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Abstract—This paper studies the performance of improper
Gaussian signaling (IGS) in a multicell broadcast multiple-
input, multiple-output (MIMO) reconfigurable-intelligent-surface
(RIS)-assisted channel. The transceivers are non-ideal devices
with I/Q imbalance, which further motivates the use of IGS.
We propose IGS schemes to improve the spectral and energy
efficiency (EE) of the system by solving different optimization
problems such as minimum-weighted-rate, weighted-sum-rate,
minimum-weighted-EE and global-EE maximization. Two dif-
ferent RIS implementations are considered: in the first one, the
phase and amplitude of the RIS components can be optimized
independently, which provides an upper-bound for RIS perfor-
mance. In the second implementation, the amplitude of each
RIS component is fixed, and only its phase can be optimized,
which is referred to as reflecting surfaces. We show that RIS
can significantly increase the spectral and energy efficiency of
the system, while the reflecting surfaces perform very close to
the upper-bound performance of RISs. Moreover, distributed RIS
implementations that use spatially separated RIS with fewer com-
ponents, can outperform centralized implementations consisting
of a single RIS with co-located reflecting elements. Additionally,
our results indicate that IGS can provide considerable gains from
both spectral and energy-efficiency perspectives, and the benefits
of IGS can be even higher in RIS-assisted systems.

Index Terms—Energy efficiency, fairness rate, improper Gaus-
sian signaling, I/Q imbalance, majorization minimization, MIMO
broadcast channels, reflecting intelligent surface, sum-rate max-
imization.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) contain a large
number of low-cost controllable elements, which have sizes
and inter-distances much smaller than the wavelength, and
are able to dynamically modulate wireless channels [1]–[3].
RISs are currently receiving a lot of attention as a promising
technology to improve the spectral and energy efficiency
of beyond 5G (B5G)/6G wireless communication systems
[4]–[12]. Due to ever-increasing demand for data rate and
bandwidth shortage, modern wireless communication systems
are mainly restricted by interference and thus, it is interesting
to investigate the performance of RISs in interference-limited
systems under realistic assumptions.
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A. Related work

RIS is a new promising technology, which is expected to
play a key role in next generations of wireless communication
systems. The performance of RISs has been studied in various
systems [1]–[12]. For instance, the authors in [4] considered
the downlink of a single-cell system with a multiple-antenna
base station (BS) and multiple single-antenna users in the
presence of RIS. They assumed that there is no direct link
between the BS and users, and proposed schemes to improve
the sum rate and global EE of the system. The authors in
[5] considered a multi-user single-cell multiple-input, single-
output (MISO) RIS-assisted system and proposed beamform-
ing schemes to maximize the signal-to-interference-plus-noise
ratio (SINR) of users. They showed that RIS can substantially
improve the system performance if the RIS components are
optimized properly. The paper [6] proposed an algorithm to
maximize the minimum SINR of a single-cell MISO RIS-
assisted system. In [10], the authors studied the uplink of
a single-user single-input, single-output (SISO) orthogonal
frequency division multiplexing (OFDM) RIS-assisted with
frequency-selective channels and proposed a power allocation
scheme as well as a channel estimation algorithm to increase
the user rates. Algorithms to improve the spectral efficiency of
different MIMO RIS-assisted systems have also been proposed
in [8], [9]. Finally, a power allocation algorithm to maximize
the sum rate of a multi-cell SISO RIS-assisted system with
non-orthogonal multiple-access (NOMA) was proposed in
[12].

The aforementioned works considered ideal devices. Unfor-
tunately, devices in practice suffer from hardware impairments
(HWI), which is one of the most limiting factors in wireless
communication systems [13]–[17]. HWI may drastically de-
grade the system performance especially when these imperfec-
tions are overlooked in the design [18]. A particularly impor-
tant source of distortion in non-ideal devices is I/Q imbalance
(IQI), which is modeled as a widely linear transformation of
the input signal [16]–[18]. Hence, IQI makes the output signal
improper and motivates us to employ improper signaling to
compensate this imperfection. In a complex improper variable,
the real and imaginary parts are correlated and/or have unequal
powers [19].

