy consumption due to
VM deployment’s, the proposed algorithm considers VM
provision’s energy efficiency during VM allocation and
deployment. The proposed algorithm can effectively deal
with variable load and maintain low energy consumption
and SLA violation. All in all, our main contributions can be
summarised as:
(1) Proposal of the adaptive four thresholds energy-aware

framework that can effectively address the variable
load named AFED;

(2) Presentation of a novel energy-efficient VM provision
policy that considers both the energy consumption and
SLA violation during the process of VM allocation and
placement named AFED-EF;

(3) Carrying out a series of experiments using real-world
workload and verifying the correctness and effective-
ness of the proposed algorithm.

Compared with other energy-aware algorithms, the pro-
posed AFED-EF can effectively handle the problem of load
fluctuation by dividing the servers in CDCs into five classes
and achieving proper VMs migration. Besides, different
from other energy-aware algorithms that mainly focus on
the energy consumption in CDCs, AFED-EF takes both
the energy consumption and SLA violation into account
during VM allocation and placement. A series of experimen-
tal results show that AFED-EF outperforms other energy-

saving algorithms in energy consumption, SLA violation,
and energy efficiency.

1.2 Organization

We scaffold the paper as the following sections. In Sec-
tion 2, we present the related work. Section 3 proposes an
adaptive four-threshold energy-aware framework for VM
deployment. The performance evaluation is explained in
Section 4. Finally, Section 5 concludes the paper and outlines
areas for future research.

2 RELATED WORK

To achieve much high energy efficiency of the green com-
puting in CDCs, some scholars explore the problem and
put forward some solutions. The solutions can be divided
into three categories (C1,C2,C3), that is energy-aware IoT-
based techniques (C1), energy consumption model on CDC (C2),
and VM deployment/placement techniques on CDC (C3) that are
reported in Section 2.1, 2.2, and 2.3, respectively.

2.1 Energy-aware IoT-based techniques

This category’s main idea is to utilize the load character-
istics and VM consolidation technology to achieve more
energy saving. In this category, we survey the energy-aware
techniques [17]–[25] used IoT applications try to save the
energy within a CDC. Specifically, in [17], Cao and Dong
raised a novel heuristic framework for VM consolidation
to reduce energy consumption with a data center. Under
the framework, authors develop a decision algorithm and
minimize energy consumption and maximize the utilization
rate. Similarly, in [18], Beloglazov and Buyya designed a
two-threshold energy-aware framework. Its main idea is
to set two thresholds to ensure that all CPU utilization of
servers within a data center should fall between these two
thresholds. To further saving energy consumption, in our
previous work [19], a novel three thresholds framework was
proposed used for VM deployment to achieve energy saving
within data centers. Some of them use the weighted sum [20]
and normalization [21], [22] approaches to obtain a single
optimal solution for addressing the energy-aware IoT-based
techniques in CDC. Recently, the work [23] introduces a new
priority, power and traffic-aware VM placement algorithm
that aim to minimize the energy usage of the servers of
incoming IoT traffics. Also, the authors [24] designs an
energy-efficient mechanism inspired by reinforcement algo-
rithm adopt resource management over the VM resources
associated with the servers in CDC. Finally, the authors
in [25] design a secure method that controls the effects of IoT
device demands over the network. Our method presented in
this paper comparing this category papers not only monitors
the VM provisioning to minimize the energy usage over the
servers efficiently but also utilizes some intrinsic thresholds
that could control the data centre’s behaviour.

2.2 Energy Consumption model on CDC

This category includes several energy models applied on
CDCs such as [26]–[29]. An energy-aware algorithm is
closely related to the energy consumption model, and any
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energy-saving algorithm is dependent on a certain power
model. The power model’s accuracy directly reflects the pros
and cons of an energy-saving algorithm. Precisely, in [26],
the authors design a novel energy consumption model by
leveraging the deep learning technology. Their model takes
12 energy-related features into account and leverages deep
neural network architecture to build an energy consumption
model. In Reference [27], based on the combination of PCA
(principal component analysis) and regression methods, the
authors design a power model by considering multiple
components (CPU, memory, disk, and network) of servers
within a cloud data center. Their experimental results point
out that the proposed model can achieve more than 95%
prediction accuracy. In [28], the authors introduce several
power models, including mixed load and I/O-intensive
load. Recently, the authors in [29] introduce an energy-
efficient task priority model to develop a fairness task
scheduling algorithm in the CDC. Nevertheless, this paper’s
proposed model mainly addresses the energy model con-
sidered threshold-based provisioning policy and validated
through a real-world workload.

