
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 3, SEPTEMBER 2021 1005

Editorial
Energy Efficiency of Machine-Learning-Based

Designs for Future Wireless Systems and Networks

I. INTRODUCTION

WHILE 5G standards are being developed, research
is moving toward designing the next generation of

communications (e.g., 5.5G and 6G) which are expected to
provide data rates of the order of 1 Tb/s using frequency
bands in the range of 100 GHz to 3 THz. In addition to
providing massive capacity and connectivity by exploiting
new network architectures (e.g., cell-free massive MIMO,
integrated terrestrial-aerial-underwater networks), radio trans-
mission technologies (e.g., THz communications) and resource
management techniques (e.g., end-to-end network resource
slicing), future networks will support new context-aware appli-
cations and services (e.g., those based on joint communications
and sensing) and provide connected intelligence in the era of
Internet-of-Everything.

Recently, the usage and use cases of data-driven Artificial
Intelligence (AI)/Machine Learning (ML) in communications
systems have grown exponentially. The availability of large
datasets and the reduction of costs of Graphics Processing
Units (GPUs) are among the key factors for the development
of AI/ML methods. Along with these, availability of flexible
open source frameworks (e.g., Tensorflow, Pytorch, Caffee)
has opened the doors for many applications of AI and ML
in various areas [1]. In 6G, transformation of communications
systems and networks will be from connected things to con-
nected intelligence. The current trend in wireless communica-
tions systems design is to empower the communication devices
with intelligence by exploiting their computational capabilities
as well as storage hardware. This will enable implementa-
tion of complex algorithms to improve performance, relia-
bility, and management of the network. However, this new
trend imposes challenges due to heterogeneity of the devices
(e.g., in terms of computational resources and battery power
limitations).

In general, ML techniques for wireless systems have not yet
reached the state of maturity. Some research works have shown
that higher performance can be achieved with data-driven
AI/ML-based methods when compared to classical methods;
however, these methods often have deployment issues. In [2],
the authors defined ten challenges in using ML techniques in
6G. These include learning efficiency, standardization, compu-
tation overhead, scalability for global intelligence, and tradeoff
between learning accuracy and network overhead. The use of
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ML in 6G was discussed in the white paper [3] where the
authors discussed the advances of ML in wireless commu-
nications in various layers and issues in the deployment of
AI/ML-based methods. In [4], challenges in the use of ML
models for resource management in IoT networks, such as
the cost of training in ML and Deep Learning (DL) mod-
els and the lack of multitasking capabilities were addressed.
The authors in [5] highlighted the computational costs of
Deep Reinforcement Learning (DRL). They motivated the use
of shallow machine learning and imitation learning in some
scenarios where power and computation capabilities of the
devices are limited.

In the rest of this article, we discuss different ML paradigms
that have been used in wireless communications systems and
we emphasize the need of new performance metrics related to
energy-efficiency of AI/ML-based methods considering their
time and space complexities. To this end, we review the
usage of ML techniques in the PHYsical layer (PHY) as
well as higher-layer and end-to-end design of wireless systems
from energy-efficiency point of view, before we conclude the
article.

II. MACHINE LEARNING PARADIGMS, RESOURCE

CONSTRAINTS, AND ENERGY EFFICIENCY

A. ML Paradigms

Generally, ML techniques are categorized into three classes:
(i) supervised learning, where an agent learns from data col-
lected from real scenarios (or simulations of real scenarios),
(ii) unsupervised learning, where the agent tries to find pat-
terns from the data or description of the scenario, and (iii)
Reinforcement Learning (RL), which is based on interacting
with the environment and trial and error. These three
paradigms have been used to solve different wireless commu-
nications problems. Also, ML techniques can be classified as
either (i) a centralized ML technique, or (ii) a distributed ML
technique. In wireless networks, Distributed ML (DML) tech-
niques [6] have been widely used to solve well-known prob-
lems such as power control, spectrum management, user asso-
ciation, and computation offloading for edge cloud computing.
Since the communication devices may generate a huge amount
of data, distributed learning approaches are desirable to reduce
the communication overhead and achieve efficient spectrum
consumption.