Another main performance limitation in modern wireless
communication systems is interference from other users shar-
ing the same communication channel. It has been shown that
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improper Gaussian signaling (IGS) is able to improve the
spectral and energy-efficiency of various interference-limited
systems such as cognitive radio systems [20]–[23], multi-
user interference channels (IC) [14], [18], [24]–[31], NOMA
systems [32], [33], broadcast channels [7], [34], device-to-
device communications [35], and energy harvesting systems
[36], [37], to mention a few. Employing IGS, on the one hand,
decreases the undesired consequences of interference and, on
the other hand, reduces the entropy of the desired signal
at the receiver side. Thus, we should design the parameters
of the transmit signals such that the overall performance is
improved. Employing IGS has also another advantage, which
is to provide more parameters to optimize and consequently,
more flexibility in the design. In a zero-mean proper Gaussian
signal, the real and imaginary parts are independent and
identically distributed (i.i.d). However, when IGS is used the
real and imaginary parts can be correlated and/or have unequal
powers. In other words, the powers of the real and imaginary
parts can be considered as two different optimization variables.
This feature has been used for the first time in [27], where
the authors showed that by using IGS the degrees of freedom
(DoF) of the 3-user SISO ICs are maximized. This idea
was later used in other works such as [18], [26] to propose
spectral and/or energy-efficient IGS schemes. Note that proper
Gaussian signaling (PGS) schemes can never outperform the
optimal IGS scheme since IGS includes PGS as a special case.

B. Motivation

In RIS-assisted systems, it is expected that interference
is more easily managed since RISs can shape the channels,
making for example the interference links weaker. In other
words, RISs give us some freedom in designing the chan-
nels, which can help us to mitigate undesired interference
effects. Therefore, it would be reasonable to think that in a
RIS-assisted system, the benefits provided by IGS would be
minor (if there are any). The reason is that the benefits of
IGS have been shown to decrease (or even vanish) as the
number of resources either in time (by allowing time sharing
[38]), frequency (by employing OFDM [39]) or spatial (by
employing MIMO [18]) increases. This happens because users
experience less interference when the number of resources
increases for a fixed number of users. Thus, the following
question arises: Can RISs manage interference in a multicell
MIMO network well enough so that there is no need to employ
IGS? In this paper, we answer this question in the negative,
and show that IGS can still provide significant gains even in
the presence of RIS. Indeed, although the use of RIS improves
the system performance, the main performance bottleneck is
the number of transmit/receive antennas. In other words, RIS
improves the performance of both IGS and PGS schemes, but
the relative performance may remain unchanged with/without
RIS. Interestingly, RIS may even increase the benefits of IGS
in some cases, as will be shown.

C. Contribution

In this paper, we consider a multi-cell broadcast MIMO
RIS-assisted system possibly with IQI at the transmit and

receive sides. To the best of our knowledge, it is the first
work that considers the performance of IGS in MIMO RIS-
assisted systems. Additionally, it is the first work that studies
EE metrics for IGS in RIS-assisted systems. To evaluate
the performance of RIS, we consider two possible imple-
mentations regarding the reflecting coefficients. In the first
implementation, we assume that the amplitude and the phase
of each reflecting component can be independently optimized
[10]. Although this may not be a realistic assumption, it can
give us an upper bound for the performance of RISs [1].
Second, we consider a more realistic RIS implementation in
which the amplitudes of their reflecting elements are fixed,
and only the phases can be optimized, similar to [1], [2], [5]–
[9]. In both scenarios, we consider treating interference as
noise (TIN) as the decoding strategy and propose IGS schemes
to maximize different utility functions such as minimum
weighted rate, weighted sum rate, global EE and minimum
weighted EE. Note that TIN is a simple, but practical, decoding
scheme, which is shown to be optimal in terms of generalized
DoF (GDoF) when the desired signals are strong enough at
receivers [40].

In order to develop IGS schemes, we have to tackle
complicated non-convex optimization problems. To this end,
we employ a generalized framework based on majorization-
minimization (MM) and alternating optimization, which con-
ducts a separate optimization of the transmit covariance matri-
ces and the reflecting coefficients. This framework belongs to
the family of MM algorithms and converges to a stationary
point of the considered problems when the amplitude and
phase of each RIS component can be optimized separately.
Additionally, the framework can be applied to every opti-
mization problem in which the objective and/or constraints
are linear functions of achievable rates. In the numerical
results, we show that RIS may provide negligible gains if
the reflecting coefficients are not properly optimized. This
suggests the importance of the generalized framework to fully
exploit the RIS benefits. We also show that the reflecting
surfaces, in which only the reflecting elements’ phases can
be optimized, perform closely to the upper-bound attainable
when the amplitudes and phases can both be optimized.