2.3 VM deployment/placement algorithms on CDC
This category pays close attention to VM deployment al-
gorithms applied in CDCs for green computing. Prior work
such as [30]–[37] considered the energy consumption during
the VM deployment despite ignored the SLA violation. The
SLA violation and energy consumption factor are the same
important for the cloud users, which obtain the cloud ser-
vices through virtualization technology. Specifically, in [30],
to achieve further energy saving, Fu and Zhou designed a
novel VM selection strategy and placement method, which
considered the degree of resource satisfaction. To meet the
rapid increasing in demand for computational power, the
paper [31] raised a novel resource allocation policy based on
resource utilization of VMs. Their results confirmed that the
proposed policy could reach a balance between QoS and en-
ergy consumption within a cloud data center. To achieve the
maximum energy saving within a multimedia cloud com-
puting, Han et al. [32] put forward a remaining utilization-
aware algorithm for VM deployment. Its main idea is to
find proper servers to shut down for energy saving. In
[33], Beloglazov and Buyya presented an adaptive algorithm
for energy-efficient and energy-consumption in CDCs. To
further achieve the high energy efficiency, we can consider
the VM deployment problem as ”constrained programming
problem ” [34] and ”integer programming problem ” [35],
[36]. For example, in [34], Dong et al. proposed a two-stage
VM deployment scheme to strike a balance between ”energy
efficiency” and ”network performance” in CDCs. In [35], a
method based on game theory is applied to estimate the
price of virtual resources and develop an integer linear
programming for the VM system. To improve the energy
efficiency of VM deployment, in [36], the authors mapped
the VMs deployment problem into the integer linear pro-
gramming problem under the condition of considering the
communication between VMs. This way, they maximize
system resource utilization and minimize system overhead,
thereby saving the system energy consumption and default
rate. Finally, GRVMP [37] is a greedy randomized VM place-
ment algorithm in CDC using multidimensional resources.

GRVMP used the ”power of two choices” model and places
VMs on the more power-efficient servers to optimize CDC
energy and resource demands. Table 1 summarizes these
categories.

TABLE 1: Comparison between different algorithms (where
a X implies that the reference admits the property, and a
× implies that the reference does not admit the property).
ML/DL:= Machine/Deep Learning; Thr:= Threshold; Math.:=
Mathematical Formulation.

Ref. Energy- Thr- SLA Type VM
Aware Aware Aware Allocation

C1

[17] X × X Heuristic ×
[18] X X X Heuristic X
[19] X X × Heuristic ×
[20] X × × Math. X
[23] X × X Math. X

Heuristic
C2

[26] X X × DL ×
[27] X × × ML ×
[28] X X × Heuristic ×
[29] X X × Math. ×

Heuristic
C3

[30] X × × Heuristic ×
[31] X X × Math. ×
[32] X X × Heuristic X
[33] X X × Heuristic X
[36] X X × Math. X
[38] X X X Math. X

Heuristic
[39] X X X Math. X

Heuristic
[37] X X X Math. X

Heuristic

AFED-EF X X X Math. X
Heuristic

3 ADAPTIVE FOUR-THRESHOLD ENERGY-AWARE
FRAMEWORK FOR VM DEPLOYMENT (AFED)
In here, we will explorer the system architecture (sec-
tion 3.1), adaptive four-threshold framework for VM de-
ployment (section 3.2). The framework’s content involves
an adaptive four thresholds framework, determination of
four thresholds, energy-efficient VM allocation strategy,
VM selection strategy, and energy-efficient VM deployment
strategy. Table 2 lists the main symbols and notations used
in the paper.

3.1 System architecture
Energy-efficient VM provision aims to reduce energy con-
sumption while guaranteeing a high QoS defined by cloud
users. Fig. 1 illustrates the system architecture for support-
ing energy-efficient service provision for IoT applications in
a CDC. In this figure, the IoT devices connect to the Internet
and transfer data demands through it. Internet is connecting
to the Global Manager and Server manager components
as an entry system to the CDC. These components are
described as follows:
(1) Global manager: it obtains the information from the

”server manager” and analyzes the collected informa-
tion. Based on the obtained information feedback, it
gives optimization commands.
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TABLE 2: Main symbols and their meanings

Symbol Description
Server’s Thresholds

TL Little loaded server threshold
TN Normally loaded server threshold
TM Medium loaded server threshold
TH heavy loaded server threshold
M The number of servers
N The number of VMs
TS The current CPU utilization of a server
S Set of Servers
V Set of VMs
c Safety coefficient

T
CPU utilization dataset of a server
for a period of time in the past

C Cluster set where ∀k ∈ K C = {C1, . . . , Ck}
MAD(Cj) Mean Absolute Deviation of cluster Cj

MC[j] The j-th value of array MC
IQR(MC) The interquartile range of array MC
EF Total energy efficiency within a CDC

Ptotal
Total energy consumption consumed by
servers

VSLA Total SLA violations
SV TH SLA violations time per active server

PDCM
Performance degradation induced by
excessive VMs migration

RCPU
V Mi

, Rmem
V Mi

Requested CPU and memory amount, respectively
Rdisk

V Mi
, Rbw

V Mi
Requested disk and bandwidth amount, respectively

(2) Server manager: each server has a ”server manager”,
and it is in charge of communication with the global
manager and virtual machine monitor (VMM).

