
ar
X

iv
:1

91
1.

08
83

9v
1 

 [
cs

.I
T

] 
 2

0 
N

ov
 2

01
9

Online Power Allocation at Energy Harvesting Transmitter for

Multiple Receivers with and without Individual Rate

Constraints for OMA and NOMA Transmissions

Mateen Ashraf, Zijian Wang and Luc Vandendorpe, Fellow, IEEE
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Abstract—In this paper, we propose an online power allocation
scheme to maximize the time averaged sum rate for multiple
downlink receivers with energy harvesting transmitter. The
transmitter employs non-orthogonal multiple access (NOMA)
and/or orthogonal multiple access (OMA) to transmit data to
multiple users. Additionally, we consider the scenario where
each individual user has a quality of service constraint on its
required instantaneous rate. The decisions of total transmit power
and power allocation for different users in a given time slot
are obtained with the help of Lyapunov optimization technique.
The proposed schemes do not require any statistical information
of the channel states and the harvested energy. The proposed
power allocation schemes entail in small complexity based power
allocation decisions. Therefore, the proposed schemes can provide
solutions in real time and are more suited for online power allo-
cation problems where the system state parameters (e.g. channel
state, harvested energy etc) change quickly. The performances
of the proposed schemes are demonstrated with the help of
simulation results.

Index Terms—Online power allocation, Energy harvesting,
Rate maximization.

I. INTRODUCTION

The role of energy harvesting technique for improving the

lifetime of the wireless networks has been recognized recently

[1]. In an energy harvesting wireless network, the energy

can be harvested either from radio frequency transmissions or

from renewable energy sources. The most practical examples

of energy harvesting from renewable sources include energy

harvesting from solar radiations, vibrations and wind. Among

other performance metrics, an important factor that has been

widely used in the literature to assess the performance of the

wireless networks comprising of multiple users is the sum rate.

Since the transmission rate is a function of allocated resources,

a possible way to improve the sum rate is to efficiently allocate

the power/bandwidth among different users so that the overall

sum rate is maximized. Nevertheless, this becomes a difficult

task when the sum rate is to be maximized over a time horizon.

A few off-line power allocation strategies were proposed

for multiple access systems [2] and fading channels [3]. In

their considered system models, the authors of both [2] and [3]

assumed that harvested energy is known apriori. However, in a

practical setting, such a non-causal assumption is not valid. To

address this issue, several power allocation strategies were pro-

posed in the literature to maximize the transmission rate [4],

[5]. However, their proposed solutions assume the availability

of the information related to the statistics of the harvested

energy and channel fading at the transmitter. In addition, their

proposed solutions entail high complexity algorithms which

limit their application to online power allocation problems.

Therefore, a low complexity online sum rate maximizing

power allocation scheme is required that can properly function

only on the basis of causal system state information.

There are several existing power allocation algorithms that

operate without requiring the statistical knowledge of the

system state information. For instance, the dual stochastic opti-

mization techniques have been widely utilized in the literature

to optimize transmission rate dependent utility functions. In

[6], the ergodic transmission rate was maximized by using

a stochastic descent-based algorithm. A cross-layer resource

allocation scheme was proposed in [7] to optimize linear and

logarithmic functions of the throughput. A weighted sum rate

maximization algorithm was proposed in [8] while consider-

ing energy causality and data queue stability constraints. A

multi-input multi-output downlink system with energy trading

between a base station (BS) and the main grid was investigated

in [9] for maximizing the throughput while satisfying the

constraint on the cost of energy.

In recent times, Amirnavaei et al [10] proposed an online

power allocation method for time average sum rate maximiza-

tion. Their proposed solution was based on the Lyapunov

optimization technique and it did not require the statistical

information on the random processes. The same authors

investigated a cooperative communication system [11] and

proposed an online power allocation scheme for maximizing

the time-averaged sum rate. However, a single user scenario

was considered in these works. More recently, an energy

efficiency maximization problem was considered in [12] for

only two users case. In their work, the total bandwidth and

power is equally split between the two users and therefore the

possibility of inter-user interference was not considered. The

equal division of power and bandwidth between the users may

be a good solution when the channel gains of different users

are identical however such an equal distribution of resources

may lead to performance degradation in scenarios with a

greater variation among channel gains of different users. To

the best of our knowledge, none of the existing works has

considered multiuser interference scenario. In this work, we

consider a downlink system model with K ≥ 2 users where

inter-user interference exists among the users. The considered

scenario in this paper is not only much more complex than

[12] but also more realistic.

http://arxiv.org/abs/1911.08839v1
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For facilitating K multiple users in the downlink, we as-

sume that the transmitter uses non-orthogonal multiple access

(NOMA) and orthogonal multiple access (OMA) scheme for

downlink transmission. The single user problem has already

been studied in the literature [10] and our considered system

model encompasses that existing work by putting K = 1.

Note that NOMA has been used extensively for downlink

systems with more than one receiver [13]-[15]. It is widely

known that the sum rate performance of the NOMA is better

than that of the OMA if the channel gains for different

receivers have greater variation. Owing to this reason, the

NOMA is considered to be a promising technology in the

5G wireless communication standards. On the other hand,

NOMA with successive interference cancellation results in

increased complexity at the receivers. This is owing to the

fact that the stronger users in NOMA scheme have to decode

the information of the weaker users and subsequently subtract

it from the received signal to perform inter-user interference

cancellation. This operation causes the increase in the com-

plexity of the receivers, especially if the number of downlink

users are more than 2. In such a situation, it may be more

suitable to implement OMA for multiple downlink users.

Additionally, in a practical scenario it is reasonable to

assume that the individual downlink users have minimum

data rate requirements that should be met for all the time

slots. Under this scenario, the problem not only becomes more

complex but it may also be infeasible. The infeasibility may

arise from the random nature of the channel gains as well as

from the random nature of the harvested energy. For example,

it is possible that the channel gains become so low in a

particular time slot that the rate constraints cannot be met

even by transmitting the whole energy of the battery during

a particular time slot. To tackle this issue, we assume that

the channel gains remain higher than certain threshold and

the harvested energy in each time slot is also higher than a

certain threshold.

In this paper, we relax the battery dynamic constraints

as a time-averaged expression. Next, we adopt Lyapunov

optimization framework and introduce a virtual queue for

the battery. With the relaxed constraint and the introduced

virtual queue, we reformulate the time-averaged sum rate

maximization problem as a queue stability problem and obtain

a suboptimal online power allocation for time-averaged sum

rate maximization by solving the queue stability problem. In

summary, our aim is to devise a suboptimal solution that

satisfies the constraints of the original optimization problem

and subsequently show that the objective value achieved by

the suboptimal solution has a bounded gap with the actual

optimal value of the original optimization problem.

The main contributions of this paper can be outlined as

follows:

• We propose an online power allocation scheme at the

BS for long-term average sum rate maximization for

multiple downlink users when the BS uses NOMA for

downlink transmission in the absence of individual users

rate requirements. This scenario is referred to as NOMA-

WoR.

• Then, the proposed power allocation scheme for NOMA

case is extended to cover the possibility of individual

minimum rate requirements. This scenario is referred to

as NOMA-WR.

• We propose an online power allocation scheme at the

BS for long-term average sum rate maximization for

multiple downlink users when the BS employs OMA for

downlink transmission in the absence of individual users

rate requirements. This scenario is referred to as OMA-

WoR.

• The proposed power allocation scheme for OMA case

is also extended to include the possibility of individual

minimum rate requirements. This scenario is referred to

as OMA-WR.

• Theoretically, it is shown that the proposed power al-

location schemes have bounded performance gap when

compared with their optimal power allocation schemes.

• Simulation results are presented to demonstrate the effec-

tiveness of the proposed schemes.

The rest of the paper is organized as follows. Section II

presents the system model and the related assumptions. The

online power allocation schemes for the NOMA case with and

without individual rate requirements are presented in Section

III. In Section IV, we present the online power allocation

schemes for the OMA case with and without individual rate

requirements. The performance analysis is provided in Section

V. Section VI presents the simulation results. Finally, the paper

is concluded in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model comprises of a transmitter that is

equipped with the energy harvesting device and supports K ≥
2 receivers. A pictorial representation of the considered system

is provided in Fig. 1 and the important system parameters are

outlined in Table I.

Fig. 1. System model with energy harvesting base station and multiple
downlink users.