We can distinguish two categories of DML [6], namely,
centrally-coordinated DML and decentralized DML. Again,
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one approach within the centrally-coordinated DML is based
on a Parameter Server (PS ) Framework. Basically, there
are two groups of network entities: servers and clients. A
server allocates data to the clients, maintains the global model
parameters, and aggregates the updates for the global model
parameters obtained from the clients [7]. Another approach
within the centrally-coordinated DML category is Federated
Learning (FL) [8], where data are generated locally at the
clients. This approach reduces the amount of transmitted data,
because the server does not need to send data to the clients,
and also only the model updates are transmitted to the server
by the clients. Training the machine learning models in a dis-
tributed manner using the FL approach is attractive, because
data are generated locally on the devices, and for commu-
nication and privacy reasons it may be infeasible to transfer
the data to the cloud for training. Therefore, the training is
distributed on the devices and performed locally. Also, FL is
more attractive from the perspective of energy efficiency com-
pared to the centralized solution when the data size is much
larger than the number of parameters in the model.

Both of the PS and FL approaches can be referred to as
a data parallel approach. As an example, MapReduce, which
is a software framework for distributed processing of large
data sets on computing clusters, was adopted in wireless to
reduce the computational requirements of the learning process.
Motivated by the new generation of devices with an increase of
storage and computational capacities, MapReduce was used in
mobile edge computing [9], [10]. Another approach within the
centrally-coordinated DML category is Partitioned Learning
that works in a setting where a supervised model is divided
into several blocks of different parameters and each block is
downloaded to different devices for learning. The outcome of
the learning, i.e., the model parameters are returned to the
server to refresh the global model. This is referred to as a
model parallel approach.

The second category of DML is centerless DML where
devices/agents learn separately to achieve a global goal. One
of the promising methods in this category is Multi-Agent
Reinforcement Learning (MARL) which is an extension of
single-agent reinforcement learning to a multiple agent set-
ting. The MARL problems are formulated as stochastic games
and the agents learn collaboratively or competitively to jointly
solve a specified problem or achieve the optimal global
solution.

B. Resource Constraints in AI/ML-Based Design

To enable AI/ML capabilities on small devices, the ML
algorithms need to provide high model accuracy while work-
ing within the resources constraints of the devices [11]. The
major resource constraints to run ML algorithms in the devices
are described below.

1) Processing Speed: The processing speed in a computing
hardware determines the system response in terms of through-
put (i.e., rate at which input data is processed) and latency (i.e.,
time taken to process a single input to its output). It is com-
monly measured in clock frequency (i.e., the number of cycles
per second) of a processor. For ML algorithms, there are two

main metrics for runtime of AI-based methods: FLoating Point
Operations Per Second (FLOPS) and Multiplier-Accumulate
(MAC). MAC is the number of multiplications and additions
done in the algorithms. In some architectures, the process-
ing speed of the system is affected by communication latency
(e.g., in a distributed computing paradigm).

2) Memory: Memory is one of the major resources required
by the ML algorithms because it stores the data to be used for
learning. Moreover, storing the model parameters and vari-
ables takes a significant amount of memory during the update.
The memory footprint of an ML method is determined by
the required storage capacity and the speed of data access.
Besides the model and the data size, querying the model
parameters is also time and energy consuming because a sin-
gle MAC operation takes three memory reads and one memory
write.

3) Power Consumption: Power consumption is a critical
factor for on-device learning. The energy consumed for run-
ning an algorithm depends on various factors, e.g., runtime,
memory access and computations on data. In general, the
required energy for computation is linearly proportional to the
size of the data set. Due to the non-deterministic nature of
power consumption of AI/ML models, to evaluate a model,
an estimate of power/energy usage is performed through a
surrogate function that depends basically on the runtime and
memory.

C. Energy-Efficiency as a Key Performance Metric

ML has been used as an alternative to classical methods to
solve “wireless” problems such as those related to spectrum
management, beamforming, user association, multiple access
and resource allocation. As inherited from other fields, the
main performance metric used is the accuracy of the model.
However, due to the specific nature of the wireless com-
munications systems and the characteristics of the wireless
communications devices, accuracy is not a sufficient metric.
For an ML model, since the training and inference phases
can consume high computational resources and large stor-
age capacity for the data, other metrics such as computation
overhead and required storage should be studied as well. In
particular, IoT devices are limited in power and computa-
tional resources. To compare the ML-driven approaches and
their feasibility of deployment in these devices, an accurate
estimation of the real-time energy consumption would be
required.

