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IADE: An Improved Differential Evolution Algorithm to
Preserve Sustainability in a 6G Network
Zhou Zhou, Mohammad Shojafar, Senior Member, IEEE,Jemal Abawajy,

Senior Member, IEEE and Ali Kashif Bashir Senior Member, IEEE

Abstract—Differential evolution (DE) algorithm is utilized to find an optimized solution in real multidimensional applications like 5G/6G
networked devices and support unlimited connectivity for terrestrial networks due to high efficiency, robustness, and easy achievements.
With the development of new emerging networks and the rise of big data, the DE algorithm encounters a series of challenges, such
as the slow convergence rate in late iteration, strong parameter dependence, and easiness of falling into local optimum. These issues
exponentially increase the energy and power consumption of communications and computing technologies in 5G/6G networks like a
networked data center. To address this and leverage a practical solution, this paper introduces IADE, an improved adaptive DE algorithm,
to solve the problems mentioned earlier. IADE improves the scaling factor, crossover probability, variation, and selection strategy of the
DE algorithm. In IADE, the parameters adaptively adjusted with the population’s iterative evolution to meet the parameter’s different
requirements values of network steering traffic in each period. Numerous experiments are carried out through the benchmark function
to evaluate the performance of IADE, and the results obtained from the experiment illustrate that IADE surpasses the benchmark
algorithms in terms of solution accuracy and convergence speed for large tasks around 10%, respectively.

Index Terms—6th Generation (6G), Intelligent cloud, intelligent load balancing, network resource optimization, networked data center.

F

1 INTRODUCTION

W ITH the rapid development of heterogeneous devices,
intelligent terminals and infrastructures to cover di-

versified applications and their demands, current 4G and
5G networks lack real-time monitoring of the quickly rising
traffic demands. Both industry and academia have started
envisioning the new generation called 6G to enable the real-
time Artificial Intelligence (AI) approaches to speed up the
design and optimization of 6G networks with a high level
of intelligence [1]. To provide a green 6G, we require to
apply an AI mechanism to atomize the network models
and achieve higher efficiency, lower delay, and minimize the
cost of network transmission. At this time, the emergence of
edge computing brings a solution to the efficiency problem
of the cloud computing system [2]. Hence, edge nodes are
the devices that relocated very close to the devices/users.
Hence, these decisions can reduce the consumption of data
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transmission to the remote cloud data center [3]. Edge cloud
requires appropriate AI techniques to ensure the Quality-of-
Service (QoS) requirements of the 6G system and optimize
the resource allocation required per demands by reducing
node energy consumption and achieve efficient processing
per task. To support such network evolution, selecting the
appropriate AI mechanism to stimulate the infrastructure
designers to tackle the energy efficiency challenges in the fu-
ture green 6G. Differential evolution (DE) [4], [5] algorithm
is a fast convergence AI method that could find the global
minimum of problem space using a few control parameters
and would be a colorful option for a volatile environment
like 5G and 6G. DE is swarm intelligence optimization algo-
rithm that simulates the natural evolution rule. It optimizes
the evolution direction and searches ranges through indi-
vidual cooperation and competition within the population.
The authors in [4]–[6] initiated it to solve the Chebyshev
polynomial problem defined by recursive sequences of the
orthogonal polynomial. Later, the DE algorithm is selected
to address the network resource optimization problem [7],
[8]. Similar to all evolutionary algorithms, the DE algorithm
has wide applications in 5G/6G networked devices [9], [10]
and supports unlimited connectivity for terrestrial networks
due to high efficiency and robustness [11], [12]. Under the
same precision requirements, in contrast to other evolution-
ary algorithms, the DE algorithm possesses fast convergence
speed [13], [14]. Currently, the exploration of the DE algo-
rithm has become a research hotspot [15], [16].

1.1 Motivations
To provide a green 6G, we require to apply an AI mech-
anism to atomize the network models and achieve higher
efficiency, lower delay, and minimize the cost of network
transmission. At this time, the emergence of edge comput-
ing brings a solution to the efficiency problem of the cloud
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computing system [2]. Hence, edge nodes are the devices
that relocated very close to the devices/users. Hence, these
decisions can reduce the consumption of data transmis-
sion to the remote cloud data center [3]. Edge nodes can
equipped with AI mechanisms to enhance the QoS of the
demands and optimize the resource allocations. However,
selecting appropriate AI method helps us to tackle a series
of challenges, such as the slow convergence rate in late
iteration, strong parameter dependence, and easiness to fall
into local optimum. These issues exponentially increase the
energy and power consumption of communications and
computing technologies in 5G/6G network like a networked
data center. To address such issues, we propose an improved
adaptive DE algorithm named IADE. The proposed IADE
is fast converge and can be applied in large scale network
systems which is essential in 6G environment.

1.2 The goal of the paper and contributions

Our goal is to design a novel green solution optimizes
the consumption of power of resource and consumption
of network resources in a data center associated in 6G
environment. The major contributions of this work are as
follows:
• We design a 6G network architecture reflecting the data

traffic communication between the IoT and cloud infras-
tructure.

• We design an improved adaptive DE algorithm named
IADE by enhancing the mutation factor F , crossover
factor CR, and the standard DE algorithm’s selection
strategies.

• We assess the proposed IADE algorithm against the state-
of-the-art through testing on thirty classical benchmark
functions.

• We analyze the application of the proposed algorithm in
intelligent IoT data traversed through a cloud.

The rest of the paper is as follows. We summarize the
related work in Section 2. In Section 3, we put forward the
IADE algorithm to preserve sustainability in 6G Networks,
and the experimental results and evaluation are analyzed in
Section 4. Section 5 explores some real applications can be
tuned based on IADE. Section 6 concludes the paper and
provide some outlooks.

2 RELATED WORKS

With the development of new emerging networks and the
rise of big data, the DE algorithm encounters a series of
challenges, such as the slow convergence rate of the DE
algorithm in late iteration, strong parameter dependence,
and easiness to fall into local optimum. Researchers adopt
strategies to solve the above problems, which can be divided
into three perspectives, namely, parameter optimization, evolu-
tion strategy improvement, and hybrid algorithm researches.
(1) Parameter optimization [17]–[21]: Improved parameters
are involved in this strategy, including population size,
crossover factor, and mutation factor. The main purpose is
to accelerate the algorithm performance by improving the
manner of assuming the value of parameters. Improved
approaches include setting fixed parameters, random pa-
rameters, and adaptive parameters [17]. The fixed parameter

value is set to the empirical value and remains unchanged
throughout the evolution of the population. The parameters
in the standard DE algorithm belong to this category. The
parameters need to be continuously adjusted to obtain bet-
ter algorithm performance. Setting the random parameters
and self-adaptive parameters can avoid the uncertainty of
artificial control parameters for the purpose of improving
the algorithm search capability and convergence speed.
Linear functions with random probabilities are required in
setting a way to assume the random value of parameters
[18]. The self-adaptive setting of parameter value [19] refers
to the self-adjustment of parameter value through feedback
according to evolutionary generations or fitness value as
well as the individual crowd. For example, Wang et al. [20]
initiated the DE by using the combination of composite trial
vector and mutation policy [21].
(2) Evolution strategy improvement [22]–[26]: Regarding
the evolution strategy of the DE algorithm, it includes a
series of operations such as selection strategy, crossover
strategy, and mutation policy. To some extent, in terms
of search capability and convergence speed, the evolution
strategy of the DE algorithm plays a decisive role. Main
improvement measures of such methods include the initi-
ation of a new evolution strategy. For example, to handle
the problem of multi-objective optimization, Ali et al. [25]
initiated an improved optimization method. Qiu et al. [26]
also put forward a minimax DE algorithm that pursues for
the optimized time and space cost.
(3) Hybrid algorithm research [27]–[29]: In research, com-
bining the DE algorithm with other algorithms is feasible
to improve the algorithm optimization capability. Hybrid
algorithm research belongs to algorithm refactoring, which
enables algorithm limitations in some perspectives to be
improved through other methods. For example, the DE
algorithm and other algorithms can be used in different
stages of searching for the best optimization process to
display their respective advantages so that new methods
can be constructed. Li et al. [27] combined the genetic
algorithm with the DE algorithm to deal with the problem
of multi-objective optimization in a sensor network. Li et
al. [28] also proposed a new algorithm combining the DE
algorithm with a PSO algorithm to address the problem of
resource assignment in a wireless sensor network. Recently,
the authors in [30] introduce a joint traffic-aware approach
addressing the a priority and power of Virtual machine
placement in a cloud data centers.