In this work, we compare a centralized implementation of
RIS with co-located reflecting elements versus a distributed
implementation consisting of smaller RISs deployed in a larger
area. We show that a distributed implementation can improve
the system performance. In particular, our results show that
the position of RIS components can play a key role in the
system performance. The reason is that RIS may suffer from
more severe path loss than a direct link since the RIS path
loss is a function of the product of the distance between RIS
and BS and the distance between RIS and users, rather than
a sum distance [1]. Thus, RIS should be located as close
as possible to users in order to provide more benefits. This
result indicates that it is advisable to use a distributed RIS
implementation, especially when users are not clustered or
located close to each other. Additionally, we show that the
position of RIS as well as the system topology can play
major roles in the performance of RIS. For instance, RIS can
significantly improve the performance of cell-edge users but
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may not provide a considerable gain for the users located close
to the BSs.

The main contributions of the paper are as follows:
• We provide a general framework to solve a variety of

optimization problems in RIS-assisted MIMO systems
possibly transmitting improper signals. This framework
is also able to account for hardware impairments such
IQI.

• We propose IGS schemes to improve the spectral and
energy efficiency of a multicell broadcast MIMO RIS-
assisted system with IQI showing that IGS can provide
considerable system gains. Our results show that IGS can
provide more gains with RIS than without RIS, specially
in SISO systems.

• RIS can significantly improve the system performance,
while the performance of a reflecting surface, in which
only the phases can be optimized, is very close to the
upper-bound performance for RIS.

• We show that a distributed RIS implementation out-
performs a centralized RIS with co-located elements.
Moreover, we show that the system topology and RIS
position play key roles in performance.

D. Paper outline

This paper is organized as follows. In Section II, we provide
some preliminaries on improper signaling and present the
IQI model. We present the system model in Section III.
Section IV and Section V propose algorithms to improve
the spectral and energy efficiency of the considered system,
respectively. Section VI presents some numerical results, and
finally, Section VII concludes the paper.

II. PRELIMINARIES

In this section, we provide some preliminaries on improper
signaling as well as on modeling IQI. In Section II-A, we
provide the definition of improper signals and briefly describe
the real decomposition method to analyze improper signals. In
Section II-B, we describe the considered IQI model, which is
based on the model in [16], [18].

A. Improper signaling

A zero-mean complex Gaussian scalar variable x is called
proper if its complementary variance is zero E{x2} = 0, and it
is called improper otherwise [19]. The concept of impropriety
can be extended to random vectors. A zero-mean complex
Gaussian random vector x is proper if its complementary
variance E{xxT } = 0. Otherwise, it is called improper [19].

There are different analytical tools to deal with impropriety.
In this paper, we employ the real decomposition method since
it simplifies the analysis in multiple-antenna systems, as also
discussed in [18]. In the real decomposition model, every
variable is written in the real domain. For instance, consider
a typical point-to-point MIMO link as

y = Hx + n, (1)

where y ∈ CNR×1 is the received signal, x ∈ CNT×1 is the
transmitted signal, n ∈ CNR×1 is the additive proper Gaussian

noise, and H ∈ CNR×NT is the channel matrix. The real
decomposition model for the link is[

R{y}
I{y}

]
=

[
R{H} −I{H}
I{H} R{H}

] [
R{x}
I{x}

]
+

[
R{n}
I{n}

]
.

(2)
Moreover, the achievable rate of the system for proper and/or
improper x and n is [18], [41]

R =
1

2
log2 det

(
Cn + HPHT

)
− 1

2
log2 det (Cn) , (3)

where Cn is the covariance matrix of [ R{n}T I{n}T ]T ,
P is the covariance matrix of [ R{x}T I{x}T ]T , and H
is

H =

[
R{H} −I{H}
I{H} R{H}

]
. (4)

Note that we can use similar analytical tools for improper and
proper signaling when using the real decomposition method.
The main difference of improper and proper signals with
the real decomposition method lies in the structure of the
covariance matrices and consequently in the feasibility set
of their parameters. The covariance matrix of an improper
Gaussian random vector in the real decomposition model
can be any arbitrary symmetric and positive semi-definite
covariance matrix [19]. However, the covariance matrix of a
proper Gaussian signal x has the following structure [18], [19]

P = E
{[

R{x}T I{x}T
]T [

R{x}T I{x}T
]}

=

[
A B
B A

]
, (5)

where A ∈ RN×N is symmetric and positive semi-definite,
and B ∈ RN×N is skew-symmetric, i.e., B = −BT , which
implies that its diagonal elements are zero.