We assume that the total time is divided into T time slots

where each time slot is of duration ∆t. The individual time

slots are indexed by t. The channel gain |hk(t)|
2 between the

transmitter and the k-th receiver (k ∈ {1, 2 · · ·K}) remains

constant during the time t. This means that the channels are

block fading and their value remains constant during each

time slot while it can vary across different time slots. The

additive white Gaussian noise at the k-th receiver is denoted
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TABLE I
IMPORTANT SYSTEM PARAMETERS

Parameter Notation

battery status at time slot t Eb(t)
harvested Energy at time slot t Eh(t)

minimum battery level Emin

maximum battery level Emax

maximum chargeable energy Ec,max

arrived energy at time slot t Ea(t)
maximum harvestable energy Eh,max

time slot duration ∆t
k-th user channel gain during time slot t γk(t)

k-th user power allocation ratio during time slot t ρk(t)
k-th user bandwidth allocation ratio during time slot t αk(t)

power allocation ratio vector ρ(t)
bandwidth allocation ratio vector α(t)

minimum channel gain γmin

maximum channel gain γmax

transmit power during time slot t P (t)
maximum transmit power Pmax

minimum required power to satisfy the rate constraints 0

when all the channels have strongest possible values P best
th

minimum required power to satisfy the rate constraints 0

when all the channels have worst possible values Pworst
th

by nk(t) ∼ CN (0, σ2). Let us denote Eh(t) as the amount

of the harvested energy into the battery at the transmitter at

each time slot t. The battery level at time slot t is represented

by Eb(t). We assume that Emin ≤ Eb(t) ≤ Emax, where

Emin, Emax are the lower and upper bounds on the energy

levels in the battery, respectively.

Let Ec,max and Pmax be the maximum charging

amount and the maximum transmit power which satisfies

∆tPmax ≤ Emax − Emin. We assume that Ec,max ≤ ∆tPmax.

Let us define P (t) as the transmit power at each time slot t,
which remains constant over each individual time slot. The

transmit power is constrained as 0 ≤ P (t) ≤ Pmax, ∀t.
The evolution of Eb(t) over time can be written as [16]

Eb(t+ 1) = Eb(t)−∆tP (t) + Eh(t). (1)

Then, P (t) is bounded by ∆tP (t) ≤ Eb(t)− Emin for all t.
The harvested energy Eh(t) has following constraint [11]

0 ≤ Eh(t) ≤ min{Ec,max, Ea(t)},

where Ea(t) denotes the arrived energy. From the battery

capacity constraint and dynamics of battery, we can write

0 ≤ Eh(t) ≤ min{Ec,max, Ea(t), Eh,max(t)}, (2)

where Eh,max(t) in (2) represents the maximum harvestable

energy which is defined as Eh,max(t) = Emax − Eb(t) +
∆tP (t). The constraint on the harvested energy actually means

that the harvested energy Eh(t) should be such that the battery

level Eb(t) ≤ Emax for all t.
With NOMA, assuming that the k-th user is allocated with

ρk(t) portion of the total transmit power P (t) during time slot

t, we can write the rate of the k-th user during time slot t as

RNOMA
k (t) = log

(

1 +
ρk(t)P (t)γk(t)

P (t)γk(t)
∑K

i=k+1 ρi(t) + 1

)

, (3)

where γk(t) , |hk(t)|2/σ2 with γk(t) < γk+1(t) < γmax

for k ∈ {1, · · · ,K − 1}. Here, we assume that the downlink

users employ successive interference cancellation to decode

their desired signal and therefore the interference due to the

weaker users is removed in (3). In this regard, we impose

a power order constraint as ρ1(t) ≥ ρ2(t) · · · ≥ ρK(t). It

can be easily verified that in the absence of the power order

constraint, the power allocation problem to maximize the sum

rate for multiple users translate into the rate maximization for

single user with the highest channel gain1. By introducing the

new variables zk(t) =
∑K

i=k ρi(t), the power order constraint

is converted to following constraint

z1(t)− z2(t) ≥ z2(t)− z3(t) ≥ · · · ≥ zK(t) ≥ 0. (4)

The sum rate can be written as

K∑

k=1

RNOMA
k (t) =

K∑

k=1

Gk(zk(t), P (t)), (5)

where Gk(zk(t), P (t)) = log (1 + γk(t)P (t)zk(t)) −
log (1 + γk−1(t)P (t)zk(t)) for k ∈ {2, 3 · · ·K} and

G1(z1(t), P (t)) = log (1 + γ1(t)P (t)z1(t)). Then, we pro-

pose a power allocation scheme to maximize the time-averaged

sum rate over all the users while guaranteeing the operational

constraints of the battery.

The optimization problem can be written as

P1 max
P (t),z(t)

1

T
lim

T→∞

T−1∑

t=0

E

(
K∑

k=1

Gk(zk(t), P (t))

)

(6)

s.t. 0 ≤ P (t) ≤ Pmax, (6a)

∆tP (t) ≤ Eb(t)− Emin, (6b)

(1), (6c)

z1(t) ≤ 1, (6d)

(4), (6e)

Eh(t) ≤ min{Ec,max, Ea(t), Eh,max(t)}, (6f)

where z(t) = {z1(t), · · · , zK(t)} and E(.) represents the

expectation with respect to the system state.

For the case of OMA, we assume that the total bandwidth2

W is orthogonally distributed among multiple users. The

bandwidth allocated to the k-th user during t-th time slot is

denoted by αk(t). Then, the information rate for the k-th user

can be written as

ROMA
k (t) = αk(t) log

(

1 +
ρk(t)P (t)γk(t)

αk(t)

)

. (7)

In addition to the existing constraints in problem P1, we

impose following constraints on the individual bandwidth

allocations

0 ≤ αk(t) ≤ 1, (8)

0 ≤
∑

k

αk(t) ≤ 1. (9)

1See the result presented in Lemma 5 below.
2For simplicity of exposition, we assume W = 1 however the subsequent

discussion is also applicable to any general value of W .
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With these constrains added, the long-term sum rate maxi-

mization problem for OMA case can be written as follows

P2 max
{P (t),ρ(t),α(t)}

1

T
lim

T→∞

T−1∑

t=0

E

(
K∑

k=1

ROMA
k (t)

)

(10)

s.t. 6a, 6b, 6f (10a)

0 ≤
K∑

k=1

ρk(t) ≤ 1, (10b)

0 ≤ ρk(t) ≤ 1, (10c)

0 ≤ αk(t) ≤ 1, (10d)

K∑

k=1

αk(t) ≤ 1. (10e)

Due to the randomness of the harvested energy and the

channel gains, the optimization problems P1 and P2 are

difficult to solve. In addition, the constraints depend on Eb(t),
which has time-coupling dynamics over time.

This results in the power allocation decisions {P (t)} being

correlated over time. Although dynamic programming (DP)

can be used to solve problems P1 and P2 when the ran-

dom processes {γk(t)} and {Eh(t)} are Markov and their

statistics are known, this approach typically results in a high

computational complexity. Thus, it is not easy to provide a

solution efficiently. Moreover, in a real scenario, the statistical

knowledge of {γk(t)} and {Eh(t)} may not be available in

advance, which makes such an assumption less practical.

In this paper, our aim is to devise a low complexity online

sum rate maximizing power allocation scheme which does not

require the statistical information of {γk(t)} and {Eh(t)}.

To achieve this goal, we resort to the Lyapunov optimiza-

tion framework [17] and transform time-average optimization

problem into a queue stability problem. As a first step in this

direction and in order to apply the Lyapunov optimization

technique, we relax the time-coupled dynamics on the time

slot constraints Eb(t), Eh(t), and P (t) by adopting the time-

average relation.

From (1), we have the following relation of the battery

dynamics over time T

Eb(T )− Eb(0) =
T−1∑

t=0

(Eh(t)−∆tP (t)). (11)

Then, after some mathematical manipulations with T → ∞,

we can represent the time-average relationship between Ēh

and P̄ as

Ēh −∆tP̄ = 0, (12)

where Ēh = limT→∞
1
T

∑T−1
t=0 E(Eh(t)) and P̄ =

limT→∞
1
T

∑T−1
t=0 E(P (t)) [16].

III. ONLINE RATE MAXIMIZING POWER ALLOCATION FOR

NON-ORTHOGONAL MULTIPLE ACCESS

In this section, we solve the online power allocation problem

when downlink transmission employs NOMA for multiple

downlink users. First, we present the power allocation design

without individual user rate constraints. Then, we present the

power allocation design with individual rate constraints.

A. Non-Orthogonal Multiple Access without Individual User

Rate Constraints (NOMA-WoR)

The optimization problem in P1 can be relaxed by replacing

the dynamics in (1) with the long-term time-average constraint

(12) and by removing (6b). After doing these steps, we have

the relaxed optimization problem of P1 as follows

P3 max
P (t),z(t)

lim
T→∞

1

T

T−1∑

t=0

E

(
K∑

k=1

Gk(zk(t), P (t))

)

(13)

s.t. Ēh −∆tP̄ = 0, (13a)

6a, 6d, 6e, (13b)

Eh(t) ≤ min{Ec,max, Ea(t)}. (13c)

The use of (12) instead of (6b) has allowed us to replace (6f)

with (13c) [11]. The constraint (13c) is independent of P (t)
however we include it for the sake of completeness [11]. Still,

there are two major challenges imposed by P3: First, allocation

of power in different time slots such that constraint (13a) is

met. Second, the unavailability of the statistical information on

the system state makes it difficult to solve P3. In the rest of this

section, we devise a suboptimal solution that does not require

statistical information of the system state and uses Lyapunov

optimization theory to guarantee that (13a) is met.