(3) Server detection module: it is responsible for monitor-
ing the status of the server and determining whether
the server is a ”little loaded server” or ”lightly loaded
server” or ”normally loaded server” or ”medium-
loaded server” or ”heavily loaded server”.

(4) VM selection module: when a server is judged as
a ”heavily loaded server”, some VMs belonging to
the server should be selected and migrated into other
servers.

(5) Hypervisor/VM Management (VMM): VMM means
the VM monitor, hypervisor component/VMM plays
an essential role in CDC. It performs the VM placement
and task allocation on the servers and manages the
server consolidation (such as server ON/OFF).

3.2 Adaptive four-threshold energy-aware framework
In a CDC, there are plenty of servers that connect and
provide various cloud services to cloud users. These servers
within a data center have different resource utilization (For
instance, CPU utilization, memory utilization, and disk
utilization). As the servers’ CPU utilization accounts for a
large proportion of the energy consumption [19], [33] based
on a load of servers. We divide the servers within a data
center into five classes by setting four thresholds. The four
thresholds are TL, TN , TM , and TH (0 ≤ TL < TN <
TM < TH ≤ 1), and the five classes servers are ”little loaded
server”, ”lightly loaded server”, ”normally loaded server”,
”medium-loaded server”, and ”heavily loaded server”, re-
spectively. Denote TS as the current CPU utilization of a
server. We have the following definition:
(1) if TS ≤ TL, the server is considered as little loaded server;

...

Global Manager

Optimization module

Servers

VMs

Server Manager

Server detection module

VM selection module 

            Cloud Data Center

Internet

Consumers

(or their 

Brokers)
Hypervisor/VMM

Server Manager

Server detection module

VM selection module 

Hypervisor/VMM

Fig. 1: System architecture

TL

Little loaded

servers

Normally loaded 

servers

Lightly loaded

servers

Medium-loaded

servers

TN TM

0 1

TH

Heavily loaded

servers

Fig. 2: Five classes servers within a data center

(2) if TL < TS ≤ TN , the server is regarded as lightly loaded
server;

(3) if TN < TS ≤ TM , the server is treated as normally
loaded server;

(4) if TM < TS ≤ TH , the server is viewed as medium-loaded
server; and,

(5) if TS > TH , the server is seen as ”heavily loaded server”.
Fig. 2 shows the five classes serves within a data center.
To achieve more energy efficiency within data centers,

we purpose a framework named Adaptive four-threshold
energy-aware framework for VM deployment (AFED). The flow
chart of AFED presents in Fig. 3.

We give detail on the basic idea of AFED as below.
First, AFED classifies the servers in a data centers into five
classes by setting four thresholds TL, TN , TM , and TH that
indicate little IoT application demands loaded on the server,
lightly loaded server, normally loaded server, medium-
loaded server, and heavily loaded server, respectively. Then,
regarding each server within a data center, AFED checks the
load status of the server. When the server is judged as heavily
loaded server, to lower the SLA violations within a data center
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Y
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Obtain the value of TL, TN,

TM, and TH automatically

TS≥ TL ?

N

The server is

lightly loaded

server

Y All VMs belonging

to the server are

kept unchanged

Fig. 3: The flowchart of adaptive four-threshold energy-
aware framework for VM deployment

for sustainable computing, some VMs on the server must be
migrated to a normally loaded server with the highest energy
efficiency. Same wise, when the server is determined as
medium-loaded server, to avoid excessive VM migration lead
to high energy consumption and SLA, all VMs belonging
to the server are kept unchanged. Also, when the server is
decided as normally loaded server, all VMs on the server is
kept unchanged. This is because there is no need to migrate
any other VMs from the server with a normal load. When
the server is judged as lightly loaded server, it means the
server is in a state with reasonable load, and there is no
need to migrate any other VMs from the server. When the
server is determined as little loaded server, to save the energy
consumption within a data center, all VMs belonging to
the server must be migrated to a lightly loaded server with
the highest energy efficiency. AFED repeats the previous
process until all VMs in the data center are judged.

AFED reasonably divides the server within a data center
based on its load and provides different migration policies
to achieve a much higher energy efficiency of data centers
and IoT apps’ loads. However, regarding the AFED, some
remaining issues need to be addressed. The first issue is how
to obtain the value of TL, TN , TM , and TH automatically.
This problem will be handled at the Section 3.2.1. Accord-
ing to the idea of AFED, when a server is determined as
”heavily loaded server”, some VMs belonging to the server
must be migrated to other servers. The second issue is that
there are a lot of VMs on the server, which VM should be
migrated. This problem will be addressed at Section 3.2.4.