In addition to the above three types of algorithms, some
recent algorithms such as [31]–[36] also show excellent per-
formance in the process of finding solutions. For example,
in Ref. [31], a single-objective real-parameter optimization
method is proposed and the experimental results illustrate
its effectiveness. in Ref. [32], [35], two adaptive DE algo-
rithms have been put forward to solve the global opti-
mization problems and the proposed algorithms are highly
competitive.
Comparison vs. IADE: The DE algorithm explained earlier
facing some problems such as slow convergence rate in
late iteration, strong parameter dependence, and easiness
to fall into local optimum. To overcome these problems, we
introduce IADE which is a fast converge AI approach and
can deal with large scale network systems which is essential
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TABLE 1: Comparisons between different DE approaches to
cover the sustainability where ◦:= the method does not sup-
port the property, and •:= the method supports the property.
SF:=Scale Factor; SS:= Selection Strategy; MP:= Mutation Policy.

Ref. Type SF Population Crossover SS MP
[18] (1) ◦ • • • ◦
[19] (1) ◦ • • • ◦
[20] (1) ◦ • • • ◦
[25] (2) ◦ ◦ • • •
[26] (2) ◦ ◦ • • •
[27] (3) ◦ • • • •
[28] (3) ◦ • • • •
[22] (3) ◦ • • • •

IADE (3) • • • • •

in 6G environment. Table 1 summarises the various DE
methods comparisons and describes IADE characteristics
compared to other DE methods.

3 IADE: THE PROPOSED ALGORITHM

This section illustrates the proposed 6G-enabled network
instantiated on the networked cloud computing (section 3.1)
and then delineate the proposed IADE steps (sections 3.2-
3.5).

3.1 The Considered Architecture
The 6G network is an organic unit that requires extensive
connectivity and provides diverse quality of service require-
ments. Fig. 1 shows the architecture of the 6G distributed
networked cloud computing.

In this figure, the architecture includes ground wireless
access composed of a mass ground access point/distributed
antenna, space-based satellite access composed of different
constellation satellites, space-based wireless access com-
posed of low-altitude aircraft or airship, and sea-based
wireless access composed of ships and ships. Al of the
heterogeneous networks are managing through the 5G core
(see the colorful box inside the Fig. 1). Other access modes
can realize heterogeneous fusion network function man-
agement and resource cooperative management through an
integrated core network. Also, the center of the cloud is an
essential part of the 6G network like [37]. It is responsible
for assigning tasks to computing resources to meet the
diverse quality of service requirements. However, how to
provide differentiated and intelligent network services for
diversified 6G business scenarios? To address this issue,
we raise the IADE algorithm to optimize the allocation
of processing resources in the networked data center to
improve network resource utilization and reduce the energy
consumption cost. The main idea of the IADE algorithm
includes improvements of mutation factor, crossover factor,
mutation strategy, and selection strategy.

3.2 Improvements of Mutation Factor
The mutation factor F of the DE algorithm can mitigate
the search range and population variety. The DE algorithm
is highly sensitive to the setting of the mutation factor F ,
which is generally valued at the reals between [0, 2] to

control the amplitude of differential items [38]. An inap-
propriate setting F can result in no production of new
mutation individuals in the mutation stage, increased and
gradually the same individual similarity, as well as the
influence of convergence speed. When F set at a large value,
the differences of individuals are increased, which will also
improve the search scope of the algorithm. This process is
close to the global stochastic search, which leads to the slow
convergence of the algorithm, low exploration efficiency,
and low quality of the obtained solution. When F set at
a low value, the search scope of the algorithm becomes
small, whereas the local research is enhanced. Although the
convergence speed is accelerating, the algorithm will be of
the local optimization solution. Therefore, a reasonable set
of the mutation factor F is essential for the quality of the
best optimization solution to the algorithm. In the stan-
dard DE algorithm, F set as a fixed constant and remains
constant throughout the iterative solution process, which
will result in an algorithm that is incapable of meeting
the requirements of the parameters at each period in the
evolution process. Therefore, the algorithm easily falls into
the optimal local value so that global optimization cannot
be obtained. To solve the shortcomings of the DE algorithm
in this perspective, the value of F will be adaptively set in
this paper, that is, the value of F automatically set along
with the evolution process. When the algorithm is initially
iterated, F is set as a large value, which allows the algorithm
to possess a large search space to guarantee population
diversity. In the later stage, the value of F is continuously
reduced as the evolutionary algebra continues to increase.
At such time, the algorithm can perform local searches in a
small scope where a feasible solution is available, thereby
avoiding destroying the optimal solution and improving
search precision. Mutation factor F value can be described
in Eq. (1) and Eq. (2).

w(t) =
cos( |t−T |T π) + 1

2
(1)

F (t) = Fmax − (Fmax − Fmin) ∗ w(t) (2)

where parameter t is an evolutionary algebra, and T is the
largest evolutionary algebra of the population. The w(t)
is the weighting factor within the range of [0.4, 1]. In
this paper, the maximum value of the mutation factor is
Fmax = 1, whereas the minimum value of the mutation
factor is Fmin = 0.4.

3.3 Improvements of Crossover Factor
Crossover operations of the DE algorithm could effec-
tively improve the variety of individuals in a population.
Crossover factor CR in the crossover strategy determines
children and parents, and the extent of the dimensional
component exchanged between the crossover individuals.
A high CR indicates a high contribution of the mutation
variable. In each dimension component of the crossover
vector, the high proportion of each dimension component
that belongs to the mutation vector can reduce the diversity
of the population and be beneficial to the algorithm to
perform a local search to accelerate the convergence rate.
A low CR value is beneficial in maintaining the population
variety and global research capability. In the standard DE
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Fig. 1: Architecture of the 6G distributed networked cloud computing. OSS/BSS:= operations/business support system;
SMF:= session management function; UPF:= user plane functions; UDM:= unified data management; AMF:= Core access
and mobility management function.

algorithm, crossover factor CR is the fixed-parameter, which
cannot satisfy the requirements of each stage in the evolu-
tion process to CR values. Therefore, the value of crossover
factor CR needs to be constantly changed in the evolution
process according to the operation. The value of CR can be
depicted as,

CR(t) = CRmin + (CRmax − CRmin) ∗ w(t) (3)

Similar to mutation factor F , the value of CR needs to be
set according to the current evolutional generation t. With
the increase of evolutional generation t and the value of
weight factor , CR value also tends to be increased, which
can accelerate the convergence speed of fitness value at
the later stage of evolution and guarantee the convergence
accuracy at the same time. The w(t) is the weighting factor
within the range of [0.4, 1]. In this paper, the minimum value
of the crossover factor is CRmin = 0.6, and the maximum
value of the crossover factor is CRmax = 0.9.

3.4 Improvements of Mutation Strategy

In the DE algorithm, a single mutation pattern is often diffi-
cult to meet the needs of population evolution. Therefore, a
combination of various strategies can be employed to inte-
grate respective advantages. For example, DE/rand/1 mode
can guarantee population variety with great global search
capability, which is not easy to achieve in the local optimum
with slow convergence speed. However, the DE/best/1

mode offers faster convergence speed than the DE/rand/1
mode. The improved mutation strategy is achieved by com-
bining these two mutation models. The resulting strategy
can simultaneously take search ability and convergence into
consideration. The improved mutation pattern is:

u = 1− (
t

T
)2 (4)

vi(t) = u∗xr1(t)+(1−u)∗xbest(t)+F ∗(xr2(t)−xr3(t)) (5)

where parameter t means the evolutional generation, T
refers to the largest evolutionary generation of the popu-
lation and xi represents the current individual. xr1, xr2 and
xr3 represent three randomly chosen individuals varying
from xi , and xbest represents the best individual in the
contemporary population. Parameter u is varied along with
the iteration times t, and its image is a parabola in the
interval [0, 1], in which the value grows slowly in the early
period so that the value of u also decreases slowly. In the
early population evolution u→ 1, the mutation pattern can
be mostly inclined to DE/rand/1, in which the algorithm
has strong global search performance so that individual
population diversity can be guaranteed. In the later u → 0,
the mutation strategy is inclined to DE/best/1, in which
the algorithm could achieve improved balance among the
stability, search capability, and optimization speed to avoid
slow convergence speed in the early algorithm period. The
improved algorithm can adaptively select different mutation
strategies at different stages of the population evolution
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process so that search capability and convergence speed are
balanced.