B. IQI model

When there is IQI at either the transmit or the receive
side, the received signal can be represented as a widely linear
transformation of the transmitted signal. The widely linear
transformation is actually a linear transformation of the signal
and its conjugate [19]. In this paper, we employ the IQI model
in [16], [18]. For the sake of completeness, we briefly describe
the IQI model in the following and refer the reader to [16],
[18] for more details.

Consider a MIMO system with Nt transmit antennas and
Nr receive antennas with IQI at the transceivers. The received
signal can be written as

y = Γr,1 (Hxtx + r) + Γr,2 (Hxtx + r)
∗
, (6)

where H is the channel matrix, r is the additive proper
Gaussian noise, and xtx is the transmitted signal. Moreover,
Γr,1 ∈ CNr×Nr and Γr,2 ∈ CNr×Nr capture the amplitude
and rotational imbalance and are given by [16]

Γr,1 =
I + Are

jφr

2
, Γr,2 = I− Γ∗r,1 =

I−Are
−jφr

2
,

(7)

where I is the identity matrix, and the matrices Ar and φr
are diagonal and, respectively, reflect the amplitude and phase
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errors of each branch at the receiver side [16]. Additionally,
the transmit signal xtx is also a widely linear transformation
of the input signal x as

xtx = Γt,1x + Γt,2x
∗, (8)

where the matrices Γt,1 ∈ CNt×Nt and Γt,2 ∈ CNt×Nt are
[16]

Γt,1 =
I + Ate

jφt

2
, Γt,2 = I− Γ∗t,1 =

I−Ate
−jφt

2
, (9)

where the matrices At and φt are diagonal and, respectively,
reflect the amplitude and phase errors of each branch at the
transmitter side [16]. There is no I/Q imbalance at transmitter
(receiver) if Γt,1 = I (Γr,1 = I) and consequently Γt,2 = 0
(Γr,2 = 0).

Lemma 1 ( [18]). The real decomposition of the aforemen-
tioned MIMO system with IQI is

y = H x + n, (10)

where y =
[
R{y}T I{y}T

]T
, x =[

R{x}T I{x}T
]T

, and n =
[
R{n}T I{n}T

]T
are, respectively, the real decomposition of y, x, and
n = Γr,1r + Γr,2r

∗. Moreover, H is

H =

[
R{H̄1 + H̄2} −I{H̄1 − H̄2}
I{H̄1 + H̄2} R{H̄1 − H̄2}

]
, (11)

where

H̄1 = Γr,1HΓt,1 + Γr,2H
∗Γ∗t,2 ∈ CNR×NT , (12a)

H̄2 = Γr,1HΓt,2 + Γr,2H
∗Γ∗t,1 ∈ CNR×NT . (12b)

The statistics of the vector n ∈ R2Nr×1 are E{n} = 0, and
E{n nT } = Cn = Γ CrΓ

T , where

Γ ,

[
R{Γr,1 + Γr,2} −I{Γr,1 − Γr,2}
I{Γr,1 + Γr,2} R{Γr,1 + Γr,2}

]
, (13)

and Cr is the real decomposition of Cr. For example, if Cr =
σ2INt , then Cr = 1

2σ
2I2Nt .

Proof. Please refer to [18, Lemma 2].

III. SYSTEM MODEL

We consider the downlink of a cellular system with L base
stations (BS) as show in Fig. 1. To simplify the notations,
we assume that each BS has NBS antennas and serves K
users with NU antennas without loss of generality. We also
assume that the devices at the BSs and users are imperfect
and suffer from IQI according to the model described in Sec.
II-B. Obviously, it is straightforward to extend the results to
a more general case in which the number of users in each
cell and/or the number of transmit/receive antennas and/or
the IQI parameters at the transmit/receive transceivers are
different. We further assume that there are M RISs with NRIS
antennas each that help the BSs to serve the users. Note that
the considered scenario is a standard multicell BS, which is
also considered in, e.g., [8], [42]. For the ease of readers, we
provide the most frequently used notations of this paper in
Table I.