Based on the idea of AFED when a server accommodates
the VMs that have been migrated from elsewhere, it should
owns the highest energy efficiency. The third issue is how
to decide the server with the highest energy efficiency. This

Algorithm 1 KMIR algorithm (K-Means-Mad-IQR)
Input: The past CPU utilization set

T = {T1, T2, ..., Tp, ..., Tn}(1 ≤ p ≤ n) and k
Output: Four thresholds TL, TN , TM , and TH

1: for i = 1 to M do
2: Obtain the past CPU utilization set

T = {T1, T2, ..., Tn} and parameter k;
3: Get the clusters C = {C1, C2, ..., Ck} by using the

K-Means algorithm, that is C=KMeans(T , k) ;
//parameter k is the size of Cluster C

4: for j = 1 to k do
5: MC[j]←Mad(Cj);

// using the eq. (1) to calculate
6: endfor
7: Calculate IQR(MC) by using eq. (2);
8: Obtain the four thresholds TL, TN , TM ,

and TH according to eqs. (3)-(6);
9: endfor

10: return TL, TN , TM , and TH .
//Return the four thresholds.

question will be handled at Sections 3.2.2 and 3.2.3.

3.2.1 Determination of four thresholds
As we discussed recently, this section is dealing with the
first problem we have issued.

To handle the previous problem, we develop a new
algorithm named K-Means-Mad-IQR (KMIR) to determine
the four thresholds (TL, TN , TM , and TH ) of AFED automat-
ically. Let S be a set of servers within a data center, that is
S = {S1, S2, . . . , Si, . . . , SM}(1 ≤ i ≤M ), and V is a set of
VMs, that is V = {VM1, V M2, . . . , V Mj , . . . , V MN}(1 ≤
j ≤ N). Regarding a server Si (Si ∈ S) within a data
center at time n, for a period of time in the past, its
CPU utilization set can be can be expressed as T =
{T1, T2, . . . , Tp, . . . , Tn}(1 ≤ p ≤ n). The pseudo-code of
KMIR is characterized as follows:

KMIR takes servers’ past CPU utilization set T =
{T1, T2, . . . , Tp, . . . , Tn} as inputs and outputs TL, TN , TM ,
and TH . First, KMIR adopts K-Means clustering technology
to divide T into k clusters (i.e., the value of k can be obtain
by adopting the empirical method) such that:

• C={C1, C2, C3, . . . , Cq, . . . , Ck} where (1 ≤ q ≤ k)
• Cq = {TRq−1+1, TRq−1+2, . . . , TRq

∈ T}
• 0 = R0 < R1 < R2 < R3 < . . . < Rq = n and
• Rq

⋂
Re = O where (1 ≤ q, e ≤ k)

Then, after getting the clusters set
C={C1, C2, C3, . . . , Cq, . . . , Ck}, we calculate the Mean
Absolute Deviation (MAD) of cluster Cq (1 ≤ q ≤ k). The
definition of MAD can be defined as

MAD(Cq)=median(|TRq−1+i −median(Cq)|), (1)

where function median(Cq) is to return the median value
of cluster Cq . Next we calculate the Interquartile Range
(IQR) for the array MC . The IQR can be obtained using
the following equation:

IQR(MC)=Q3(MC)−Q1(MC), (2)

where Q3(MC) is the 75-th percentile of array MC, whereas
Q1(MC) is the 25-th percentile of array MC . Finally, the TL,
TN , TM , and TH of KMIR are defined as

TH =(1− c× IQR), (3)
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TM =0.9(1− c× IQR), (4)

TN =0.8(1− c× IQR), (5)

TL=0.5(1− c× IQR), (6)

where parameter c means safety coefficient, and its value
reflects how the CDC consolidates VMs. In general, the
greater the value c is, the more frequently that the VMs
are merged, which also means less energy consumption and
higher SLA violations. On the contrary, if the parameter c is
set to a small value, it means the less frequently VMs con-
solidation, the higher energy consumption, and the lower
SLA violations. The CDC use TM , TN and TL thresholds
with accompanying numeric coefficient values like 0.9, 0.8,
and 0.5 respectively. These coefficients indicate the weight
of each threshold to preserve the energy usage in the CDC.