Eq. (5) is further improved according to the mutation
strategy to better control the evolution direction of the
population in the later stage. An ”optimal difference value”
is added on the basis of the original, and the weighting
factors are added to control the respective contribution rates
of ”random difference” and ”optimal difference”. Improved
mutation strategy is defined in Eq. (6) and Eq. (7).

λ = 1−
√
t

T
(6)

vi(T ) =u ∗ xr1(T ) + (1− u) ∗ xbest(T )
+ F ∗ [λ(xr2(T )− xr3(T ))
+ (1− λ)(xbest(G)− xr4(T ))]

(7)

Where parameter u is varied along with the iteration time
t, and its image is parabola in the interval [0, 1]. Parameter
xbest is the best individual in the contemporary population,
λ is a weighting factor for controlling the disturbance of
the mutated individual in ‘random difference’ and ‘optimal
difference’. The value of λ ranges between [0,1], which
slowly increases with the evolutionary generation of the
population, thereby giving the weight more importance
in the early evolution period of ‘random difference’. It
(refer to λ) contributes the most to the variation vector.
The algorithm can strengthen the global search scope. In
the later stages of evolution, individuals in the population
will converge, thereby reducing the potential range of the
‘optimal solution’ and speeding up the search for optimal
solutions.

3.5 Improvements of Selection Strategy

In the selection operation steps of the standard DE algo-
rithm, the two individuals for comparing are the crossover
individual produced by the target individual and crossover
operations. The crossover operations further adjust each
dimensional component of individual vector quantity ob-
tained by the mutation operations so that individuals be-
come increasingly varied, and the algorithm can search for
the optimal solution in a wide range. However, the mutation
operation steps may also produce a global optimization
solution. As the mutation operation can directly lead to the
crossover operations of mutation individuals, the local com-
ponent of the mutation vector is substituted by crossover
operations, which will destroy the optimized solution.

In addition, in the crossover operations of the standard
DE algorithm, the individual crossover vector is composed
by selecting part of the parent individual or mutation in-
dividual according to the crossover probability CR. An-
other different crossover individual vector can be consti-
tuted through reverse selection according to the crossover
probability CR, as shown in the emphasized part of Fig. 2.
However, only one crossover individual vector used in the
standard DE algorithm among all the produced vectors
could result in the loss of the individual vector of the
optimized solution.

Therefore, the algorithm can obtain the current opti-
mized solution as much as possible to avoid destroying
the potential optimal individual in the population. The

Fig. 2: Reverse crossover individual vector

Algorithm 1 IADE Algorithm
Input: Initial fitness function f0, T , NP , D, Fmax, Fmin, CRmax,
CRmin
Output: Best fitness values f∗

NP: population size
T: largest evolutionary generation of NP
D: population individual

1: g ← 1 // Initialize the value of g
2: for g ≤ |G| do
3: Calculate F using Eq. (2) //Dynamically obtain the mutation

factor
4: Calculate CR using Eq. (3) //Dynamically gain the crossover

factor
5: for xi ∈ NP do
6: Calculate vi(T ) using Eq. (7)
7: end for
8: for xi ∈ NP do

CI(i): ith crossover individual
RCI(i): reverse ith crossover individual

9: CI(i)← CR(i)
10: RCI(i)← CR(i)T

11: end for
12: for xi ∈ NP do

select the individual with the minimum function
value to the next generation

13: Calculate f(xi) using Eq. (9) // Obtain the value of f(xi)
14: f∗ ← f(xi)
15: end for
16: end for
17: g ← g + 1
18: return f∗

standard DE algorithm is improved. Selection operation
steps of improved DE algorithm aim to select the individual
with optimal ‘fitness value’ into the next generation from
mutation vector vi, crossover vector ui, reverse crossover
vector hi, and target vector xi. Eq. (8) shows the improved
selection strategy:

xt+1
i =
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, f (xti)
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= f (xti)

(8)
In the selection operation steps of the standard DE al-

gorithm, when the fitness value of the crossover individual
is higher than that of the individual parent, the individual
parent will be maintained. When the fitness value of mu-
tation vector vi, crossover vector ui and reverse crossover
vector hi is higher than that of the parent target vector xi,
the average value of the optimal individual and median
individual is regarded as the value of the individual in the
next generation so as to accelerate the convergence speed
and population variety of algorithm. The selection strategy
in Eq. (8) is further improved, and the final selection strategy
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formula is as follows:
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(9)
In Eq.(9), xbest,j represents the individual with the opti-

mal fitness value in the current population, and xavg refers
to the median value of all the individuals. The calculation
formula of xavg individual vector xavg,j is as follows:

xavg,j =
1

NP
∗

NP∑
i=1

xi,j (10)

Fig. 3 shows the selection mechanism of IADE algorithm.

Fig. 3: Selection mechanism of IADE algorithm

The pseudo-code of IADE algorithm is shown below,
it mainly involves the mutation factor, crossover factor,
mutation, and selection strategy. The specific introduction of
the mutation factor, crossover factor, mutation, and selection
strategy are listed in Sections 3.2, 3.3, 3.4, 3.5, respectively.

Fig. 4 indicates the working process of the t-th iteration
of the population in the IADE algorithm.
The complexity of IADE: Based on the main idea of IADE
(refer to Algorithm1), the first big for loop (lines 2-16)
includes three smaller for loops with the size NP , where
refers to the size of population. Thus, the computational
complexity of each loop is of in the order of NP , O(NP ).
Thus, the total time complexity of IADE is characterized
by O(Gm × NP ), where parameter Gm corresponds to the
number of iterations.

4 PERFORMANCE EVALUATIONS

In this part, we explain the simulation settings/setup and
the results. In this way, first we set up the simulation settings
(see Section 4.1). Then, we present the results which are
separated into two parts: First, we describe the systematic
analysis (see Section 4.2). Then, we compare our algorithm
against the state-of-the-art (see Section 4.3).

4.1 Simulation Setup

To make a comparison and evaluation for the proposed
IADE algorithm, thirty benchmark functions [39] are se-
lected for simulation experiments. Moreover, to embody the
performance of the IADE algorithm on the objective func-
tion, the IADE algorithm and the other three DE algorithms
with different mutation strategies are compared through
experiments. In addition, the winners [40]–[42] of CEC2017

Fig. 4: Working process of the t-th iteration of the population
in IADE algorithm

unconstrained optimization competition and recent algo-
rithm [43], [44] also have added to make a comparison.
The DE algorithms with different mutation policies are:
DE/rand/1, DE/best/1 and DE/rand− to− best/2. The
MATLAB program implementation of IADE is available
in [45].