Modeling energy consumption for machine learning algo-
rithms at software and hardware levels was reviewed in [12].
At the software level, the energy consumption models use
the characteristics of the algorithmic properties (e.g., kernel
size of neural network) and the types of the instructions con-
tributing to different levels of energy consumption. At the
hardware level, the models consider components such as pro-
cessor, memory, and I/O peripherals that contribute to energy
consumption during training and execution modes. Empirical
measurements show that reducing the number of weights in
a deep neural network model does not necessarily lead to
energy saving, and therefore, the number of weights is not a
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Fig. 1. Computer power used in deep learning models of all types [15].

good indicator of energy-efficiency of the model. For convolu-
tional neural networks, a big part of energy is consumed by the
convolution layer [13]. Using deep neural network energy esti-
mation tool (https://energyestimation.mit.edu/), [14] proposed
an approach to reduce energy consumption of convolutional
neural networks.

As shown in Fig. 1, computing power demanded by DL
techniques is exploding compared to the hardware improve-
ments. The high computational requirements of DL and lack
of accurate metrics of energy consumption and storage require-
ments are challenges that need to be overcome for successful
and widespread deployment of DL models in wireless commu-
nications systems. Therefore, one important future direction of
6G research will be to develop, model, and analyze data-driven
ML methods considering computational efficiency and energy
efficiency.

III. ENERGY-EFFICIENCY IN DESIGNING ML-BASED 6G
SYSTEMS

A. Energy-Efficiency in ML-Based PHY Design

ML has been used in physical layer (PHY) design of
wireless communications systems due to limitations of the
mathematical modeling of complex environments and/or due
to algorithmic complexity of solving optimization problems
for real-time implementation. For instance, DL was applied for
channel coding [16], [17] to enable rapid coding and decoding
for low-latency services. Also, DL can be employed to over-
come the limitations of traditional techniques in presence of
non-line-of-sight propagation.

Many researches took advantage of ML techniques in chan-
nel estimation process for wireless networks. The Linear
Minimum Mean Square Error (LMMSE) method provides an
optimal channel estimation for linear and stationary channels;
however, real channels could be non-linear and non-stationary.
Therefore, DL is a promising approach to solve this issue since
it can be trained on complex channels [18]. The neural network
should be trained offline because of the requirement of long
training on different samples of different channel models, and
therefore, it requires high computational resources.

In [19], a DL-aided non-orthogonal multiple access
(NOMA) system was introduced to replace the traditional
methods that have high computational complexity. In the

physical layer, ML impacts the design of hardware in dif-
ferent levels [3]. It was proposed for substitution of spe-
cialized functions (e.g., channel estimation) and updating
of modules that are not currently well-solved due to some
nonlinearities. Another use of ML techniques is the joint
optimization of different modules in the physical layer. For
instance, signal decoding and waveform design can be opti-
mized together. However, the complexity at the receiver
would be too high; therefore, a sub-optimal end-to-end map-
ping mode can be learned by a neural network. Besides,
methods that combine ML techniques and model-based
methods are promising to overcome the defects of ML-
based methods such as requirement of long training data,
slow convergence, underfitting, and overfitting. Thus, ML
has opened the doors for designing wireless PHY in a
different way.

Generally, accuracy of the model is used as a metric to judge
the performance of ML-based techniques. However, since
hardware constraints will play a critical role in 6G [20], the
computational overhead and storage requirements should be
considered as well in the design of ML-based techniques. Also,
high power consumption of signal transmission/reception in
the radio transceivers (e.g., those operating in millimeter-wave
and Terahertz bands) will affect PHY design and algorithms.
Besides, for deep learning in the physical layer, online updates
are necessary to handle factors that were not considered in
the offline training. The performance of AI/ML-based meth-
ods needs to take into account the energy consumption during
training and inference phases.

The process of deploying AI/ML-based methods in embed-
ded wireless devices goes through software simulations, pro-
totyping, and production phase. The training process is done
in the prototyping phase on specialized FPGAs for neural
networks that allow high flexibility and speed in the design.
Since the hardware is different, there is a gap between simula-
tion phase/prototyping and production phases [3]. Most of the
ML-based algorithms designed for PHY layer are still in the
simulation phase. Nonetheless, an early study in the simula-
tion phase on the power and storage consumption is essential
to develop energy-efficient methods for PHY technologies.

Reducing the model complexity is one of the resource-
efficient approaches that can be considered while building the
model to adapt the model architecture to the available resource
constraints in the target device. It consists of adding constraints
on the parameters of the model to control the memory footprint
and the computational complexity of the ML algorithm [11].