3.2.2 Energy-efficient VM allocation strategy
VM allocation strategy plays a fundamental role in reducing
the energy consumption and SLA violations within a CDC.
Unlike other energy-aware algorithms only focusing on
minimizing the energy consumption within a data center,
AFED optimizes both energy consumption and SLA vio-
lations during VM allocation and placement. Assume EF
is the total energy efficiency (i.e., energy consumption and
SLA violations) within a CDC, Ptotal is the total energy
consumption consumed by servers within a data center,
and VSLA is the total SLA violations. Energy efficiency is
formally expressed as below:

EF =
1

Ptotal × VSLA
. (7)

The formal description of energy-efficient VM allocation
strategy can be concluded as

Maximize

{
EF =

1

Ptotal × VSLA

}
Subject to

Ptotal =
M∑
i=1

xi · Pi,

N∑
i=1

RCPU
VMi

=
M∑
j=1

xj · CPUj ,

N∑
i=1

Rmem
VMi

=
M∑
j=1

xj ·Memj ,

N∑
i=1

Rdisk
VMi

=
M∑
j=1

xj ·Dj ,

N∑
i=1

Rbw
VMi

=
M∑
j=1

xj ·Bj ,

(8)

where xi is the number of type i server, Pi is the energy
consumption of type i server, M means the number of
servers within a data center, N represents the number of
VMs, RCPU

VMi
, Rmem

VMi
, Rdisk

VMi
, and Rbw

VMi
are the requested

CPU amount, memory amount, disk amount, and band-
width amount of VM i, respectively. The para metres CPUj ,
Memj , Dj , and Bj are the CPU amount, the memory

Algorithm 2 AFED
Input: TL, TN , TM , and TH

Output: migrateMap
1: serverList← getServerlist( );

// getServerlist( ) is used to get servers list
2: For server to serverlist do
3: TS ← server.getUtilizationOfCPU();

//obtain the CPU utilization of the server;
4: If (TS ≤ TL) Then
5: vmList← getAllVmToMigrate(server);

//get all VMs of the server
6: OneMap← getVMPlacement(vmlist);
7: migrateMap.add(OneMap);
8: Else If (TS ≤ TH) Then
9: continue;

10: Else If (TS > TH) Then
11: vmList← getVmToMigrate(server);

//get some VMs of the server to migrate
12: TwoMap← getVMPlacement(vmlist);
13: migrateMap.add(TwoMap);
14: End If
15: End For
16: return migrateMap.

amount, the disk amount, and the bandwidth amount of
a server j, respectively.

3.2.3 VM selection strategy
Herein, we explain the VM migration, VM selection strate-
gies that aim to reduce the potential energy consumption
and SLA violations.

We adjusted the MMT policy [33] to choose a VM from
the heavily loaded server. The main idea of MMT policy is
to select a VM with the least migration time compared with
other VMs belonging to the server. Let VMj is the VM set
belonging to the server j, Mem(r) is the memory amount
that is being utilized by VM r, BWj is available bandwidth
for server j. MMT selects a VM v that meets the following
requirement:

v ∈ VMj and ∀r ∈ VMj ,
Mem(v)

BWj
≤ Mem(r)

BWj
. (9)

Algorithm 2 presents the pseudo-code of AFED. The main
idea of AFED can be summarized as follows: AFED takes
the four thresholds (TL, TN , TM , and TH ) as inputs and
outputs the VM migration map. First, AFED obtains the
server list (line 1). Then, we gain the CPU utilization of
the current server denoted by TS (lines 2-3). After that,
we should make a comparison with the four thresholds. If
(TS ≤ TL), all VMs belong to the server should migrate
to other place (lines 4-7); otherwise, if (TS ≤ TH), all VMs
on the server are kept unchanged (lines 8-9); otherwise, if
(TS > TH), some VMs on the server need to be migrated
to other place to avoid potential SLA violations (lines 10-
14). At last, the algorithm returns the migration map (lines
15-16).

3.2.4 Energy-efficient VM deployment strategy
In this part, we mainly focus on management and decide on
the server action when facing the highest energy efficiency.
To deal with this problem, we propose an energy-efficient
VM deployment strategy based on AFED framework called
AFED-EF. Unlike other energy-aware algorithms, AFED-EF
optimizes energy consumption and energy efficiency within
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Algorithm 3 AFED-EF
Input: TL, TN , TM , and TH

Output: VMs placement
1: vmList← getVmlist( ); // Get VM list
2: serverListOne← getLightlyLoadedServerlist( );
3: serverListTwo← getNormallyLoadedServerlist( );
4: vmlist.sortByCPUDecreasing (); // Sorting VMs
5: For vm to vmlist() do
6: minPower←Min VALUE;

//assign a maximum value
7: allocatedServer← Null;
8: For server to serverListOne or serverListTwo do
9: If (server.isSuitableForVm(vm)) Then

10: PowerServer← server.getPower();
//obtain the power of the server

11: PowerServerAfterVM← getPower(server, vm);
12: PowerDiff← PowerServerAfterVM-PowerServer;
13: SLA← server.getSLA();
14: SLAAfterAllocation← getSLA(server, vm);
15: SLADiff← SLAAfterAllocation-SLA;
16: EF← 1/(PowerDiff∗SLADiff);
17: If (EF>minPower) Then // Get the maximum
18: minPower← EF;
19: allocatedServer← server;
20: End if
21: End If
22: End for
23: allocate the VM to server and achieve placement
24: End for
25: return VMs placement

a data center. The pseudo-code of AFED-EF is shown in
Algorithm 3.