TABLE 2: Environmental parameter

Name Values
Operation system Windows 7 64bit
RAM 4G
ICPU 2.5GHz
Disk 500G
Test tool MATLAB2016a

Tables 2 and 3 show the IADE, DE/rand/1, DE/best/1
and DE/rand− to−best/2 algorithm parameter settings. To

TABLE 3: Parameter value of the algorithms

Algorithm NP F CR
DE/rand/1 100 0.5 0.9
DE/best/1 100 0.5 0.9
DE/rand - to - best/2 100 0.5 0.9
IADE 100 [0.4,1] [0.3,0.9]

ensure fairness in the performance test of the algorithm and
to remove random error in the experiment, each algorithm
of each test function is run 51 times separately. The mean
function values of the 51 running statistics are taken as the
final result and are included in the comparison of other
algorithms.
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TABLE 4: Result of the IADE algorithms for D=10 and D=30

D=10 D=30
Func Mean Best Worst Median Std Mean Best Worst Median Std

F1 8.54E+02 1.00E+02 3.12E+03 1.00E+02 1.51E+03 8.49E+03 2.52E+02 1.62E+04 6.86E+03 6.38E+03
F2 / / / / / / / / / /
F3 3.00E+02 3.00E+02 3.00E+02 3.00E+02 8.90E-10 3.00E+02 3.00E+02 3.02E+02 3.00E+02 7.95E-01
F4 3.51E+03 3.51E+03 3.51E+03 3.51E+03 4.55E-13 1.94E+04 1.94E+04 1.94E+04 1.94E+04 0.00E+00
F5 6.18E+02 6.14E+02 6.22E+02 6.17E+02 3.88E+00 7.93E+02 7.80E+02 8.18E+02 7.92E+02 1.47E+01
F6 6.43E+02 6.38E+02 6.52E+02 6.40E+02 6.73E+00 6.55E+02 6.49E+02 6.62E+02 6.54E+02 4.63E+00
F7 7.38E+02 7.23E+02 7.57E+02 7.36E+02 1.53E+01 9.04E+02 8.35E+02 1.00E+03 8.67E+02 7.38E+01
F8 8.13E+02 8.10E+02 8.17E+02 8.13E+02 4.02E+00 9.24E+02 8.95E+02 9.63E+02 9.10E+02 3.24E+01
F9 1.54E+03 1.46E+03 1.58E+03 1.56E+03 5.51E+01 5.44E+03 4.94E+03 6.02E+03 5.26E+03 4.41E+02
F10 1.77E+03 1.40E+03 2.03E+03 1.82E+03 2.69E+02 4.75E+03 3.65E+03 6.04E+03 4.51E+03 1.12E+03
F11 1.12E+03 1.11E+03 1.12E+03 1.12E+03 6.18E+00 1.22E+03 1.16E+03 1.28E+03 1.23E+03 4.95E+01
F12 8.05E+03 1.33E+03 2.74E+04 1.74E+03 1.29E+04 5.57E+04 1.33E+04 1.40E+05 4.42E+04 4.87E+04
F13 4.96E+03 1.31E+03 1.59E+04 1.31E+03 7.30E+03 1.57E+04 2.65E+03 4.69E+04 8.94E+03 1.84E+04
F14 1.42E+03 1.40E+03 1.44E+03 1.41E+03 2.02E+01 1.64E+03 1.54E+03 1.77E+03 1.62E+03 8.18E+01
F15 1.51E+03 1.50E+03 1.52E+03 1.51E+03 6.90E+00 6.84E+03 1.63E+03 2.48E+04 1.88E+03 1.01E+04
F16 1.70E+03 1.60E+03 1.84E+03 1.67E+03 1.17E+02 2.37E+03 2.10E+03 2.56E+03 2.51E+03 2.31E+02
F17 1.76E+03 1.73E+03 1.85E+03 1.73E+03 6.04E+01 2.08E+03 2.00E+03 2.27E+03 2.05E+03 1.11E+02
F18 1.83E+03 1.82E+03 1.84E+03 1.82E+03 9.11E+00 1.47E+04 2.45E+03 4.85E+04 6.48E+03 1.93E+04
F19 3.45E+03 3.44E+03 3.46E+03 3.45E+03 8.35E+00 7.20E+03 2.42E+03 1.22E+04 7.71E+03 4.67E+03
F20 2.06E+03 2.03E+03 2.14E+03 2.05E+03 5.02E+01 2.53E+03 2.31E+03 2.78E+03 2.44E+03 2.27E+02
F21 2.23E+03 2.20E+03 2.34E+03 2.20E+03 6.78E+01 2.38E+03 2.35E+03 2.42E+03 2.37E+03 2.88E+01
F22 2.30E+03 2.30E+03 2.30E+03 2.30E+03 1.00E+00 4.08E+03 2.30E+03 7.45E+03 2.30E+03 2.49E+03
F23 2.62E+03 2.61E+03 2.64E+03 2.62E+03 1.43E+01 2.73E+03 2.71E+03 2.76E+03 2.73E+03 2.00E+01
F24 2.75E+03 2.74E+03 2.76E+03 2.74E+03 1.04E+01 2.94E+03 2.88E+03 3.00E+03 2.95E+03 5.02E+01
F25 2.91E+03 2.90E+03 2.95E+03 2.90E+03 2.35E+01 2.90E+03 2.89E+03 2.91E+03 2.90E+03 9.48E+00
F26 2.94E+03 2.90E+03 3.00E+03 2.92E+03 4.97E+01 5.56E+03 4.92E+03 6.37E+03 5.29E+03 6.13E+02
F27 3.10E+03 3.09E+03 3.10E+03 3.09E+03 5.62E+00 3.24E+03 3.22E+03 3.25E+03 3.25E+03 1.34E+01
F28 3.17E+03 3.17E+03 3.17E+03 3.17E+03 6.95E-13 3.54E+03 3.54E+03 3.54E+03 3.54E+03 1.51E-12
F29 3.68E+03 3.65E+03 3.73E+03 3.68E+03 3.40E+01 7.34E+03 7.08E+03 7.81E+03 7.22E+03 2.95E+02
F30 5.08E+07 5.08E+07 5.08E+07 5.08E+07 6.10E-08 2.65E+09 2.65E+09 2.65E+09 2.65E+09 4.42E-06

4.1.1 Benchmark Test Functions

We evaluate the performance of the proposed algorithm on
the benchmark CEC 2017 [39], [46], [47]. Its mainly includes
30 functions (denoted by F1-F30). The F1-F3 belong to “uni-
modal functions”; F4-F10 is ”simple multimodal functions”;
F11-F20 is ”hybrid functions”; F21-F30 is ”composition func-
tions”. Each function needs to be run 51 times. For the
30 functions, the search range is [−100, 100]D, D is the
dimensions. In this paper, D={10, 30, 50, 100}.

4.2 IADE Systematic Analysis

The first experiment is to test the performance of the IADE
in terms of numerical results (systematic analysis). In this
experiment, we choose the benchmark CEC 2017 including
30 function with the dimensions 10, 30, 50, and 100. The
numerical results are depicted in Table 4 and Table 5, re-
spectively.

Table 4 illustrates the performance of the IADE algo-
rithm when D=10 and D=30, while Table 5 shows the
performance of the IADE algorithm when D=50 and D=100
with running 51 times for the 30 functions. In above two
Tables, the ”Mean” represents the average value for the 51
independent running results, the ”Best” means the optimal
value for the 51 independent running results, the ”Worst” is
the worst value, the ”Medium” is the middle value, and
”Std” corresponds to standard variance. As the running
result of F2 function from the CEC 2017 is unstable, we use
the symbol “/” instead. Table 4 and Table 5 indicate that the
the ”Mean” and ”Medium” value increases with the growth
of the dimension (for example, when the dimension from
D=10 to D=100), the reason is that the number of dimensions

growths, the difficulty of finding the solution to the problem
increases and the time taken growths.

4.2.1 Convergence analysis of the IADE algorithm on dif-
ferent functions
This section will test the convergence of the IADE algorithm
on different functions. We still use CEC 2017 benchmark
set. It includes 30 functions and all of the 30 functions can
be divided into four types that is “unimodal functions”
(F1-F3 function), ”simple multimodal functions” (F4-F10),
”hybrid functions” (F11-F20), and ”composition functions”
(F21-F30). To test the performance of the IADE algorithm,
we randomly choose one function from each of the four
types of functions, that is F3, F8, F11, and F21 functions.
Fig. 5 and Fig. 6 the convergence of the four functions on
dimension D=50 and D=100, respectively.

On the whole, Fig. 5 and Fig. 6 show that the IADE
algorithm has a better performance than DE/best/1 algo-
rithm in most cases. The solution performance of the IADE
algorithm is considerably better than that of the DE/rand/1
and DE/rand− to-best/2 algorithms, and has great advan-
tages in the convergence speed and solution accuracy of the
function values.