Fig. 1: The system model for a multicell broadcast system with RIS.

A. Channel model

There are two types of links between a BS and a user: a
direct link and a link through the RISs. Hence, the channel
between BS l and kth associated user to BS j, i.e., ujk, for
1 ≤ l, j ≤ L and 1 ≤ k ≤ K is [8], [9]

Hjk,l ({Θ}) =

M∑
m=1

Gjk,mΘmGm,l︸ ︷︷ ︸
Link through RIS

+ Fjk,l︸ ︷︷ ︸
Direct link

∈ CNU×NBS ,

(14)
where Fjk,l ∈ CNU×NBS is the channel matrix between the
BS l and ujk, Gjk,m ∈ CNU×NRIS is the channel matrix
between the mth RIS and ujk, Gm,l ∈ CNRIS×NBS is the
channel matrix between the BS l and the mth RIS. Addition-
ally, {Θ} is the set of {Θm}Mm=1, where Θm ∈ CNRIS×NRIS
is the matrix of the reflecting coefficient for the mth RIS

Θm = diag
(
θm1 , θm2 , · · · , θmNRIS

)
, (15)

in which θmn for all m,n are complex-valued optimization
parameters. Ideally, the amplitude and the phase of each re-
flecting coefficient can be treated as independent optimization
variables [1], [10], [11]. In this case, the feasibility set of the
reflecting coefficients is [1, Eq. (11)]

TI =
{
θmn : |θmn |2 ≤ 1 ∀m,n

}
. (16)

Unfortunately, this assumption does not hold in practice [1],
[2]; however, it can give us the theoretical performance limit of
the RIS-assisted systems [1]. Thus, in this paper, we consider
the feasibility set TI as an upper bound on performance. In
addition, we consider a more practical assumption regarding
the reflecting coefficients in which the amplitude of the
coefficients is fixed, and we can only control the phase or
equivalently the reflecting angles of each RIS component,
similar to the model in [1], [2], [5]–[9]. This model leads
to the following feasibility set

TR = {θmn : |θmn | = 1 ∀m,n} . (17)

This case is also referred to as intelligent reflecting surface
(IRS) to emphasize that there is only a passive phase-shifting
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TABLE I: List of frequently used notations.

L/M Total number of BSs/RISs
K Total number of associated users to each BS
NBS/NU/NRIS Number of transmit antennas at each BS/user/RIS
ulk k-th associated user to BS l
xlk ∈ CNBS×1 Transmit signal of BS l intended for ulk

Plk ∈ R2NBS×2NBS Covariance matrix of xlk

Hlk,l ∈ CNU×NBS Equivalent channel between BS l and ulk

Fjk,l ∈ CNU×NBS Channel matrix between the BS l and ujk

Gjk,m ∈ CNU×NRIS Channel matrix between the mth RIS and ujk

Gm,l ∈ CNRIS×NBS Channel matrix between the BS l and the mth RIS
Θm ∈ CNRIS×NRIS Matrix of the reflecting coefficient for the mth RIS
Dlk(·) ∈ R2NU×2NU Interference-plus-noise covariance matrix at ulk

nlk ∼ CN (0, σ2I) Additive white Gaussian noise at ulk

EElk/rlk Energy efficiency/rate of ulk

pl Power budget of BS l

Fig. 2: A typical RIS-assisted system.

beamforming at the intelligent surfaces [2]. It is worth empha-
sizing that this assumption may accurately hold if an RIS is
made of discrete tiny antenna elements, which are sufficiently
distant from each other [2]. Since we consider both feasibility
sets TI and TR throughout this paper; hereafter, we use T for
the feasibility to simplify the notations when we do not refer
to a specific feasibility set.

The channel matrices Fjk,l, Gjk,m and Gm,j for all
j, k, l,m in (14) are not controllable and, in general, depend
on the path-loss, large-scale shadowing as well as small-scale
fading [1]. Depending on the presence of line-of-sight (LoS)
link, the small-scale fading can be modeled as Rayleigh (for
non-LoS link) [4] or Rician (for LoS link) [8], [9] fading. The
main difference of the link through RISs and the direct link is
in the path-loss effect, where the RIS link follows the product-
distance path-loss model rather than the sum-distance one [1].
That is, the channel gain is proportional to the product of
the distance between the BS and RIS, d1, as well as distance
between the RIS and user, d2, as