The main idea of AFED-EF can be summarized as
follows: AFED-EF takes the four thresholds (TL, TN , TM ,
and TH ) as inputs and outputs the VM placement. First,
AFED-EF obtains the VM list and server list (lines 1-3).
Then, VMs are ranked in descending order according to
its CPU utilization (line 4). For each VM in VM list and
candidate server (lines 5-8), AFED-EF calculates the energy
consumption difference (lines 10-12), SLA difference (lines
13-15), and energy efficiency difference (line 16) before and
after placement of the VM. After that, AFED-EF selects a
server with high energy efficiency to achieve VM placement
(lines 17-20) and return the final results (line 23).

Theorem 1. The time complexity of AFED-EF is O(M×N),
M is the number of servers, N is the number of VMs within a
data center.
Proof. AFED-EF comprises three parts. The first part is the
AFED algorithm, and its time complexity is O(M). The
second part is the KMIR algorithm, and its time complexity
is O(k ×M), where k is the number of clusters; The third
part is the energy-efficient VM allocation and placement,
and its time complexity is O(M × N). Therefore, the time
complexity of AFED-EF is O(M + k×M +M ×N), that is
O(M ×N). Theorem 1 has been proven.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms; AFED and AFED-EF. We first explain the ex-
perimental setup (Section 4.1). Then, give detail on the IoT
workload data traffic model (Section 4.2). Afterwards, we
list the energy consumption and efficiency model that are
reported in Section 4.3. In the end, we present the results
(Section 4.4).

4.1 Experimental setup
energy consumption, number of VM migration, SLA viola-
tion, SVTH (Section 4.4), PDCM (Section 4.4), and energy
efficiency. The experiments are composed of three parts:
(1) Decide the optimal parameter value of c; (2) Test the
performance of AFED algorithm; (3) Test the performance
of AFED-EF algorithm. The program is coded on CloudSim
toolkit [18], [33], [40]. We create a CDC, which is composed
of 800 servers. There are two types of servers (HP Proliant
G4 and G5) in the CDC. We list the server configurations in
Table 3. The Java program implementation of AFED-EF is
available in [41].

TABLE 3: Configuration of servers

Servers Type Frequency Cores RAM
HP G4 Intel Xeon 3040 1.86 (GHz) Double 4 (GB)
HP G5 Intel Xeon 3075 2.66 (GHz) Double 4 (GB)

Similar to Amazon EC2, there are four types of VMs in
the CDC. Hence, we adopt them and report their configura-
tions in Table 4.

TABLE 4: Configuration of VMs

VM type CPU (MIPS) RAM (GB)
Micro instance 500 0.61
Small instance 1000 1.7
Large instance 2000 3.75
High performance instance 2500 0.85

4.2 Workload data
It is essential to leverage the real workload to evaluate the
performance of AFED-EF algorithm. In this experiment, we
used real workload data to make a comparison. The real
workload trace comes from a CoMon project [33], which is
used to monitor infrastructure and IoT data. The collected
trace data is derived from 500 places and more than 1000
VMs’ resource utilization. Table 5 displays the character-
istics of workload data. In Table 5, ”Mean” represents the
average value, ”Quartile 1” (Q1) means the 25-th percentile
of the array, ”Quartile 3” (Q3) is the 75-th percentile of the
array.

TABLE 5: Workload specifications

Date VM Average Q1 Q3
Numbers

3-Mar-11 1052 12.31% 2% 15%
6-Mar-11 898 11.44% 2% 13%
. . . . . . . . . . . . . . .
20-Apr-11 1033 10.43% 2% 12%

In the following experiments, we choose ”3-Mar-11” as
dataset and compare their traffic values among the pro-
posed algorithms and state-of-the-art. As for ”3-Mar-11”
dataset, the number of VMs is 1052, mean value is 12.31%,
”Quartile 1” (Q1) is 2%, and ”Quartile 3” (Q3) is 15%.

4.3 Energy consumption and efficiency models
Energy consumption model lays a foundation for energy-
aware algorithms. In this paper, we leverage the real energy
consumption data which is come from the SPECpower
benchmark1. Table 6 shows the energy consumption data

1. http://www.spec.org/powerssj2008/
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Fig. 4: The AFED-EF variation results using c values for energy consumption (4a), VM migration (4b) and SLA violations (4c).

TABLE 6: Result of energy consumption on real servers.

CPU Utilization Power Consumption (W)
(%) HP G4 HP G5

0 86 93.7
10 89.4 97
20 92.6 101
30 96 105
40 99.5 110
50 102 116
60 106 121
70 108 125
80 112 129
90 114 133
100 117 135

of servers under different resource utilization, i.e., CPU
utilization as referred in [19].