Experimental results display that the improved differen-
tial evolution algorithm IADE offers better solution accuracy
and convergence speed than DE/best/1, DE/rand/1 and
DE/rand-to-best/2 algorithms.

4.3 Comparison with the state-of-the-art algorithms
and statistical analysis
In this section, we compare IADE against the conven-
tional DE and also with state-of-the-art algorithms in-
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TABLE 5: Result of the IADE algorithms under the D=50 and D=100

D=50 D=100
Func Mean Best Worst Median Std Mean Best Worst Median Std

F1 3.25E+03 1.06E+02 1.24E+04 8.80E+02 4.46E+03 9.46E+04 3.69E+02 5.26E+05 8.87E+03 1.85E+05
F2 / / / / / / / / / /
F3 2.46E+03 3.09E+02 1.11E+04 1.57E+03 3.21E+03 3.68E+04 2.43E+04 4.96E+04 3.61E+04 8.20E+03
F4 3.12E+04 3.12E+04 3.12E+04 3.12E+04 1.24E-11 7.98E+04 7.98E+04 7.98E+04 7.98E+04 1.23E-10
F5 8.88E+02 8.54E+02 9.76E+02 8.81E+02 3.44E+01 1.41E+03 1.36E+03 1.47E+03 1.40E+03 3.44E+01
F6 6.62E+02 6.56E+02 6.69E+02 6.61E+02 3.92E+00 6.62E+02 6.59E+02 6.63E+02 6.63E+02 1.18E+00
F7 1.23E+03 1.13E+03 1.39E+03 1.23E+03 7.64E+01 2.59E+03 2.10E+03 2.97E+03 2.59E+03 2.92E+02
F8 1.09E+03 1.03E+03 1.18E+03 1.08E+03 4.66E+01 1.66E+03 1.41E+03 1.87E+03 1.67E+03 1.28E+02
F9 1.31E+04 1.24E+04 1.40E+04 1.32E+04 5.76E+02 2.39E+04 2.31E+04 2.52E+04 2.38E+04 7.15E+02
F10 7.98E+03 6.04E+03 9.70E+03 7.95E+03 1.36E+03 1.57E+04 1.36E+04 1.75E+04 1.60E+04 1.19E+03
F11 1.32E+03 1.24E+03 1.42E+03 1.34E+03 6.22E+01 3.40E+03 2.47E+03 6.49E+03 3.14E+03 1.16E+03
F12 9.99E+05 4.13E+05 2.02E+06 8.33E+05 5.62E+05 1.07E+07 5.01E+06 1.39E+07 1.17E+07 2.86E+06
F13 8.85E+03 2.05E+03 3.03E+04 5.93E+03 8.49E+03 1.02E+04 4.88E+03 1.56E+04 1.09E+04 3.42E+03
F14 5.27E+03 1.93E+03 9.15E+03 4.59E+03 2.38E+03 2.31E+05 7.64E+04 4.85E+05 1.84E+05 1.40E+05
F15 1.00E+04 1.82E+03 3.30E+04 6.38E+03 9.72E+03 4.79E+03 1.92E+03 8.26E+03 4.11E+03 2.66E+03
F16 3.07E+03 2.48E+03 3.75E+03 2.97E+03 4.27E+02 5.59E+03 4.53E+03 6.67E+03 5.56E+03 6.96E+02
F17 3.27E+03 2.58E+03 3.64E+03 3.35E+03 3.10E+02 4.86E+03 3.69E+03 5.94E+03 4.85E+03 7.32E+02
F18 1.12E+05 3.78E+04 3.33E+05 7.83E+04 8.98E+04 5.51E+05 2.03E+05 8.72E+05 5.78E+05 2.28E+05
F19 1.67E+08 1.67E+08 1.67E+08 1.67E+08 4.01E+01 2.82E+09 2.82E+09 2.82E+09 2.82E+09 1.06E+02
F20 3.39E+03 3.09E+03 3.82E+03 3.35E+03 2.65E+02 5.27E+03 4.23E+03 5.93E+03 5.56E+03 6.49E+02
F21 2.52E+03 2.46E+03 2.62E+03 2.51E+03 4.60E+01 2.95E+03 2.82E+03 3.19E+03 2.90E+03 1.46E+02
F22 1.01E+04 9.06E+03 1.12E+04 1.01E+04 7.53E+02 1.83E+04 1.69E+04 2.09E+04 1.83E+04 1.13E+03
F23 2.97E+03 2.89E+03 3.02E+03 2.97E+03 3.90E+01 3.47E+03 3.34E+03 3.68E+03 3.45E+03 9.11E+01
F24 3.13E+03 3.07E+03 3.17E+03 3.13E+03 3.48E+01 4.07E+03 3.93E+03 4.31E+03 4.04E+03 1.09E+02
F25 3.09E+03 3.06E+03 3.12E+03 3.09E+03 1.91E+01 3.38E+03 3.26E+03 3.46E+03 3.38E+03 6.40E+01
F26 8.18E+03 6.31E+03 1.07E+04 7.69E+03 1.53E+03 1.87E+04 1.32E+04 2.36E+04 1.92E+04 3.28E+03
F27 3.62E+03 3.43E+03 3.86E+03 3.58E+03 1.34E+02 3.92E+03 3.72E+03 4.69E+03 3.84E+03 2.80E+02
F28 3.88E+03 3.88E+03 3.94E+03 3.88E+03 2.03E+01 5.46E+03 5.22E+03 5.77E+03 5.41E+03 1.54E+02
F29 1.55E+05 1.55E+05 1.57E+05 1.55E+05 6.22E+02 5.20E+04 5.05E+04 5.30E+04 5.22E+04 9.53E+02
F30 6.21E+09 6.21E+09 6.21E+09 6.21E+09 7.78E-05 2.06E+10 2.06E+10 2.06E+10 2.06E+10 1.98E-01

(a) F3 (b) F8 (c) F11 (d) F21

Fig. 5: Convergence function value results for D=50

(a) F3 (b) F8 (c) F11 (d) F21

Fig. 6: Convergence function value results for D=100

cluding the JSO [40], LSHADE-SPACMA [41], EBWO [42],
EBLSHADE [43] and EAGDE [44].

4.3.1 Comparison of IADE algorithm Vs. DE

In the first experiment, we make a comparison between the
DE algorithm and IADE algorithm. In this paper, we involve
four main improvements: (i) Improvements of Mutation
Factor, (ii) Improvements of Crossover Factor, (iii) Improve-
ments of Mutation Strategy, (iiii) Improvements of Selection

Strategy. To embody the advantage for each improvement
strategy, we do the following evaluation.

(1) To test the individual effect of ”Improvements of Mutation
Factor” on the performance of IADE algorithm, the same
IADE, version without the other three improvements (Im-
provements of Crossover Factor, Improvements of Muta-
tion Strategy, and Improvements of Selection Strategy).
This version can be called IADE-1.