To this end, we introduce the virtual queue Q(t) for Eb(t)
as Q(t) = Eb(t) − C, for some constant C. The value of C
will be obtained later in this section. Note that stabilizing the

queue Q(t) is equivalent to satisfying (13a) [10]. The evolution

of the virtual queue with respect to time can be written as

Q(t+ 1) = Q(t) + Eh(t)−∆tP (t). (14)

For time slot t, the drift-plus-cost metric with the constant

V > 0 is given by

D = ∆(Q(t))− V E

(
K∑

k=1

Gk(zk(t), P (t))|Q(t)

)

,

where ∆(Q(t)) is given as

∆(Q(t)) = E

[
Q2(t+ 1)

2
−

Q2(t)

2

∣
∣
∣
∣
Q(t)

]

, (15)

where E[.|Q(t)] denotes the expectation with respect to system

state given Q(t). The drift-plus-cost metric is a weighted

sum of the per-slot Lyapunov drift and the objective function

conditioned on Q(t). It is well known that minimizing the

drift-plus-cost metric results in stabilizing the virtual queue

while optimizing the objective function [10]. For any value of

Q(t) and V ≥ 0, it can be easily shown that the upper bound

on drift-plus-cost metric D is [10]

D ≤ φ+Q(t)E (Eh(t)−∆tP (t)|Q(t))

−V E

(
K∑

k=1

Gk(zk(t), P (t))|Q(t)

)

, (16)

where φ = ∆t2P 2
max/2. We will see in Section V that the

mathematical form of the upper bound on the drift-plus-cost

metric is useful for comparing the objective value achieved

by the proposed scheme with the objective value achieved by

solving P1. As we have assumed that the statistical information
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of the system state is not available, evaluating the right hand

side (RHS) of (16) and further minimization is not possible.

To address this issue, we aim at minimizing the RHS of

(16) on per time slot basis by removing the expectation. This

approach has been widely used in the Lyapunov optimization

theory [10]-[11], [16], [18]-[20]. Although we ignore the time

coupling constraints in the following optimization problem,

we will show in section III-C that the solution of the proposed

scheme satisfies the time coupling and battery constraints of

P1. Hence, we have the following optimization problem

P4 min
P (t),z(t)

φ+Q(t)[Eh(t)−∆tP (t)]

−V
K∑

k=1

Gk(zk(t), P (t)), (17)

s.t. 9b.

Problem P4 can be decomposed into two optimization prob-

lems. First, we fix P (t) in the interval [0, Pmax] and minimize

with respect to zk(t)’s ∀k ∈ {1, · · ·K} and then minimize

with respect to P (t). The optimal objective value achieved

by the solution obtained through this decomposition method

converges (is actually equal) to that achieved by solving P4

through any other method [21, pp. 133].

1) Minimization With Respect To zk(t)’s: For a fixed P (t),
the optimization problem P4 is equivalent to the following

problem

P5 max
z(t)

K∑

k=1

Gk(zk(t), P (t)) (18)

s.t. 6d, 6e

The optimal values of zk(t) for problem P5 are given by the

following Lemma.

Lemma 1. The solution of P5 is given as follows

z∗k(t) =
K − k + 1

K
, ∀k ∈ {1, 2 · · ·K}. (19)

Proof. First, we note that z1(t) = 1 since
∑K

k=1 Gk(zk(t), P (t)) is increasing in z1(t). Furthermore,

the derivative of Gk(zk(t), P (t)) with respect to zk(t) is

given as

P (t)(γk(t)− γk−1(t))

(1 + γk(t)P (t)zk(t))(1 + γk−1(t)P (t)zk(t))
. (20)

Since γk(t) > γk−1(t), we have
∂Gk(zk(t),P (t))

∂zk(t)
≥ 0, ∀k ∈

{1, 2 · · ·K} . This means the constraint z∗K(t) ≤ z∗K−1(t) −
z∗K(t) should be active. This implies z∗K−1(t) = 2z∗K(t). In a

similar way, we have z∗K−2 = 3z∗K(t), · · · , z∗1(t) = Kz∗K(t).
Now using the fact that z∗1(t) = 1, one can easily see that

z∗k(t) =
K−k+1

K
. This completes the proof.

With the help of Lemma 1 and using the relationships

between ρk(t)’s and zk(t)’s we can see that ρ∗1(t) = ρ∗2(t) =
· · · ρ∗K(t) = 1

K
. This power allocation can also be explained

intuitively. On the one hand, we should maximize the power

allocated to the strongest user to maximize the sum rate. On

the other hand, the power order constraint requires that the

power allocated to the weakest users should be largest. This

phenomenon results in a power allocation in which each user

is allocated equal power.

2) Minimization with Respect To P (t): After putting the

optimal power allocations, obtained from Lemma 1, in the

objective function of P4 and removing the irrelevant terms we

get

P6 min
P (t)

−Q(t)∆tP (t)− V

K∑

k=1

Gk(z
∗
k(t), P (t))

︸ ︷︷ ︸

f2(P (t))

(21)

s.t. 0 ≤ P (t) ≤ Pmax.

We have following Lemma for problem P6.

Lemma 2. Problem P6 is a convex optimization problem.

Proof. Since the first term of the objective function is linear,

we only need to show that
∑K

k=1 Gk(z
∗
k(t), P (t)) is con-

cave. It is clear from Lemma 1 that z∗k(t) are independent

from P (t). This implies that G1(z
∗
1(t), P (t)) is concave

with respect to P (t). Additionally, the double derivative of

Gk(z
∗
k(t), P (t)), ∀k ∈ {2, · · ·K} with respect to P (t) is given

as

∂2Gk(z
∗

k(t),P (t))
∂P 2(t) =

z∗2
k (t)(γ2

k−1(t)−γ2
k(t))

(1+γk−1(t)z∗

k
(t)P (t))2(1+γk(t)z∗

k
(t)P (t))2

+
2γk−1(t)γk(t)z

∗2
k (t)P (t)(γk−1(t)−γk(t))

(1+γk−1(t)z∗

k
(t)P (t))2(1+γk(t)z∗

k
(t)P (t))2 . (22)

Since γk(t) > γk−1(t), we have
∂2Gk(z

∗

k(t),P (t))
∂P 2(t) < 0. Hence,

Gk(z
∗
k(t), P (t)), ∀k ∈ {1, 2, · · ·K} is a concave function.

As the non-negative sum of concave functions is a concave

function, we conclude that
∑K

k=1 Gk(z
∗
k(t), P (t)) is concave

with respect to P (t). This completes the proof.

Although the optimal P (t) does not admit a close form

solution, we can use Bisection algorithm to find the solution

of P6.

The solution of P6, denoted by PP6(t), in the current form

may not result in transmit power decisions that satisfy the

constraints on the battery Emin ≤ Eb(t) ≤ Emax and the

constraint on the transmit power ∆tPP6(t) ≤ Eb(t)− Emin.

Therefore, it is important to find the values of parameters

V and C to make sure that these constraints are always

met in the proposed power allocation scheme. In the next

subsection, we find the values of parameters V and C which

make sure that the virtual queue Q(t) remains stable during

all the time slots and the constraints Emin ≤ Eb(t) ≤
Emax,∆tPP6(t) ≤ Eb(t)− Emin are also satisfied for all t.

3) Stabilizing the Virtual Queue: The non-close form solu-

tion of P6 poses the problem of finding the appropriate values

of V and C. However, this difficulty can be addressed with

the help of Lemma 3 and Theorem 1 presented below.

Lemma 3. The optimal transmit power for the following

problem

P7 min
P (t)

−Q(t)∆tP (t)− V log(1 + P (t)γK(t))
︸ ︷︷ ︸

f1(P (t))

(23)

s.t. 0 ≤ P (t) ≤ Pmax.



6

is given as

PP7(t) =







Pmax for Q(t) > Qth
1 (t),

−V
∆tQ(t) −

1
γK(t) for Qth

2 (t) ≤ Q(t) ≤ Qth
1 (t),

0 for Q(t) < Qth
2 (t),

(24)

where

Qth
1 (t) =

−V

∆t(Pmax + 1
γK(t) )

, Qth
2 (t) = −

V γK(t)

∆t
.

Proof. See proposition 1 of [10].

Theorem 1. The optimal transmit power for problem P6 is

always less than or equal to the optimal transmit power for

the optimization problem P7.