B. Energy-Efficiency in ML-Based Radio Link/Network
Layer Design

ML techniques can be used in multiple access/radio link
layer design problems such as user selection, power manage-
ment and resource allocation due to the high computational
complexity of the classical optimization-based methods. Many
radio link/network layer problems are combinatorial and/or
non-convex optimization problems; therefore, heuristic algo-
rithms are used to find sub-optimal or near-optimal solutions.
ML techniques are useful to obtain low-complexity solutions
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that can be implemented online. DRL is suitable for deci-
sion making and control problems in large-scale and complex
networks. For instance, in [21], a DRL-based medium access
control protocol was proposed for a heterogeneous wireless
network. DRL was used in [22] to address the problem of
beamforming design for multiple access in cell-free MIMO
networks. DRL was also used in [23] to design a MIMO-
based full-duplex energy harvesting system. In [24] a Deep
Q-Learning (DQL)-based approach was proposed for power
allocation. The performance metrics however consider only
the accuracy of the model and do not consider the energy con-
sumption. Since energy consumption for the learning process
of the neural networks may be high for IoT devices, where
the battery life is limited, the trend now is to design ML-
based methods that perform both offline and online learning.
Also, ML methods need to consider the hardware capabili-
ties of the devices, because some devices may not be able to
perform learning due to the limited computational resources
(e.g., smart watches). An approach that can be used to reduce
the memory usage on the edge-devices and enable fast infer-
ence is model compression [25]. Two broad approaches for
doing this are: i) quantization, which reduces the precision
of the parameters values and the memory footprint, hence it
makes the computations faster, and ii) model pruning which
decreases the number of the model parameters to improve the
storage and computational time. SqueezeNet [26] is an effi-
cient neural network used for resource-constrained devices that
uses deep compression by weight pruning, quantization, and
Huffman encoding. But the decrease of storage and computa-
tion comes at the cost of accuracy. Network layer design in
a software-designed networking environment can also exploit
DML techniques (e.g., Federated Learning). Since a distributed
training can suffer from communication overhead, one major
research challenge is to reduce the communication rounds
needed for convergence to its lowest possible.

C. Energy-Efficiency in ML-Based End-to-End Design,
Network Management, and Services

AI/ML techniques can be used for end-to-end design,
e.g., for network resource slicing and virtualization on an
end-to-end basis. Also, ML can be conveniently used (e.g.,
in a Software-Defined Networking [SDN] environment) for
anomaly detection, prediction of performance trend and Key
Performance Indicator (KPI) degradation in a network. The
goal of using ML in such scenarios is to keep the KPIs within
predefined thresholds. Using machine learning based on the
data collected from user equipments and base stations in the
network will enable automated network management and con-
trol. Furthermore, ML techniques can be used to solve the
tasks of traffic prediction and traffic classification. In [27], a
guideline for the application of ML in networking was pro-
vided for traffic prediction and classification. ML techniques
have been used in the management of unmanned aerial vehi-
cles (UAVs) in a wireless communication environment. In a
vehicular communications environment, ML approaches, when
used for the selection of network interfaces based on the antic-
ipated resource efficiency, should consider energy efficiency

of the network. At the same time, ML-based solutions them-
selves should be energy-efficient, and the related implemen-
tation challenges should be considered in the design of these
solutions.

Machine learning has many applications in a variety of
domains such as robotics, computer visions, natural language
processing, and healthcare. These applications will be sup-
ported in future 6G wireless systems and networks. ML
techniques will be used to ensure the accessibility and avail-
ability of the corresponding services and meet their response
time requirements. Due to the need for high-speed processing
of massive data and the stringent response delay require-
ment, there is a gap between the current hardware of the
devices and the AI/ML-driven computational requirements.
The use of parallel, multicore, multithreaded, GPU and Tensor
Processing Unit (TPU) chips will become the foundation of
future generation computing and communications devices and
systems [28].

IV. CONCLUSION

The existing research works on applications of ML tech-
niques in 6G networks lack rigorous investigations on energy
consumption of ML methods in practical scenarios. For
large models, the ML algorithms are computation inten-
sive while the wireless devices are generally limited in
power, storage, and computational resources. Although accu-
racy of the AI/ML models is an important metric, memory
footprint, computational complexity, and power consump-
tion are other metrics that need to be considered in the
design of practical ML methods. Lightweight and com-
pressed models that are known for their energy-efficiency
would be preferable for wireless devices. Also, profiling
tools should be used while designing ML-based approaches
on real scenarios of large networks to define the com-
putation bottlenecks and reduce the energy consumption.
Designing energy-efficient AI/ML-based methods for 6G
communications systems and networks is a fertile area of
research.
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