(2) To test the individual effect of ”Improvements of
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TABLE 6: Performance comparison among DE, IADE-1 and IADE-2

DE IADE-1 IADE-2
Func Mean Mean Best Worst Median Std Mean Best Worst Median Std

F1 5.59E+10 6.05E+07 1.00E+02 2.42E+08 1.00E+02 1.21E+08 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.83E-14
F2 / / / / / / / / / / /
F3 7.02E+04 5.12E+02 3.00E+02 1.15E+03 3.00E+02 4.24E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 2.61E-07
F4 1.94E+04 1.94E+04 1.94E+04 1.94E+04 1.94E+04 6.16E+00 1.94E+04 1.94E+04 1.94E+04 1.94E+04 2.10E-12
F5 8.48E+02 7.75E+02 7.70E+02 7.80E+02 7.75E+02 5.02E+00 7.54E+02 7.47E+02 7.59E+02 7.54E+02 6.56E+00
F6 6.63E+02 6.46E+02 6.43E+02 6.51E+02 6.45E+02 3.57E+00 6.41E+02 6.39E+02 6.42E+02 6.42E+02 1.30E+00
F7 1.21E+03 8.35E+02 7.68E+02 8.96E+02 8.39E+02 6.98E+01 7.80E+02 7.56E+02 8.02E+02 7.80E+02 2.11E+01
F8 1.04E+03 8.35E+02 8.29E+02 8.45E+02 8.33E+02 7.53E+00 8.36E+02 8.32E+02 8.43E+02 8.33E+02 5.02E+00
F9 7.44E+03 4.98E+03 4.55E+03 5.48E+03 4.94E+03 3.94E+02 5.66E+03 4.87E+03 7.55E+03 5.10E+03 1.27E+03
F10 5.96E+03 5.20E+03 4.05E+03 7.93E+03 4.41E+03 1.83E+03 6.02E+03 3.79E+03 8.07E+03 6.12E+03 2.01E+03
F11 1.55E+08 1.20E+03 1.18E+03 1.22E+03 1.20E+03 1.54E+01 1.15E+03 1.12E+03 1.17E+03 1.15E+03 3.13E+01
F12 2.36E+10 4.94E+06 4.60E+04 9.86E+06 4.92E+06 5.63E+06 5.66E+04 4.21E+03 8.50E+04 6.85E+04 3.81E+04
F13 7.20E+09 1.79E+07 9.44E+03 7.17E+07 2.13E+04 3.58E+07 1.34E+03 1.33E+03 1.36E+03 1.35E+03 1.32E+01
F14 5.42E+08 1.47E+03 1.43E+03 1.52E+03 1.46E+03 3.61E+01 1.43E+03 1.43E+03 1.44E+03 1.43E+03 3.85E+00
F15 1.56E+03 1.91E+03 1.74E+03 2.16E+03 1.88E+03 1.86E+02 1.51E+03 1.51E+03 1.51E+03 1.51E+03 1.52E+00
F16 2.57E+03 2.46E+03 2.11E+03 3.20E+03 2.27E+03 5.04E+02 2.02E+03 1.67E+03 2.38E+03 2.02E+03 2.93E+02
F17 1.99E+03 2.13E+03 1.87E+03 2.48E+03 2.09E+03 2.56E+02 1.83E+03 1.82E+03 1.86E+03 1.83E+03 1.63E+01
F18 4.79E+03 2.74E+05 1.92E+03 5.38E+05 2.78E+05 3.05E+05 1.91E+03 1.87E+03 1.96E+03 1.90E+03 4.15E+01
F19 1.93E+03 4.48E+05 2.31E+03 1.77E+06 1.17E+04 8.80E+05 2.30E+03 2.30E+03 2.30E+03 2.30E+03 2.24E+00
F20 2.10E+03 2.52E+03 2.28E+03 2.72E+03 2.54E+03 1.84E+02 2.12E+03 2.06E+03 2.24E+03 2.09E+03 8.35E+01
F21 2.89E+03 2.40E+03 2.34E+03 2.48E+03 2.39E+03 7.20E+01 2.34E+03 2.33E+03 2.35E+03 2.34E+03 8.67E+00
F22 8.56E+03 5.96E+03 5.12E+03 7.55E+03 5.57E+03 1.09E+03 8.04E+03 5.64E+03 9.42E+03 8.54E+03 1.76E+03
F23 5.44E+03 2.72E+03 2.71E+03 2.74E+03 2.72E+03 1.31E+01 2.70E+03 2.68E+03 2.72E+03 2.70E+03 1.54E+01
F24 4.90E+03 2.91E+03 2.87E+03 2.96E+03 2.91E+03 3.65E+01 2.87E+03 2.86E+03 2.88E+03 2.87E+03 1.27E+01
F25 6.74E+03 2.89E+03 2.89E+03 2.91E+03 2.89E+03 1.03E+01 2.89E+03 2.89E+03 2.89E+03 2.89E+03 2.84E-02
F26 1.30E+04 4.27E+03 4.05E+03 4.58E+03 4.24E+03 2.47E+02 4.00E+03 3.88E+03 4.07E+03 4.03E+03 8.27E+01
F27 7.30E+03 3.21E+03 3.20E+03 3.22E+03 3.21E+03 6.60E+00 3.19E+03 3.19E+03 3.20E+03 3.19E+03 4.53E+00
F28 8.50E+03 3.58E+03 3.54E+03 3.62E+03 3.58E+03 3.35E+01 3.54E+03 3.54E+03 3.54E+03 3.54E+03 2.63E-13
F29 8.32E+04 7.33E+03 7.14E+03 7.63E+03 7.27E+03 2.30E+02 7.03E+03 7.03E+03 7.05E+03 7.03E+03 1.18E+01
F30 7.76E+09 2.65E+09 2.65E+09 2.65E+09 2.65E+09 5.93E+05 2.65E+09 2.65E+09 2.65E+09 2.65E+09 0.00E+00

Crossover Factor” on the performance of IADE algorithm,
the same IADE, version without the other three improve-
ments (Improvements of Mutation Factor, Improvements
of Mutation Strategy, and Improvements of Selection
Strategy). This version can be called IADE-2.

(3) To test the individual effect of ”Improvements of Mutation
Strategy” on the performance of IADE algorithm, the
same IADE, version without the other three improve-
ments (Improvements of Mutation Factor, Improvements
of Crossover Factor, and Improvements of Selection Strat-
egy). This version can be called IADE-3.

(4) To test the individual effect of ”Improvements of Selection
Strategy” on the performance of IADE algorithm, the
same IADE, version without the other three improve-
ments (Improvements of Mutation Factor, Improvements
of Crossover Factor, and Improvements of Mutation Strat-
egy). This version can be called IADE-4.

Table 6 and Table 7 show the experimental results with
the dimension D=30 among the DE and IADE-1, IADE-2,
IADE-3, and IADE-4 algorithm.

To obtain the statistical results for the DE and IADE-
1, IADE-2, IADE-3 and IADE-4 algorithm, we select the
”Wilcoxon” method [48] do a statistical test. Table 8 illus-
trates the statistical results and final decision that is which
algorithm is better As shown in Table 8, we have test four
groups, that is ”IADE-1 vs.- DE”, ”IADE-2 vs.- DE”, ”IADE-
3 vs.- DE”, and ”IADE-4 vs.- DE”. Sign ”+” represents the
first algorithm is better than the second algorithm, that
is to say the first algorithm owns the better performance.
Contrary to sign ”+”, sign ”-” means the the second algo-
rithm has a better than the first one; Sign ”≈” means that
there is no significant different between the two algorithms.

Sign ”Dec.” represent the decision making. Table 8 shows
that, IADE-1, IADE-2, IADE-3, and IADE-4 owns the better
performance than DE algorithm.

We also compare IADE against the state-of-the-art al-
gorithms including the JSO [40], LSHADE-SPACMA [41],
EBWO [42], EBLSHADE [43] and EAGDE [44]. Table 9
presents the comparison results.

To determine which algorithm is better than other one.
We have made a ”Wilcoxon” statistical test. The test results
are shown in Table 10.

In Table 10, we have tested five groups, that is ”IADE vs.-
JSO”, ”IADE vs.- LSADE-SPACMA”, ”IADE vs.- EBWO”,
”IADE vs.- EBLSHADE”, and IADE vs.- EAGDE”. Sign
”+” represents the first algorithm is better than the second
algorithm. Contrary to sign ”+”, sign ”-” means the the
second algorithm has a better than the first one; Sign ”≈”
means that there is no significant different between the two
algorithms. Sign ”Dec.” represent the decision making. As
Table 10 states, IADE has the better performance compared
with the EAGDE algorithm. However, for the other four
algorithms under the CEC 2017 function set, the IADE algo-
rithm presents some weaknesses in terms of convergence.

For comparisons and evaluations, we select the five
algorithms that are the JSO [40], SHADE-SPACMA [41],
EBWO [42], EBLSHADE [43], EAGDE [44], and DE as com-
parison algorithms to embody the advantage of IADE in
terms of total execution time, load balance, and delivered
QoS. The parameter value is listed in Table 11. The task size
is randomly and uniformly generated and the values are
[5000, 10000] MI; the number of VMs was 10; the processing
capacities of VMs were generated as random numbers, and
its values belong to [1000, 5000].



IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 10

TABLE 7: Performance comparison among DE, IADE-3 and IADE-4

DE IADE-3 IADE-4
Func Mean Mean Best Worst Median Std Mean Best Worst Median Std

F1 5.59E+10 8.07E+03 1.00E+02 2.44E+04 3.90E+03 1.15E+04 1.06E+10 6.92E+09 1.56E+10 8.98E+09 3.66E+09
F2 / / / / / / / / / / /
F3 7.02E+04 3.00E+02 3.00E+02 3.00E+02 3.00E+02 5.13E-13 1.93E+05 6.66E+04 2.72E+05 1.88E+05 8.06E+04
F4 1.94E+04 1.94E+04 1.94E+04 1.94E+04 1.94E+04 3.39E-02 2.14E+04 2.10E+04 2.21E+04 2.11E+04 4.81E+02
F5 8.48E+02 8.06E+02 7.87E+02 8.28E+02 8.04E+02 2.12E+01 8.41E+02 8.24E+02 8.82E+02 8.34E+02 2.36E+01
F6 6.63E+02 6.50E+02 6.46E+02 6.55E+02 6.50E+02 3.58E+00 6.70E+02 6.64E+02 6.83E+02 6.65E+02 8.73E+00
F7 1.21E+03 7.81E+02 7.63E+02 8.25E+02 7.69E+02 2.92E+01 1.05E+03 1.00E+03 1.16E+03 1.03E+03 6.65E+01
F8 1.04E+03 8.58E+02 8.43E+02 8.69E+02 8.60E+02 1.15E+01 1.00E+03 9.54E+02 1.05E+03 1.02E+03 4.55E+01
F9 7.44E+03 4.94E+03 4.50E+03 5.20E+03 5.03E+03 3.23E+02 7.87E+03 6.59E+03 8.86E+03 7.95E+03 8.30E+02
F10 5.96E+03 3.35E+03 2.70E+03 3.75E+03 3.47E+03 4.97E+02 6.36E+03 5.16E+03 7.52E+03 6.52E+03 9.40E+02
F11 1.55E+08 1.24E+03 1.19E+03 1.29E+03 1.24E+03 4.71E+01 5.58E+03 2.82E+03 7.01E+03 6.37E+03 1.80E+03
F12 2.36E+10 1.98E+04 4.60E+03 4.24E+04 1.62E+04 1.78E+04 4.76E+08 9.92E+07 8.65E+08 5.72E+08 3.45E+08
F13 7.20E+09 3.48E+04 2.94E+03 6.61E+04 3.50E+04 3.52E+04 1.48E+05 1.09E+05 2.01E+05 1.50E+05 3.75E+04
F14 5.42E+08 1.49E+03 1.46E+03 1.52E+03 1.49E+03 2.73E+01 7.95E+05 7.45E+03 2.92E+06 3.09E+05 1.22E+06
F15 1.56E+03 1.22E+04 1.53E+03 4.36E+04 1.85E+03 2.09E+04 8.24E+04 4.35E+04 1.42E+05 6.48E+04 4.38E+04
F16 2.57E+03 2.29E+03 2.18E+03 2.51E+03 2.24E+03 1.55E+02 3.36E+03 2.67E+03 3.94E+03 3.46E+03 5.31E+02
F17 1.99E+03 1.91E+03 1.78E+03 2.13E+03 1.87E+03 1.57E+02 2.26E+03 1.94E+03 2.53E+03 2.33E+03 2.43E+02
F18 4.79E+03 1.98E+03 1.84E+03 2.31E+03 1.89E+03 2.16E+02 1.03E+07 1.93E+05 2.10E+07 1.02E+07 1.01E+07
F19 1.93E+03 2.41E+03 2.38E+03 2.46E+03 2.40E+03 3.22E+01 8.22E+06 3.96E+06 1.34E+07 9.15E+06 3.70E+06
F20 2.10E+03 2.28E+03 2.19E+03 2.39E+03 2.26E+03 8.35E+01 2.76E+03 2.68E+03 2.89E+03 2.72E+03 8.97E+01
F21 2.89E+03 2.40E+03 2.35E+03 2.52E+03 2.37E+03 8.24E+01 2.53E+03 2.49E+03 2.58E+03 2.52E+03 4.15E+01
F22 8.56E+03 2.79E+03 2.30E+03 4.24E+03 2.31E+03 9.67E+02 7.54E+03 3.89E+03 9.04E+03 8.18E+03 2.08E+03
F23 5.44E+03 2.77E+03 2.71E+03 2.88E+03 2.74E+03 7.90E+01 2.95E+03 2.85E+03 3.07E+03 2.93E+03 8.60E+01
F24 4.90E+03 2.92E+03 2.88E+03 2.98E+03 2.90E+03 4.40E+01 3.14E+03 3.06E+03 3.20E+03 3.14E+03 5.84E+01
F25 6.74E+03 2.89E+03 2.89E+03 2.90E+03 2.89E+03 3.22E+00 3.83E+03 3.29E+03 4.99E+03 3.62E+03 6.71E+02
F26 1.30E+04 4.47E+03 4.08E+03 4.72E+03 4.55E+03 2.77E+02 6.92E+03 6.18E+03 8.12E+03 6.66E+03 8.56E+02
F27 7.30E+03 3.23E+03 3.22E+03 3.24E+03 3.23E+03 1.03E+01 3.43E+03 3.31E+03 3.51E+03 3.46E+03 8.41E+01
F28 8.50E+03 3.60E+03 3.56E+03 3.64E+03 3.59E+03 3.33E+01 4.29E+03 4.07E+03 4.50E+03 4.24E+03 1.95E+02
F29 8.32E+04 7.93E+03 7.64E+03 8.35E+03 7.86E+03 3.02E+02 1.06E+04 9.05E+03 1.24E+04 1.04E+04 1.23E+03
F30 7.76E+09 2.65E+09 2.65E+09 2.65E+09 2.65E+09 4.97E+04 3.39E+09 3.24E+09 3.52E+09 3.41E+09 1.06E+08

TABLE 8: Wilcoxon’s test results on D=30

Algorithms + ≈ - Dec.
IADE-1 vs.- DE 23 2 5 +
IADE-2 vs.- DE 25 2 3 +
IADE-3 vs.- DE 25 2 3 +
IADE-4 vs.- DE 18 2 10 +

4.3.2 Comparison based on Total Execution Time
The second experiment is to evaluate the indicator of task
execution time. In general, the lower the task execution time,
the higher the performance. Fig. 7 illustrates the perfor-
mance of the algorithms, as shown below:
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Fig. 7: The total execution time comparison

Fig. 7 indicates that the total execution time grows with
the increase of task number. This figure also shows that,
in terms of total execution time, EBWO leads to the best
performance, LSHADE-SPACMA the second, JSO is the
third, EBLSHADE fouth, IADE the fifth, EAGDE the sixth,

DE the worst. The EBWO algorithm is the best because it
leverages the covariance matrix to generate a new solution
and improve the local search capability of the algorithm.
IADE is better than EAGDE and DE algorithm. The reason is
that IADE improves the scaling factor, crossover probability,
variation, and selection strategy of the DE algorithm. Thus,
the parameters can be adaptively adjusted with the iterative
evolution of the population. Therefore, the IADE algorithm
leads to better performance in terms of total execution time.
LSHADE-SPACMA is better than the JSO algorithm, and the
reason is that LSHADE-SPACMA leverages the advantage
of both LSHADE-SPA and CMA-ES.