In Section 3.2.2, we presented the formal description
of energy efficiency (see eq. (7)). Based on this definition,
energy efficiency is related to energy consumption and SLA
violations. SLA violations are associated with two factors.
First, SLA violation time per active server (SVTH) [33],
and performance degradation caused by VM migration
(PDCM) [33]. As the two methods are equally effective, we
use the two methods to define the SLA violation (denoted
by VSLA).

VSLA= SV TH × PDCM. (10)

4.4 Experimental results

In the rest of this section, we will test the performance of the
AFED-EF algorithm by performing a series of experiments.
To embody the advantages of the proposed algorithm, the
algorithms KAI-1.0 [19], THR-0.8 [33], MAD-2.5 [33], and
IQR-1.5 [33] are selected to make a comparison in terms
of energy efficiency, energy consumption, SLA violation,
SVTH, PDCM, and a number of VM migration. For VM
selection policy, the MMS is chosen to make a comparison.

4.4.1 The optimal value of c for AFED-EF
In the first set of experiment, we test the AFED-EF results
for various metrics with the aid of varying the value of
parameter c. We change the c value from 0.5 to 3.0 increased
by 0.5. The key outcome of this experiment helps us to
respond to how to decide the optimal value of parameter
c for AFED-EF.

Fig. 4 present the energy consumption, VM migration
and SLA violation of AFED-EF algorithm for various c
values which are within c = {0.5, 1, 1.5, 2, 2.5, 3}. Focusing
on Fig. 4a, we can confirm that the energy consumption
decreases with an increase of c. However, when parameter
c increases to a certain extent, the energy consumption
increases instead. This can be explained that a proper value
of parameter c can bring a reasonable VMs migration. Thus
it brings more energy consumption saving. In Fig. 4b the
number of VM migration growths with the increasing of
parameter value c. Because the greater value of c, leads
to the more frequently the VMs merge and it increases the
number of VM migration. Finally, Fig. 4c illustrates the SLA
violation under different value of c. This figure points out
that when parameter c = 0.5 or c = 1.0, the SLA violation
of AFED-EF is at a low level. In the next set of simulation,
we will test various SLS metrics; SVTH and PDCM. Fig. 5
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Fig. 5: The AFED-EF variation results based on c values for
different SLA violation metrics.

shows the results of AFED-EF algorithm for various c values
on different SLA metrics. According to Fig. 5a describes that
when the parameter c = 0.5 or c = 1.0, the SVTH of AFED-
EF is at a low level. The reason is that a proper value of c can
bring a lower SVTH. Regarding Fig. 5b confirms that when
c = 0.5 or c = 1.0, the PDCM of AFED-EF is at a lowest
level. The reason could be explained by the fact that a proper
value c can bring a reasonable VM migration, thus leading
to less PDCM. Based on the results of Figs. 4 and 5, We
can conclude that when we consider c = 1 AFED-EF has a
better performance. Therefore, in the following experiments,
we keep c = 1.0 as the optimal value along with AFED-EF.
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Fig. 6: The AFED results when comparing with THR, MAD, IQR, and KAI approaches.

4.4.2 The evaluation and analysis of AFED

In the next experiment, we test the performance of the pro-
posed algorithm, AFED, without applying energy-efficient
VM allocation and placement algorithm. Figs. 6a to 6f
display the energy efficiency, energy consumption, SLA
violation, SVTH, PDCM, and number of VM migration,
respectively. In particular, Fig. 6b indicates the energy effi-
ciency comparison for the five algorithms. The experimental
results show that AFED-1.0 leads to the best performance,
KAI-1.0 the second, THR-0.8 the third, MAD-2.5 the fourth,
and IQR-1.5 the last one. It is because as presented in
eq. (7), the value of energy consumption is directly related
to energy consumption and SLA violation. Hence, it affects
energy consumption, and our method consumes less energy
compared to other solutions. Fig. 6a points out that AFED-
1.0 leads to the best performance, KAI-1.0 the second, MAD-
2.5 the third, IQR-1.5 the fourth, and THR-0.8 the fifth.
The reason behind this is that AFED-1.0 adopts the four
thresholds framework and reducing energy consumption.
Besides, Fig. 6c reveals the SLA violations comparison for
the five algorithms, and results illustrate that AFED-1.0
leads to the best performance. It confirms that AFED-1.0
adopts the four thresholds framework to consolidate VM ef-
fectively, thus decreasing the SLA violations. Fig. 6d and 6e
present the results for SVTH and PDCM metrics for the
five algorithms.Both SVTH and PDCM metrics are related to
SLA violation (eq. (10)). Thus, Focusing on PDCM, AFED-
1.0 has a better performance than other algorithms. Focusing
on SVTH, AFED-1.0 has a normal performance. The reason
is that AFED-1.0 has to consolidate VM aggressively to
reduce energy consumption, and it rises the SVTH values.
Finally, Fig.6f describes the number of VM migration for
the five algorithms. This figure confirms that excessive VM
migration can bring performance degradation. Similarly,

less VM migration can also bring high energy consump-
tion. Therefore, keeping an amount of VMs migration is
necessary for the energy efficiency of any VM placement
algorithms.