βRIS ∝
1

dα1
1 dα2

2

, (18)

where α1 and α2 are, respectively, the path-loss component
for the BS-RIS and RIS-U links (see Fig. 2). The link through
RIS can be much weaker than the direct link if dα1

1 dα2
2 �

dα, where d and α are, respectively, the distance and path-
loss component of the direct link. This implies that the RIS
position can play a major role on the performance of RIS-

assisted systems. When there is a LoS channel between the
RISs and BSs/users the value of α1 and α2 are small, which
makes the link through RISs stronger. Additionally, the RISs
should be positioned relatively close to the users or the BS
such that dα1

1 dα2
2 is minimized. We will discuss the effect of

the position of RIS with more details in the numerical results
section.

B. Signal model

We represent the transmit signal of BS l by

xl =
K∑
k=1

xlk ∈ CNBS×1, (19)

where xlk ∈ CNBS×1 is the transmit signal of BS l in-
tended for its kth associated user, i.e., ulk, and xlks are
uncorrelated, i.e., E

{
xlkx

H
lj

}
= 0 for k 6= j. We assume

that xlks for all l, k are zero-mean Gaussian and can be
improper. To model the impropriety, we employ the real
decomposition method and represent the covariance matrix of
xlk = [ R {xlk}T I {xlk}T ]T by Plk = E

{
xlkx

T
lk

}
∈

R2NBS×2NBS . We define the feasibility set of the covariance
matrices for IGS as

PIGS =

{
{Plk}∀l,k :

K∑
k=1

Tr (Plk) ≤ pl,Plk < 0,∀l, k

}
,

(20)
where pl is the power budget of BS l, and for PGS, as

PPGS ={
{Plk}∀l,k :

K∑
k=1

Tr (Plk) ≤ pl,Plk = Pt,Plk < 0,∀l, k

}
,

(21)

where Pt fulfills the structure in (5). Since the algorithms
proposed in this paper can be applied to both improper and
proper signaling schemes, the feasibility set for the covariance
matrices is denoted as P to simplify the notations.
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rlk =
1

2
log2

∣∣∣I + Hlk,l ({Θ}) PlkH
T
lk,l ({Θ}) D−1lk ({P}, {Θ})

∣∣∣ (23)

=
1

2
log2

∣∣∣Hlk,l ({Θ}) PlkH
T
lk,l ({Θ}) + Dlk ({P}, {Θ})

∣∣∣︸ ︷︷ ︸
rlk,1

− 1

2
log2 |Dlk ({P}, {Θ})|︸ ︷︷ ︸

rlk,2

, (24)

Considering the channel link in (14) and the IQI model in
Section II-B, the real decomposition model for the received
signal at ulk is [8], [9]

y
lk

=
L∑
i=1

Hlk,i ({Θ})
K∑
j=1

xij + nlk (22a)

= Hlk,l ({Θ}) xlk︸ ︷︷ ︸
Desired signal

+ Hlk,l ({Θ})
K∑

j=1,j 6=k

xlj︸ ︷︷ ︸
Intra-cell interference

+

L∑
i=1,i6=l

Hlk,i ({Θ})
K∑
j=1

xij︸ ︷︷ ︸
Inter-cell interference

+ nlk︸︷︷︸
noise

, (22b)

where y
lk

, xij , Hlk,l(·) ∈ R2NU×2NBS , and nlk ∈ R2NU×1

are given by Lemma 1. We consider an additive white Gaus-
sian noise at users with the covariance Cn = 1

2σ
2I. In this

paper, due to its simplicity and usefulness we assume that
each user treats the interference (both inter-cell and intra-cell)
as noise, as in other works such as [8], [42].

C. Rate and energy-efficiency expressions

Treating interference as noise, the achievable rate of ulk is
(23) and (24) on the top of this page, where {P} is the set
including all possible covariance matrices, i.e., {Pij}∀i,j , and
Dlk(·) is the interference-plus-noise covariance matrix at ulk

Dlk (·) =

L∑
i=1,i6=l

K∑
j=1

Hlk,i ({Θ}) PijH
T
lk,i ({Θ})

+

K∑
j=1,j 6=k

Hlk,l ({Θ}) PljH
T
lk,l ({Θ}) +

σ2

2
I. (25)

Note that the rates depend on all optimization parameters, i.e.,
{Pij}∀i,j , {Θ}Mm=1. To simplify the notations, we drop this
dependency and represent the rate of ulk by rlk.