4.3.3 Comparisons based on Workload Balance
The third experiment evaluates the indicator of workload
balance. Fig. 8 displays the comparison of workload balance.
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Fig. 8: The workload balance comparison

Regarding the workload balance level, the less value of
the workload balance, the better. Fig. 8 present the workload



IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 11

TABLE 9: Comparison with the state-of-the-art algorithms for CEC 2017 and CEC 2013

CEC 2017 and D=30 CEC 2013 and D=30
Func JSO IADE LSHADE-SPACMA EBWO EBLSHADE EAGDE IADE

F1 0.00E+00 8.49E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.0000E+00
F2 / / / / / / /
F3 0.00E+00 3.00E+02 0.00E+00 0.00E+00 0.00E+00 2.15E+03 1.4000E+03
F4 5.87E+01 1.94E+04 5.86E+01 5.65E+01 5.90E+01 3.85E+00 5.3905E-01
F5 8.56E+00 7.93E+02 3.45E+00 2.78E+00 6.70E+00 0.00E+00 0.0000E+00
F6 6.04E-09 6.55E+02 0.00E+00 0.00E+00 1.50E-08 4.84E+00 7.6467E+00
F7 3.89E+01 9.04E+02 3.38E+01 3.35E+01 3.70E+01 2.34E+00 2.0225E+00
F8 9.09E+00 9.24E+02 3.20E+00 2.02E+00 8.00E+00 2.09E+01 2.1135E+00
F9 0.00E+00 5.44E+03 0.00E+00 0.00E+00 0.00E+00 2.56E+01 5.0132E+01
F10 1.53E+03 4.75E+03 1.44E+03 1.41E+03 1.40E+03 1.34E-02 2.0656E-02
F11 3.04E+00 1.22E+03 1.78E+01 4.49E+00 3.40E+01 0.00E+00 0.0000E+00
F12 1.70E+02 5.57E+04 6.15E+02 4.63E+02 1.00E+03 8.46E+01 5.8227E+01
F13 1.48E+01 1.57E+04 1.46E+01 1.49E+01 1.60E+01 1.04E+02 1.3153E+02
F14 2.18E+01 1.64E+03 2.34E+01 2.19E+01 2.20E+01 2.00E-01 2.1266E-01
F15 1.09E+00 6.84E+03 4.46E+00 3.69E+00 3.80E+00 5.46E+03 3.4056E+03
F16 7.89E+01 2.37E+03 2.52E+01 4.26E+01 4.20E+01 2.27E+00 2.0076E+00
F17 3.29E+01 2.08E+03 3.04E+01 2.98E+01 3.30E+01 3.04E+01 1.0033E+01
F18 2.04E+01 1.47E+04 2.34E+01 2.21E+01 2.30E+01 1.80E+02 6.2975E+02
F19 4.50E+00 7.20E+03 1.03E+01 8.04E+00 6.10E+00 2.72E+00 1.9645E+00
F20 2.94E+01 2.53E+03 8.38E+01 3.57E+01 3.10E+01 1.16E+01 6.1500E+01
F21 2.09E+02 2.38E+03 2.07E+02 1.99E+02 2.10E+02 2.94E+02 6.1500E+02
F22 1.00E+02 4.08E+03 1.00E+02 1.00E+02 1.00E+02 1.11E+02 8.9199E+02
F23 3.51E+02 2.73E+03 3.55E+02 3.51E+02 3.60E+02 5.75E+03 4.7833E+03
F24 4.26E+02 2.94E+03 4.29E+02 4.18E+02 4.30E+02 2.05E+02 1.2658E+02
F25 3.87E+02 2.90E+03 3.87E+02 3.87E+02 3.90E+02 2.80E+02 1.3945E+02
F26 9.20E+02 5.56E+03 9.53E+02 5.37E+02 9.80E+02 2.00E+02 1.4000E+03
F27 4.97E+02 3.24E+03 5.05E+02 5.02E+02 5.10E+02 6.22E+02 2.2453E+02
F28 3.09E+02 3.54E+03 3.11E+02 3.08E+02 3.40E+02 3.00E+02 3.0902E+03
F29 4.34E+02 7.34E+03 4.45E+02 4.33E+02 4.40E+02
F30 1.97E+03 2.65E+09 2.01E+03 1.99E+03 2.00E+03

TABLE 10: Wilcoxon’s test results on D=30

Algorithms + ≈ - Dec.
IADE vs.- JSO 0 1 29 -

IADE vs.- LSADE-SPACMA 0 1 29 -
IADE vs.- EBWO 0 1 29 -

IADE vs.- EBLSHADE 0 1 29 -
IADE vs.- EAGDE 13 3 12 +

TABLE 11: Parameter settings

Parameter Values
Task size 5000-10000MI
Task number 100-1000
Number of VMs 10
Processing capacities of VMs 1000-5000MI
Mutation factor F 0.5
Crossover factor CR 0.9
Population size NP 100

balance level of our proposed algorithm, IADE, in terms
of workload balance and highlights that IADE has a better
performance than EAGDE and DE. The reason behind this
can be explained as follows. Due to the limitation of fixed
parameters and single mutation strategy, the solution accu-
racy and speed of the two algorithms are lower than IADE.
The workload balance is slower than IADE. In the field of
workload balance level, the algorithms (EBWO, LSHADE-
SPACMA, JSO, and EBLSHADE) have a better workload
balance level than the IADE algorithm. This is because these
algorithms have some advantages in finding a solution.

4.3.4 Comparison based on Quality of Services

For any multi-objective scheduling or energy-aware algo-
rithms, the Quality of Services (QoS) indicator plays a key

role during evaluation. The third experiment is to test the
indicator of QoS delivered. As the QoS factor is related to
the execution time and workload balance, the definition of
QoS indicator (TQoS) can be defined as follows:

TQoS =
1

TE × TB
(11)

Where parameter TQoS corresponds to the QoS delivered
by the comparisons, TE is the task execution time, and TB
represents the workload balance. As there is no uniform unit
for parameter TE and TB , it needs to do a normalization.
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Fig. 9: The delivered QoS comparison

According to the definition of Eq. (11), Fig. 9 displays
the comparison of the QoS delivered. From this figure, we
understand that when the task numbers increase, the QoS
delivered decreases for all algorithms, and interestingly,
IADE performs better than EAGDE and DE. The reason
can be explained as follows: according to the definition
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of Eq. (11), the QoS indicator is related to task execution
time and workload balance. Compared with the EAGDE
and DE algorithms (as the two highest QoS delivered after
IADE), IADE has a better performance in task execution
time and workload balance. Therefore, it confirms that IADE
performs the best performance. Also, LSHADE-SPACMA is
better than JSO. The same reason could explain the reason.
As the four algorithms (EBWO, LSHADE-SPACMA, JSO,
and EBLSHADE) have some advantages in terms of task
execution time and workload balance, according to the
Eq. (11), they lead to better QoS performance.

5 APPLICATION OF THE IADE IN 6G ENVIRON-
MENT

We indicate that our IADE could be extended and applied
in many fields, such as in 5G/6G networked devices, intel-
ligence cloud, Blockchain [49], large-scale networked data
center [50] intending to meet the requirement of sustainable
development. This part will apply the IADE algorithm to
task scheduling within the intelligent cloud to evaluate its
performance. In this case, IADE could be tuned and applied
as an intelligence solution over MEC to tackle task schedul-
ing of the lower-level demands coming from IoT or industry
4.0 applications and optimize the energy consumption of the
engaged entities like servers and data centers. Additionally,
this method can be placed as encapsulated service over the
hosts connected to the switches and locally monitor the
traffic flows in each switch equipped with an edge node.

6 CONCLUSIONS AND FUTURE DIRECTIONS

This paper proposed an improved adaptive differential
evolution algorithm, IADE, defining a green network data
steering to preserve resource allocation in the 6G network.
IADE improves the mutation factor F , crossover factor CR,
mutation, and selection strategies of the standard DE algo-
rithm applying network data traffic. The IADE algorithm
and other variant mode DE algorithms are tested using
thirty classical benchmark functions. Also, we assess the
application of the proposed algorithm in intelligent IoT
data traversed through a Cloud. The experimental results
confirm that the IADE algorithm is more capable of con-
vergence and maximizing local optimization than other
DE algorithms. The proposed algorithm can be applied
in large-scale network intelligence combined with a net-
worked data center, providing network sustainability and
improving service quality for different levels of resource-
constrained devices. In future, we plan to extend IADE
as multi-objective solutions jointly the metrics related to
the large-scale environment-aware network capabilities and
concurrent connections between the network devices, in-
creasing companies’ investment return rate.
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