Proof. First, if Q(t) > 0 then the optimal transmit power for
P7 is Pmax. This is because both Q(t)∆tP (t) and log(1 +
P (t)γK(t)) are increasing in P (t) for Q(t) > 0. Also, since

∂Gk(z
∗

k(t), P (t))

∂P (t)
=

z∗k(t)γk(t)

(1 + γk(t)z∗k(t)P (t))(1 + γk−1(t)z∗k(t)P (t))

−

z∗k(t)γk−1(t)

(1 + γk(t)z∗k(t)P (t))(1 + γk−1(t)z∗k(t)P (t))
,

(25)

is positive since γk(t) ≥ γk−1(t). As a result,
∑K

k=1 Gk(z
∗
k(t), P (t)) is also increasing in P (t). Hence, the

optimal transmit power for P7 is also Pmax. Therefore, the

optimal transmit power for both problems is Pmax if Q(t) > 0.

On the other hand, when Q(t) < 0 then optimal transmit

power for both problems can lie in [0, Pmax]. We note that

log(1 + P (t)γmax) ≥ log(1 + P (t)γK(t))

≥
K∑

k=1

RNOMA
k (t), (26)

where RNOMA
k (t) is provided in (3). The inequality (26) is

due to the following facts.

• F1: According to Lemma 1, for any fixed transmit power

P (t), the sum rate
∑K

k=1 Rk(t) is maximized when all

the power allocations, ρ1(t), ρ2(t), · · · ρK(t), are equal.

• F2: log
(

1 +
1
K

P (t)γk(t)

P (t)γk(t)
∑

K
i=k+1

1
K

+1

)

is increasing in

γk(t).

• F3:
∑K

k=1 log
(

1 +
1
K

P (t)γK(t)

P (t)γK(t)
∑

K
i=k+1

1
K

+1

)

= log(1 +

γK(t)P (t)).
• F4: γk(t) ≤ γmax, ∀k ∈ {1, 2 · · ·K}.

Note that the objective functions of both P6 and P7 are con-

cave while −Q(t)∆tP (t) is increasing if Q(t) < 0. Further-

more, −V log(1+P (t)γK(t)) and −V
∑K

k=1 Gk(z
∗
k(t), P (t))

are decreasing. Using (26) it can be easily seen that if the

optimal transmit power for problem P7 is PP7(t) then the

optimal transmit power for P6, PP6(t), is always smaller

than PP7(t) because −V
∑K

k=1 Gk(z
∗
k(t), P (t)) decreases at

a slower rate than −V log(1+P (t)γK(t)). This reasoning can

be easily understood with the help of Fig. 2.

We have the following corollary based on Theorem 1.

0 .2 .4 .6 .8
P(t)

0

-Q(t)P(t)
-f

1
(P(t))

-f
2
(P(t))

-Q(t)P(t)-Vf
1
(P(t))

-Q(t)P(t)-Vf
2
(P(t))

Fig. 2. Pictorial depiction of the optimal values of transmit power for single
user case and multiple user case when Q(t) < 0 and ∆t = 1. The circle and
star on black curves represent the optimal values of transmit power for the
single user case and multiple user case, respectively.

Corollary 1. The virtual queue Q(t) is bounded as

−
V γmax

∆t
−∆tPmax ≤ Q(t) ≤ Ec,max, (27)

for all time slots.

Proof. It can be easily verified that if Q(t) < −V γmax

∆t
then

optimal transmit power for problem P7 is equal to 0. Accord-

ing to Theorem 1, the optimal transmit power for problem

P6 will also be zero. This means when Q(t) < −V γmax

∆t
,

Q(t + 1) is always increasing. On the other hand, when

Q(t) ≥ −V γmax

∆t
we may have Q(t+1) decreasing. However,

the maximum decrease occurs when harvested energy is zero

and transmit power is Pmax. Hence, it follows

−
V γmax

∆t
−∆tPmax ≤ Q(t). (28)

The above inequality is true for all the time slots. Therefore,

the left hand side (LHS) inequality in (27) is proved.

In a similar way, by checking the possibilities Q(t) > 0,

Q(t) ≤ 0 and using the fact that Ec,max ≤ ∆tPmax we can

verify that

Q(t+ 1) ≤ Q(t) + Ec,max ≤ Ec,max, (29)

is valid for all time slots. The inequality (29) proves the RHS

of (27).

We can use the upper and lower bounds on Q(t), provided

in (27), to find the appropriate values of V and C to make

sure that the virtual queue Q(t) remains stable during all the

time slots. In the following corollary, we provide the possible

values of parameters V and C.
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Corollary 2. The values of parameters C and V are given as

follows

C = ∆tPmax + Emin +
V γmax

∆t
, (30)

V ∈ (0, Vmax], (31)

where

Vmax =
∆t(Emax − Emin − Ec,max −∆tPmax)

γmax

. (32)

Proof. See Proposition 2 in [10].

By putting the value of C from (30) in Q(t) = Eb(t)− C
and using the fact that −V γmax

∆t
−∆tPmax ≤ Q(t) ≤ Ec,max,

we can easily show that Emin ≤ Eb(t) ≤ Emax for all t. In

the following Lemma we show that PP6(t) satisfies (6b) for

all t.

Lemma 4. If we use C = ∆tPmax + Emin + V γmax

∆t
then

PP6(t) satisfies the following constraint

∆tPP6(t) ≤ Eb(t)− Emin, (33)

for all t.

Proof. In order to prove (33), first we show that ∆tPP7(t) ≤
Eb(t)−Emin is valid for all t. As we have shown above that

Eb(t) ≥ Emin for all t, ∆tPP7(t) ≤ Eb(t) − Emin is valid

for all t with PP7(t) = 0. Hence, we only need to consider

the case when PP7(t) > 0. From Lemma 3, we note that

PP7(t) > 0 only when Q(t) > −V γK(t)
∆t

. In this case, the

inequality ∆tPP7(t) ≤ Eb(t)− Emin can be written as

∆tP ∗(t) ≤ Q(t) + C − Emin. (34)

Using the value of C from (26), we can write (30) as

∆tP ∗(t) ≤
V γmax

∆t
+Q(t) + ∆tPmax. (35)

Since V γmax

∆t
+ Q(t) > 0 for Q(t) > −V γK(t)

∆t
> −V γmax

∆t

and PP7(t) ≤ Pmax we conclude that ∆tPP7(t) ≤ Eb(t) −
Emin is satisfied for all t. According to Theorem 1, PP6(t) ≤
PP7(t) therefore we conclude that ∆tPP6(t) ≤ Eb(t)−Emin

is also satisfied for all t. This completes the proof.

B. Non-Orthogonal Multiple Access with Individual User’s

Rate Constraints (NOMA-WR)

With individual rate constraints, it is theoretically impossi-

ble to meet the rate requirements for all the time slots if we do

not impose assumptions on the channel gains and the harvested

energy. In this regard, we enlist following assumptions which

are considered to be true in the following discussion.

• A1: First assumption is that γi(t) ≥ γmin, ∀t, ∀i ∈
{1, 2, · · ·K}3.

• A2: Secondly, we assume that the arrived energy is

higher than a certain threshold Eworst
th , where the value

of Eworst
th is found below.

3Note that for simplicity of exposition we assume that all the users
have same minimum bound on the channel gains however the forthcoming
procedure can be adopted for the case where γi(t) ≥ γi

min, where we may

have γi
min 6= γj

min, ∀i, j ∈ {1, 2, · · ·K}.

The long-term time average sum rate maximization problem

with the individual user’s rate constraints can be formulated

as

P8 max
{P (t),ρ(t)}

1

T
lim

T→∞

T−1∑

t=0

E

(
K∑

k=1

RNOMA
k (t)

)

(36)

s.t. 6a-6c, 6f (36a)

RNOMA
k (t) ≥ Rk,min ∀ k ∈ {1, · · ·K},

(36b)

10b, 10c, (36c)

where Rk,min is the minimum data rate requirement of the

k-th user. Using (3), the constraint (36b) can be equivalently

written as

ρk(t) ≥ Mk

(
K∑

i=k+1

ρi(t) +
1

γk(t)Pmax

)

, (37)

where Mk =
(
2Rk,min − 1

)
. It can easily be shown that the

constraint (36b) is satisfied only if Pmax ≥ Pth(t), where

Pth(t) is given as

Pth(t) =

K∑

k=1

Pk,min(t), (38)

and Pk,min(t) is given as

Pk,min(t) = Mk

(
K∑

i=k+1

Pi,min(t) +
1

γk(t)

)

. (39)

The value of Eworst
th = ∆tPworst

th where Pworst
th is obtained

by putting γi(t) = γmin in (39) and using (38). It is straight

forward to show that Pth(t) ≤ Pworst
th , ∀t.