4.4.3 The evaluation and analysis of AFED-EF

In this experiment, we validate the performance of our
AFED-EF which is the joint of energy-efficient VM allocation
and placement strategies. Figs. 7a to 7f show the energy ef-
ficiency, energy consumption, SLA violation, SVTH, PDCM,
and number of VM migration, respectively. Specifically,
Fig. 7a indicates the energy consumption of five algorithms
including our AFED-EF algrithm. From this figure we can
understand that AFED-EF-1.0 can adopt the four thresholds
framework and energy-efficient VM allocation and deploy-
ment policy to decrease the energy consumption. Focusing
on energy efficiency as reported in Fig. 7b, our algorithm can
exponentially save the energy of the network since it is SLA
sensitive and could provide a reasonable solution for the in-
coming traffic to the cloud system. In Fig. 7c we present the
ratio of SLA violation among the algorithms. It is obvious
that AFED-EF algorithm has very low SLA violation when
it compares among other cases and its violation rate is 13
while KAI is 15. The reason is that AFED-EF adopts the four
thresholds framework and energy-efficient VM allocation
and deployment policy to consolidate VM effectively, thus
reducing the SLA violations. Focusing on Figs. 7d and 7e
which are the metrics of SLA violation, our algorithm pro-
vides an acceptable and reasonable values compared to the
other methods. It confirms that AFED-EF has to consolidate
VM aggressively to reduce the energy consumption, and
it also gives rise to high SVTH but this value is much
less than the same value for other algorithms. At last,
Figs. 7f shows the number of VM migration for the five
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Fig. 7: The AFED-EF results when comparing with THR, MAD, IQR, and KAI approaches.

algorithms and enables excessive VM migration can bring
performance degradation. Note that less VM migration can
bring the high energy consumption. Therefore, keeping an
amount of VMs migration is necessary for energy efficiency
of any VM placement algorithms. AFED-EF has lower VM
migration when compares to other methods and this rate is
exponentially lower than others.

4.4.4 Discussion on limitation
Although the present work provides an efficient solution
for VM allocation for the huge processing request gathering
from IoT applications, there are still several aspects con-
cerning this problem. First, the proposed method can be
extended to include the allocation of network bandwidth
to provide high QoS for critical applications and avoid
traffic congestion for normal ones. Second, in this work, we
assume uniform random traffic among VMs of a requested
application. However, to improve it, we can incorporate
learning mechanisms for traffic prediction among VMs of
requested applications in our future work. Third, this work
is focused on the VM allocation and SLA violation man-
agement. However, to improve the energy efficiency of a
CDC more and more, an efficient micro-service IoT demand
request phase also can be added to this work. Finally, the
proposed method cannot be directly applied in Fog/Edge-
Cloud computing environments [42], [43]. To cope with
such environments, we are planing to extend our proposed
method and compare it with different learning methods
such as those presented in [44], [45].

5 CONCLUSION AND FUTURE DIRECTIONS

Prolonging IoT devices’ lifetime and enhancing the quality
of processing of IoT applications on the back-end servers

are quite challenging problem. To effectively address the
variable load and achieving the maximum energy efficiency
for IoT applications in a CDC, this paper proposes a novel
VMallocation and placement algorithm, which we referred
to as AFED-EF. The results of the experiments show that, in
contrast to KAI-1.0 and AFED-EF-1.0, improves energy effi-
ciency by more than 64%. In terms of energy consumption
and SLA violations, AFED-EF reduces up to 29% and 13%
compared to KAI-1.0, AFED-EF-1.0, respectively. AFED-EF
can deal with the variable load problem in cloud data
centre and reduce both the energy consumption and SLA
violations for IoT applications. The deployment of AFED-EF
on different cloud-based platforms can significantly reduce
the cost of energy consumption and SLA violations, and
thus improves return on investment (ROI) for the cloud
operators. Therefore, We plan to implement AFED-EF as an
extension of VM optimization and performance evaluation
within the OpenStack Cloud platform in future work. This
work will also incorporate the microservices IoT demands
running on the cloud-based back-end servers and gateways
to specify the heterogeneous Spatio-temporal IoT requests.
This helps the designed algorithm to dynamically control
the servers and trigger actuators to migrate some portions
of the demands to nearby servers to save time and energy
and avoid violation of the users’ SLA.
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