After introducing the virtual queue Q(t) = Eb(t) − C
and following the similar procedure presented in the previous

subsection, the per time slot optimization problem can be

written as follows

P9 min
{P (t),ρ(t)}

Q(t) (Eh(t)−∆tP (t))− V

K∑

k=1

RNOMA
k (t),

(40)

s.t. 6a, 10b, 10c, 36b. (40a)

By introducing the following variables

xk(t) =

K∑

i=k+1

ρi(t), ∀ k ∈ {1 · · ·K − 1}, (41)

ζ(t) =

K∑

i=1

ρi(t) =
P (t)

Pmax

, (42)

Gk(xk(t)) = log(1 + Pmaxγk+1(t)xk(t))

− log(1 + Pmaxγk(t)xk(t)), (43)

we can write optimization problem P9 as

P10 min
{ζ(t),ρ(t),x(t)}

−Q(t)∆tζ(t)Pmax

−V

(

log(1 + ζ(t)Pmaxγ1(t)) +
K−1∑

i=1

Gi(xi(t))

)

(44)
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s.t. ζ(t) ∈

[
Pth

Pmax

, 1

]

, (44a)

ζ(t) =

K∑

i=1

ρi(t), (44b)

xk(t) =

K∑

i=k+1

ρi(t), ∀ k ∈ {1 · · ·K − 1},

(44c)

ρk(t) ≥ Mk

(
K∑

i=k+1

ρi(t) +
1

γk(t)Pmax

)

,

(44d)

where x(t) = {x1(t), · · · , xK−1(t)}. Problem P10 can be

decomposed into two optimization problems. First, we fix ζ(t)

in the interval [Pth(t)
Pmax

, 1] and minimize with respect to ρk(t)’s
∀ k ∈ {1, · · ·K} and then we minimize with respect to ζ(t).

1) Minimization With Respect To ρi(t)’s: For a fixed ζ(t),
the optimization problem P10 is equivalent to the following

problem

P11 max
{ρ(t),x(t)}

K−1∑

k=1

Gk(xk(t)) (45)

s.t. 44b-44d, (45a)

It can be easily verified that Gk(xk(t)) is an increasing

function of xi(t) ∀ i ∈ {1, · · ·K − 1}. Hence, maximiz-

ing
∑K−1

i=1 Gi(xi(t)) is equivalent to maximizing individual

xi(t)’s while satisfying the constraints of P10. The solution

of optimization problem P11 is given in the following lemma.

Lemma 5. The optimal ρi(t)’s for a fixed value of ζ(t) ∈
[Pth(t)
Pmax

, 1] are given as

ρ∗k,ζ(t)(t) = Nk

(

ζ(t) −
k−1∑

i=1

ρ∗i,ζ(t)(t) +
1

Pmaxγk(t)

)

, (46)

if k 6= K and

ρ∗K,ζ(t)(t) = ζ(t)−
K−1∑

i=1

ρ∗i,ζ(t)(t), (47)

where Nk = Mk/2
Rk,min .

Proof. See theorem 2 of [22].

According to lemma 1, the optimal power allocation has

following properties.

• P1: The powers allocated to users {1, · · ·K−1} are such

that their data rate constraints are met with equality.

• P2: The power allocated to K-th user is such that its data

rate is ≥ RK,min.

We have the following corollary, which will be used later.

Corollary 3. The maximum sum rate is increasing in ζ(t) for

ζ(t) ∈
[
Pth(t)
Pmax

, 1
]

.

Proof. Consider ζ1(t), ζ2(t) ∈
[
Pth(t)
Pmax

, 1
]

and assume that

ζ1(t) > ζ2(t). Since ζ1(t) and ζ2(t) are both feasible, we

can find optimal power allocation for both of them with the

help of Lemma 1. Let us denote the power allocation obtained

for ζ1(t) by ρ
1(t) = {ρ1,ζ1(t)(t), · · · ρK,ζ1(t)(t)} and that

obtained for ζ2(t) by ρ
2(t) = {ρ1,ζ2(t)(t), · · · ρK,ζ2(t)(t)}.

According to property P1, the optimal sum rate for users

{1, · · ·K − 1} will be same for both ρ
1(t) and ρ

2(t). On the

other hand, since the derivative of ρK,ζ(t)(t) with respect to

ζ(t) is > 0 [22], the data rate achieved for the K-th user will

be higher for ρ
1(t) as compared to that achieved for ρ

2(t).
As a result the maximum sum rate obtained for ζ1(t) will be

higher than that achieved for ζ2(t).

2) Minimization with Respect To ζ(t): After putting the

optimal power allocation, obtained from Lemma 5, in the

objective function of P10 we get

P12 min
{ζ(t)}

−Q(t)∆tζ(t)Pmax − V

[

log(1 + ζ(t)Pmaxγ1(t))

+
K−1∑

i=1

Gi(x
∗
i (t))

]

(48)

s.t. 44a, (48a)

where x∗
k(t) =

∑K
i=k+1 ρ

∗
i,ζ(t)(t). Note that ρ∗

i,ζ(t)(t) and

x∗
i (t) are affine functions of ζ(t). Additionally, the double

derivative of Gi(xi(t)) with respect to xi(t) is given as

d2Gi(xi)

dx2
i

=
P 2
max(γi − γi+1)(2Pmaxγi+1γixi + γi+1 + γi)

(Pmaxγi+1xi + 1)2(Pmaxγixi + 1)2
.

As
d2Gi(xi)

dx2
i

< 0 and since convexity is preserved under affine

transformation, we conclude that the objective function of P12

is convex with respect to ζ(t). This implies problem P12 is

a convex optimization problem. Although the optimal ζ(t)
does not admit a close form solution, we can use Bisection

algorithm to find the solution of P12.

3) Stabilizing the Virtual Queue: Again, the non-close form

solution of P12 makes it difficult to find the appropriate values

of V and C. However, in the following we show that the same

values of V and C that were obtained in subsection III-A can

also be used for the problem in this subsection if the arrived

energy is ≥ ∆tPworst
th . In order to prove this statement, first

we establish the bounds on the values of Q(t) in the following

Theorem.

Theorem 2. The value of Q(t) is bounded as follows.

−
V γmax

∆t
−∆tPmax ≤ −

V γmax

∆t
≤ Q(t) ≤ Ec,max. (49)

Proof. First, we observe the following properties of the solu-

tion of problem P7 and problem P12.

• P3: The optimal values of ζ(t), and in turn P (t) =
ζ(t)Pmax, for problems P7 and P12 are non-decreasing

with increasing values of Q(t).
• P4: When the optimal transmit power for problem P7,

denoted by PP7(t), is zero, the optimal transmit power
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for the problem P12, denoted by PP12(t), is Pth(t).
(Note this property is different from the problem in the

previous subsection.)

• P5: There is a value of Q(t), denoted by Qcrit(t), for

which the value of PP7(t) = PP12(t).

Property P3 is straightforward to prove since the corresponding

rate function is increasing function of P (t) = ζ(t)Pmax and

the slope of −Q(t)P (t) decreases with increasing value of

Q(t).

As in Theorem 1, it is easy to establish that for any fixed

value of P (t) = ζ(t)Pmax

log(1 + P (t)γK(t)) ≥ log(1 + ζ(t)Pmaxγ1(t)) +
K−1∑

i=1

Gi(x
∗
i (t)). (50)

One easy way to prove (50) is to observe that, for any value

of P (t) = ζ(t)Pmax, the LHS is the objective value achieved

by the objective value if we relax the data rate constraints by

replacing Rk,min = 0, ∀k ∈ {1, 2, · · ·K}. This means that if

the derivative of the objective function of P7 with respect to

P (t) has become positive, then the derivative of the objective

function of P12 is definitely positive. Such behavior implies

that the optimal transmit power for P12 should be equal to

the lowest possible feasible value, which in this problem is

Pth(t). Hence, property P4 is also proved.

For a certain range of Q(t), the value of the optimal transmit

power for problem P7 is smaller than the optimal transmit

power for problem P12. However, as Q(t) increase the value

of the optimal transmit power for problem P7 will increase

and for specific value of Q(t) = Qth(t) it will become equal

to the optimal transmit power for problem P12. Now, using

the result from Lemma 3 we can have the following equality

−
V

∆tQth(t)
−

1

γK(t)
= PP12(t), (51)

which is obtained by equating the value of optimal trans-

mit power for problem P7 from Lemma 3 to the optimal

transmit power of problem P12. As the minimum value of

PP12(t) cannot be smaller than P best
th , which is the minimum

required transmit power for satisfying the data rate require-

ments when all the channel gains are equal to γmax, and

γk(t) ≤ γmax, ∀k ∈ {1, 2, · · · ,K}, we have the following

inequality

Qth(t) > Qcrit = −
V

∆t

(

1

P best
th + 1

γmax

)

. (52)

Now, assume that in a certain time slot −V γmax

∆t
≤ Q(t) ≤

Qcrit then the optimal transmit power for the proposed scheme

is Pth(t). This is because the objective function is increasing in

P (t) for all the feasible values of P (t). Hence, the minimum

of the objective is achieved when P (t) is set equal to its lowest

feasible value i.e. Pth(t). This implies that Q(t) is always

increasing in next time slot because Pth(t) ≤ Pworst
th .

On the other hand, if Q(t) > Qcrit(t), then we have P (t) >
Pth(t). However, if we choose

Qcrit −

(

−
V γmax

∆t

)

=
V γmax

∆t

(
γmaxP

best
th

1 + γmaxP best
th

)

≥∆tPmax,

then Q(t) will always be greater than −V γmax

∆t
in the next

time slot4. Hence, we conclude that

Q(t) ≥ −
V γmax

∆t
≥ −

V γmax

∆t
−∆tPmax, (53)

is a valid bound.

In a similar way, by checking the possibilities Q(t) > 0,

Q(t) ≤ 0 and using the fact that Ec,max ≤ ∆tPmax we can

verify that

Q(t+ 1) ≤ Q(t) + Ec,max ≤ Ec,max, (54)

is valid for all time slots. The inequality (54) proves the RHS

of (49).

Since the Q(t) has similar bounds as in the previous

subsection, we can easily show the following values of V and

C

C = ∆tPmax + Emin +
V γmax

∆t
, (55)

V =
∆t(Emax − Emin − Ec,max −∆tPmax)

γmax

, (56)

make sure that battery level remains in the prescribed limits

during all the time slots i.e. Emin ≤ Eb(t) ≤ Emax.

Next, we have to show that the battery has enough energy

to be able to transmit PP12(t). This is proved in the following

lemma.

Lemma 6. It is always feasible for battery to transmit PP12(t)
in the proposed scheme.

Proof. We know that PP12(t) is feasible only if the battery

has enough energy to support transmission of PP12(t). From

Theorem 2, we also know that Q(t) ≥ −V γmax

∆t
. Furthermore,

by putting the value of C in Eb(t) = Q(t) + C and noting

that PP12(t) ≤ Pmax we prove that it is always feasible for

battery to transmit PP12(t) in the proposed scheme.

IV. ONLINE RATE MAXIMIZING POWER ALLOCATION FOR

ORTHOGONAL MULTIPLE ACCESS

First, we solve the long-term sum rate maximization prob-

lem when the individual users do not have any minimum rate

requirements. Next, we solve the long-term sum rate maxi-

mization problem when the individual users have minimum

rate requirements which should be met for all the time slots.

4Note that if we chose V =
∆t(Emax−Emin−Ec,max−∆tPmax)

γmax
. Then,

the condition
V γmax

∆t

(

γmaxP best
th

1+γmaxP best
th

)

≥ ∆tPmax translate into Emax−

Emin − Ec,max −∆tPmax ≥ ∆tPmax

(

1+γmaxP best
th

γmaxP best
th

)

.
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A. Orthogonal Multiple Access without Individual User Rate

Constraints (OMA-WoR)

After introducing the virtual queue Q(t) = Eb(t) − C and

following the procedure described in Section III-A, the per

time slot optimization problem can be written as follows

P13 min
{ρ(t),α(t),P (t)}

Q(t) (Eh(t)−∆tP (t))

− V
K∑

k=1

ROMA
k (t), (57)

s.t. 6a (57a)

10b-10e. (57b)

By introducing new variables

Pk(t) = ρk(t)P (t), ∀k ∈ {1, 2, · · · ,K}, (58)

the above problem can be transformed into following equiva-

lent problem

P14 min
{P(t),α(t),P (t)}

Q(t) (Eh(t)−∆tP (t))

− V
K∑

k=1

GOMA
k (Pk(t), αk(t)), (59)

s.t. 0 ≤
K∑

k=1

Pk(t) = P (t) ≤ Pmax, (59a)

0 ≤ Pk(t) ≤ P (t), (59b)

10d,10e. (59c)

where

GOMA
k (Pk(t), αk(t)) = αk(t) log

(

1 +
Pk(t)γk(t)

αk(t)

)

, (60)

and P(t) = {P1(t), · · · , PK(t)}. It can be easily shown

that the objective function of the P14 is jointly convex in

{P(t),α(t)} and therefore the above problem is a convex

optimization problem. We have the following lemma for

problem P14.

Lemma 7. The problem P14 is equivalent to the problem

P7 and the optimal solutions for αk(t), ρk(t), Pk(t)∀k ∈
{1, 2, · · ·K − 1} are given as follows

α∗
k(t) = ρ∗k(t) = P ∗

k (t) = 0, ∀ k ∈ {1, 2, · · ·K − 1}. (61)

Proof. For any fixed value of P (t), the problem P14 can be

written as

P15 max
{α(t),P(t)}

K∑

k=1

GOMA
k (Pk(t), αk(t)) (62)

s.t.

K∑

k=1

Pk(t) ≤ P (t), (62a)

K∑

k=1

αk(t) ≤ 1. (62b)

This is because GOMA
k (Pk(t), αk(t))’s are increasing func-

tions of Pk(t), αk(t). Consider the case of K = 2 and

α1(t) = 1 − α2(t), α2(t) ≤ 1 then P15 can be equivalently

written as

P16 max
{α2(t),P2(t)}

(1− α2(t)) log

(

1 +
γ1(t)(P (t)− P2(t))

1− α2(t)

)

+ log

(

1 +
γ2(t)P2(t)

α2(t)

)

, (63)

s.t. P2(t) ≤ P (t), (63a)

α2(t) ≤ 1. (63b)

The problem P16 is convex and hence Karush-Kuhn Tucker

(KKT) conditions are sufficient for finding the solution of

problem P16. The KKT conditions in the case of inactive

constraints can be written as

γ2(t)α
∗
2(t)

α∗
2(t) + γ2(t)P ∗

2 (t)
=

γ1(t)(1− α∗
2(t))

1− α∗
2(t) + γ1(t)(P (t) − P ∗

2 (t))
, (64)

log
(

1 +
γ2(t)P

∗

2 (t)
α∗

2(t)

)

+
γ1(t)(P (t)−P∗

2 (t))
1−α∗

2(t)+γ1(t)(P (t)−P∗

2 (t))

= log
(

1 +
γ1(t)(P (t)−P∗

2 (t))
1−α∗

2(t)

)

+
γ2(t)P

∗

2 (t)
α∗

2(t)+γ2(t)P∗

2 (t) . (65)

Since the LHS of (64) is an increasing function of
γ2(t)P

∗

2 (t)
α∗

2(t)
and the RHS of (64) is an increasing function of

γ1(t)(P (t)−P∗

2 (t))
1−α∗

2(t)
, we must have

γ2(t)P
∗

2 (t)
α∗

2(t)
=

γ1(t)(P (t)−P∗

2 (t))
1−α∗

2(t)
.

But combining this fact with (65) we must have γ2(t) = γ1(t)
which contradicts with the fact that γ2(t) > γ1(t). Therefore,

we conclude that at least one of the constraint must be

active in problem P16. Now assuming that if P ∗
2 (t) = P (t),

then we must have α2(t) = 1. Similarly, if we assume that

α2(t) = 1, then we must have P ∗
2 (t) = P (t) for optimality.

Same reasoning can also be used to establish the result for

more than two users.

Hence, the problem P14 translates to a single user problem

and its solution is presented in Lemma 3. Therefore, we

impose a constraint on the bandwidth and power allocation

as follows

α1(t) ≥ α2(t) ≥ · · · ≥ αK(t), (66)

ρ1(t) ≥ ρ2(t) ≥ · · · ≥ ρK(t). (67)

With these constraints added to the problem P14, we can write

the multiple user optimization problem as follows.

P17 min
{α(t),P(t),P (t)}

Q(t) (Eh(t)−∆tP (t))

− V

K∑

k=1

GOMA
k (Pk(t), αk(t)), (68)

s.t. 59a, 59b (68a)

10d, 10e, (68b)

66, 67. (68c)

Since the inclusion of constraints (68c) does not affect the

convexity of the problem P14, we can easily obtain the

solution of the problem with the newly added constraints. For

a fixed value of P (t), GOMA
k (Pk(t), αk(t))’s are increasing

functions of Pk(t), αk(t). Therefore, the optimal solution for
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αk(t)’s are 1
K

and Pk(t)’s are
P (t)
K

for a fixed value of

P (t) ∈ {0, Pmax}. Additionally, we can follow the procedure

outlined in Theorem 1 to show that the optimal transmit power

of the problem P17 is always smaller than the optimal transmit

power for P7. Hence, it follows that the Q(t) is bounded as

described in (27). Subsequently, it follows that the same values

of V,C given in (30), (31) can be used in this problem.

B. Orthogonal Multiple Access with Individual User’s Rate

Constraints (OMA-WR)

The long-term time average sum rate maximization problem

with the individual users rate constraints can be formulated as

P18 max
{P (t),ρ(t),α(t)}

1

T
lim

T→∞

T−1∑

t=0

E

(
K∑

k=1

ROMA
k (t)

)

(69)

s.t. 6a-6c, 6f,, (69a)

10b-10e, (69b)

ROMA
k (t) ≥ Rk,min. (69c)

Again, we assume that assumptions A1 and A2 are applicable.

Following the procedure of previous section, the per time slot

based optimization problem can be written as follows

P19 min
{P (t),P(t),α(t)}

Q(t) (Eh(t)−∆tP (t))

− V

K∑

k=1

GOMA
k (Pk(t), αk(t)), (70)

s.t. 59a, 59b, (70a)

10d, 10e, (70b)

GOMA
k (Pk(t), αk(t)) ≥ Rk,min. (70c)

The minimum transmit power required to satisfy the individual

rate constraints can be obtained by solving the following

problem

P20 min
{P(t),α(t)}

K∑

k=1

Pk(t), (71)

s.t. GOMA
k (Pk(t), αk(t)) ≥ Rk,min, (71a)

K∑

k=1

Pk(t) ≤ Pmax, (71b)

K∑

k=1

αk(t) ≤ 1. (71c)

It is easy to show that in the optimal solution the rate constraint

and bandwidth constraint should be met with equality. Let β, θ
and λk denote the Lagrange multipliers for bandwidth, power

allocation and k-th user rate constraints, respectively. Then,

using the KKT conditions we can show that the dual variables

(λk, β, θ) and primal variables (αk(t), Pk(t)) are related as

follows

Rk,min = αk(t) log(λkγk(t)), (72)

θ = λk (log(λkγk(t))− 1) +
1

γk(t)
, (73)

Pk(t)

αk(t)
= λk −

1

γk(t)
, (74)

K∑

k=1

αk(t) = 1. (75)

We denote the optimal objective value achieved in problem

P20 by POMA
th (t). Then, the problem P19 can be equivalently

written as follows

P21 min
{P (t),P(t),α(t)}

Q(t) (Eh(t)−∆tP (t))

− V

K∑

k=1

GOMA
k (Pk(t), αk(t)), (76)

s.t. P orth
th (t) ≤

K∑

k=1

Pk(t) = P (t) ≤ Pmax, (76a)

10d, 10e, (76b)

59b, (76c)

70c. (76d)

For a fixed value of P (t) ∈ {POMA
th (t), Pmax}, the problem

P21 can be equivalently written as

P22 max
{P(t),α(t)}

K∑

k=1

GOMA
k (Pk(t), αk(t)), (77)

s.t. 71a-71c. (77a)

We have the following Lemma for problem P22.

Lemma 8. The optimal values of αk(t), Pk(t) ∀k ∈
{1, 2, · · ·K − 1} can be obtained from the following relation

αk(t) =
Rk,min

log(1 + gk(t))
, Pk(t) =

gk(t)αk(t)

γk(t)
, (78)

and for αK(t), PK(t) we have

αK(t) = 1−
K−1∑

k=1

αk(t), PK(t) = P (t)−
K−1∑

k=1

Pk(t), (79)

where gk(t) = Pk(t)γk(t)
αk(t)

. The value of gk(t), ∀k ∈
{1, 2, · · ·K − 1} is given as follows

gk(t) =
exp (W (γk(t)f(gK(t))− 1)) + 1

γk(t)
, (80)

where W (x) is the Lambert-W function and f(gK(t)) is given

below

f(gK(t)) =
log(1 + gK(t)γK(t))− 1

1+ 1
gK (t)γK (t)

θ
. (81)

In (81), θ is the Lagrange multiplier associated with the power

constraint in problem P22 and gK(t) for a fixed value of θ is

given as

gK(t) =
1

θ
−

1

γK(t)
. (82)
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Proof. The Lagrangian of the problem P22 is given as

−
K∑

k=1

(λk + 1)αk(t) log

(

1 +
Pk(t)γk(t)

αk(t)

)

+

K∑

k=1

λkRk,min

+β

(
K∑

k=1

αk(t)− 1

)

+ θ

(
K∑

k=1

Pk(t)− P (t)

)

, (83)

where β, θ and λk are the Lagrange multipliers for bandwidth,

power allocation and k-th user rate constraints, respectively.

The corresponding KKT conditions for problem P22 can be

written as

θ = (1 + λk)

(
γk(t)αk(t)

αk(t) + Pk(t)γk(t)

)

, (84)

β = (1 + λk)

(

log

(

1 +
Pk(t)γk(t)

αk(t)

)

−
Pk(t)γk(t)

αk(t) + Pk(t)γk(t)

)

, (85)

λk

(

Rk,min − αk(t) log

(

1 +
Pk(t)γk(t)

αk(t)

))

= 0, (86)

β(

K∑

k=1

αk(t)− 1) = 0, (87)

θ(
K∑

k=1

Pk(t)− P (t)) = 0, (88)

β ≥ 0, θ ≥ 0, λk ≥ 0, ∀k ∈ {1, 2, · · · ,K}. (89)

Since Pk(t) > 0, αk(t) > 0, we conclude from (84), (85) that

β > 0 and θ > 0. Thus, according to complementary slackness

conditions power and bandwidth allocation constraints must be

active.

Next, we show that the data rate constraints for

{1, 2, · · · ,K − 1} must be active while that for K-th user

can be inactive if P (t) > P orth
th (t). We prove this claim for

two users, i.e. K = 2, however same reasoning can be used for

any number of users. We have following properties of λ1, λ2.

• P6: First, we note that λ1 and λ2 cannot be positive

simultaneously. This is because if λ1, λ2 > 0, then

according to the complementary slackness condition the

rate constraints should be met with equality at optimality.

However, if P (t) > Pth(t), for same bandwidth alloca-

tion we can allocate excess power to the stronger user

to increase its rate to increase the objective value. This

contradicts the assumption that for optimality both the

rate constraints should be met with equality. Hence, λ1,

λ2 cannot be simultaneously greater than zero.

• P7: λ1, λ2 cannot be zero simultaneously. This can be

proved through contradiction. Assume λ1 = 0 and λ2 =
0. Then, from (84), we obtain

θ

γk(t)
=

1

1 + Pk(t)γk(t)
αk(t)

, ∀k ∈ {1, 2}. (90)

Using (84), we can write (85) for k ∈ {1, 2} as follows

β = log

(
γ1(t)

θ

)

− 1 +
θ

γ1(t)

= log

(
γ2(t)

θ

)

− 1 +
θ

γ2(t)
. (91)

From (90), we know that
γk(t)
θ

> 1, and we know that

log(x)+ 1
x

is an increasing function of x for x > 1. Thus,

(91) cannot be satisfied unless γ1(t) = γ2(t). However,

this contradicts the assumption that γ2(t) > γ1(t). Hence,

λ1 and λ2 cannot be simultaneously zero.

• P8: λ2 > 0, λ1 = 0 is not possible. Since if we assume

λ2 > 0, λ1 = 0, then we have

θ

γ1(t)
=

1

1 + P1(t)γ1(t)
α1(t)

, (92)

θ

(1 + λ2)γ2(t)
=

1

1 + P2(t)γ2(t)
α2(t)

. (93)

Using (85), we can write β as

β = (1 + λ2)
(

log
(

γ2(t)(1+λ2)
θ

)

− 1 + θ
(1+λ2)γ2(t)

)

,

= log
(

γ1(t)
θ

)

− 1 + θ
γ1(t)

. (94)

However, this leads to a contradiction since this is only

possible if λ2 = 0 and γ2(t) = γ1(t).

Similar reasoning can be used to show that only the K-th user

rate constraint can be inactive for any integer value of K > 2.

Thus, we have λK = 0 and (84), (85) can be arranged in

following way

β = log (1 + γK(t)gK(t))−
1

1 + 1
γK(t)gK(t)

, (95)

(
1

γk(t)
+ gk(t)

)

(log (1 + gk(t)γk(t)))− gk(t)

=
log(1 + gK(t)γK(t)) − 1

1+ 1
gK (t)γK (t)

θ
, (96)

where gK(t) for a fixed value of θ can be obtained from the

relation

θ =
γK(t)

1 + gK(t)γK(t)
. (97)

From (96) we can easily obtain (80). Subsequently, we can

use the value of gk(t), ∀k ∈ {1, 2, · · · ,K − 1} to obtain

αk(t) from Rk,min = αk(t) log (1 + gk(t)), and Pk(t) can

be obtained from gk(t) = Pk(t)γk(t)
αk(t)

. Then, the remaining

bandwidth/power can be allocated to the K-th user which is

mathematically represented by (79).

For each fix value of P (t), the optimal value of θ can be

obtained by employing a linear search. Although the optimal

solution for P21 cannot be obtained in closed form, by using

similar reasoning presented in Section III, we can show that

the values of V and C presented in (30), (31) can also be used

for this scenario to make sure that the battery level constraints

are met for all the time slots.
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The proposed schemes for NOMA-WoR, NOMA-WR and

OMA-WoR only require one Bisection search to find the

optimal values of transmit power P (t). For OMA-WR, linear

search on two variables is required. On the contrary, dynamic

programming require transition probabilities knowledge of the

system states. Furthermore, the computational complexity of

the DP is very high. For example, if the arriving energy,

channel gains and total transmit power can be discretized

into J,H, I number of states, respectively. Then, the com-

putational complexity of the DP for a time horizon T is

O(J2 × H2 × I2 × T 2) [23]. In addition, the DP scheme

requires the knowledge of state transition probabilities which

is impossible to attain in a practical system.

V. PERFORMANCE GAP ANALYSIS

In this section, we present a theoretical analysis of per-

formance comparison between the optimal solution and the

proposed solution for the case of NOMA without individual

user’s rate constraint. However, the analysis can be easily

extended to the other cases and thus will be omitted for brevity.

It is well known that there exists a stationary, randomized

power control policy {Pr(t)} for problem P3, where Pr(t)
only depends on the current system state. For this policy, if

we denote the per time slot sum rate by Gr
K(t), we have the

following properties

E[Gr
K(t)] , Ḡ

r
K = Ḡ

o, (98)

E[Er
h(t)] = E[∆tPr(t)], (99)

where Ḡr
K , Ḡo are the objective values achieved for problem

P3 under the policy Pr(t) and the optimal policy for solving

P3. As the proposed scheme minimizes the RHS of (16) on

per time slot basis, we can write

∆(Q(t)) − V E[Gp
K(t)|Q(t)]

≤ φ+X(t)E[Er
h(t)−∆tPr(t)|X(t)]− V E[Gr

K(t)|Q(t)],
(100)

where G
p
K(t) denotes the per time slot sum rate achieved by

the proposed power allocation scheme. Since the randomized

policy only depend on the current system state, we can write

∆(Q(t)) − V E[Gp
K(t)|Q(t)]

≤ φ+X(t)E[Er
h(t)−∆tPr(t)]− V E[Gr

K(t)], (101)

which can be further simplified by using (99) as

∆(Q(t)) − V E[Gp
K(t)|Q(t)] ≤ φ− V E[Gr

K(t)]. (102)

Using (98) we can write (102) as

∆(Q(t))− V E[Gp
K(t)|Q(t)] ≤ φ− V Ḡ

o
K . (103)

Recall that P2 is a relaxed problem of P1 and therefore if we

denote the optimal objective achieved by P1 as Ḡ
opt
K then we

have

∆(Q(t)) − V E[Gp
K(t)|Q(t)] ≤ φ− V Ḡ

opt
K , (104)

where we have used that fact that optimal value achieved by a

relaxed problem is always greater than the optimal value of the

original problem hence Ḡo
K ≥ Ḡ

opt
K . Taking the expectation

with respect to Q(t) on both sides and summing from t = 0
to t = T − 1, we have

V

T−1∑

t=0

E[Gp
K(t)]

≥ TV Ḡ
opt
K − Tφ+ E[L(Q(T ))]− E[L(X(0))] (105)

Diving both sides by T and taking the limit T → ∞, we get

Ḡ
opt
K − lim

T→∞

1

T

T−1∑

t=0

E[Gp
K(t)] ≤

φ

V
. (106)

This implies that the performance gap between the optimal

scheme and the proposed scheme is bounded, and this gap

reduces with the increasing value of V . Hence, we conclude

that by increasing the value of V parameter the performance

of the proposed schemes improves.

VI. SIMULATION RESULTS

In this section, we provide simulation results to illustrate

the performance of the proposed scheme. The simulation

parameters are given in Table 1. The superscripts WR and

WoR indicates the parameters used for solving the problem

with individual user rate requirements and without individual

user rate requirements. It is assumed that Ea(t) follows a

compound Poisson process with uniform distribution. The

arrival rate is denoted by λ while the parameter for uniform

distribution is denoted by α. The channel gains are assumed

to be distributed according to either exponential distribution

or uniform distribution with parameter 1.

For NOMA-WoR scenario, we compare our results with

two baseline schemes. In the first baseline scheme, the total

transmit power is randomly distributed among the users while

satisfying the power order constraint ρ1(t) ≥ ρ2(t) · · · ≥
ρK(t). We name this scheme as the random power allocation

(RPA) scheme. In the second scheme, the total transmit power

is equally distributed among all the users. This scheme is

termed as the optimal power allocation (OPA) scheme. In both

of the baseline schemes, the total transmit power is equal to

min{(Eb(t)− Emin)/∆t, Pmax}.

TABLE II
SIMULATION PARAMETERS

Parameter Value Parameter Value

Emax 10J Emin 0J

Eb(0) [0, Emax/2] α .2
γmax 20dB λ [.5 ∼ 2.5]
γmin 10dB Rk,min,∀k ∈ {1, 2, · · ·K} 1bps

K 4 ∆t 1s

EWoR
c,max .5J PWoR

max 1W

EWR
c,max 1.6J PWR

max 2W

Fig. 3 and Fig. 4 show the time averaged throughput for

the three schemes for exponentially distributed channel gains

and uniformly distributed channel gains, respectively. The time

averaged sum rate for all the schemes converges to the same

value for both initial statuses of the battery. It is clear that

the proposed scheme outperforms the baseline schemes in the

long run for both scenarios of channel gains distribution. Also,
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Fig. 3. Time averaged throughput with respect to time slots with when channel
gains are exponentially distributed for NOMA-WoR scenario.
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Fig. 4. Time averaged throughput with respect to time slots with when channel
gains are uniformly distributed for NOMA-WoR scenario.

the power allocation among users can significantly affect the

performance and is reflected by the superior performance of

OPA with respect to RPA. The improvement in performance

of the proposed scheme as compared to the baseline schemes

is explained as follows. First, the total transmit power is

optimally allocated among the users. Second, the total transmit

power is also optimized according to the solution of P6. How-

ever, no optimization is performed in the baseline schemes

with respect to total transmit power. As a result, the time

averaged throughput of the proposed scheme is better.

Fig. 5 shows the dependence of the time averaged through-

put at t = T on λ. The throughput increases with λ for

all the schemes. However, the performance gap between the

proposed scheme and the baseline schemes becomes smaller.

This is due to the following reason. As λ increases the average

harvested energy increases. This means the baseline schemes

can transmit at relatively higher power to achieve a higher
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Fig. 5. Time averaged throughput with respect to λ at t = T for NOMA-WoR
scenario.

throughput. As a result the performance gap between the

proposed scheme and baseline schemes shrinks.

The performance comparisons of the proposed scheme and

baseline schemes for OMA-WoR scenario are depicted in Fig.

6 and Fig. 7 with exponentially distributed channel gains and

uniformly distributed channel gains, respectively. Again, it can

be easily observed that the proposed scheme outperms the

baseline scheme.
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Fig. 6. Time averaged throughput with respect to time slots with when channel
gains are exponentially distributed for OMA-WoR scenario.

In Fig. 8 we present the time averaged throughput for

NOMA-WR, OMA-WR scenarios. Similar to the WoR sce-

nario, the sum throughput converges to a definite value. Fur-

thermore, as the rate constraints should be met for all the time

slots, we observe that the minimum value of the time averaged

throughput is 4 since Rk,min = 1, ∀k ∈ {1, · · · , 4}. Another

observation is that the time average sum throughput for the

NOMA case is better than the OMA case. This performance
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gains are uniformly distributed for OMA-WoR scenario.

improvement is a result of the variations in the channel gains

of different users.
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Fig. 8. Time averaged throughput comparison of the NOMA-WR and
OMA-WR scenarios with respect to time slots with when channel gains are
exponentially and uniformly distributed.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This paper developed online power allocation schemes for

maximizing the time averaged sum rate for multiple downlink

users. Two downlink transmission techniques are considered

namely: NOMA and OMA. Specifically, we considered a

scenario where the transmitter has energy harvesting and

storage capabilities. Then, we have considered the scenario

where individual users have a minimum rate requirement.

The proposed schemes guarantee that the battery operational

constraints are satisfied. The performance comparison between

the optimal schemes and proposed schemes is carried out

theoretically. It is shown that the proposed schemes have a

bounded performance gap when compared with the optimal

power allocation scheme. The simulation results demonstrate

the effectiveness of the proposed schemes.

There are a few possible future directions that can be

explored. Some of which we describe in the following. For

example, as noted above that the proposed schemes for the

case of individual rate requirements needs A1 and A2 to

be valid. Therefore, an interesting future topic is to relax

these assumptions and use machine learning techniques to

maximize the long-term averaged sum rate. Another possible

research contribution is to consider the possibility of hybrid

downlink transmission where the base station employs NOMA

for some users and OMA for remaining users. Another inter-

esting research problem could be to investigate the multi-user

cooperative scenario.
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