The global EE (GEE) for the system is defined as the ratio
between the sum rate and total power consumption as [43]

GEE =

∑L
l=1

∑K
k=1 rlk∑L

l=1

∑K
k=1 (Pc + ηTr (Plk))

, (26)

where η−1 is the power transmission efficiency of each BS,
and Pc is the constant power consumption for transmitting
data to a user, which can be obtained as

Pc =
MPRIS
KL

+
PBS
K

+ PUE , (27)

where PRIS is the power consumption by an RIS, PBS/PUE
is the constant power consumption by a BS/user. Note that,

for notational simplicity, we assume the same power trans-
mission efficiency and constant power consumption for all
BS/RIS/users without loss of generality. Obviously, it can be
easily extended to a more general scenario with asymmetric
BS/RIS/users. The GEE is a metric to measure the overall
system EE and does not consider the EE of each individual
user. A metric that provides fairness among users maximizes
the minimum weighted EE of users [44]. The EE of a user
can be defined as the ratio between its achievable rate and the
power intended for the data transmission to the user, i.e., [43],
[44]

EElk =
rlk

Pc + ηTr (Plk)
. (28)

IV. SPECTRAL EFFICIENCY OPTIMIZATION

In this paper, we consider different utility functions such as
minimum weighted rate, weighted sum rate, global EE, and
minimum weighted EE. In all these problems, the objective
function and/or constraints are linear functions of the achiev-
able rates. We propose a general optimization framework to
solve all these problems using similar optimization tools.
It would be possible to study specific solutions for any of
the problems considered in this work using suboptimal or
heuristic techniques, perhaps with a lower computational cost.
However, in this paper we have preferred to consider a general
methodology for the solution of the different problems, thus
emphasizing the common aspects of the different cost func-
tions, as well as providing a more comprehensive overview on
the performance of IGS in RIS-assisted systems.

In this section, we consider the spectral efficiency metrics,
i.e., the minimum-weighted and weighted-sum rate maximiza-
tion. Note that the minimum [weighted] rate can be considered
as a metric of fairness among the users since it is very often
the case that all users have the same rate when the minimum
rate is maximized [45]. Clearly, there are other fairness metrics
such as the geometric mean of rates [46]. As shown in [46, Eq.
(10)], the maximization of the geometric mean of rates can be
solved through a sequence of weighted-sum-rate maximization
problems. Hence, the algorithms proposed in this section could
be also applied to the maximization of the geometric mean of
rates. However, due to the space limitation, we only consider
the minimum-weighted and weighted-sum rate maximization
problems.

The minimum-weighted-rate maximization (MWRM) prob-
lem can be written as

max
r,{Θ}∈T ,{P}∈P

r, s.t. λlkrlk ≥ r, ∀l, k, (29)

where λlk ≥ 0 is the corresponding weight representing the
priority of users. Note that the achievable rate region problem
can be written as an MWRM problem by employing the rate
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profile technique [47]. In this case, the whole achievable rate
region can be characterized by solving (29) for all possible∑
∀l
∑
∀k λ

−1
lk = 1. The weighted-sum-rate maximization

(WSRM) problem can be also written as

max
{Θ}∈T ,{P}∈P

L∑
l=1

K∑
k=1

λlkrlk, s.t. rlk ≥ r̄lk, ∀l, k,

(30)

where rlk ≥ r̄lk is a quality-of-service (QoS) constraint,
and r̄lk is the minimum required data rate for ulk. Note
that r̄lk has to be chosen such that (30) is feasible. In this
paper, we propose a centralized approach to solve (30) (or
(29)). This means that a central processing unit (CPU) with
sufficient computational resources solves the problem and then
sends, through a dedicated channel, the optimal transmission
parameters as well as the optimal reflecting coefficients to
the BSs and RISs, respectively. Note that all parameters are
computed simultaneously, and the problem is solved only
once.

Unfortunately, the MWRM and WSRM problems are not
convex due to the structure of the rates as well as the feasibility
sets TR. Furthermore, the joint optimization of {Θ}, {P}
requires an excessive amount of computations, which might
not be practical. Thus, most of the recent works on RIS employ
a disjoint alternating optimization [8]–[10]. In [7], in addition
to the alternating approach, a joint optimization was proposed.
However, the joint optimization involved high computational
complexity, and the authors applied the joint algorithm as
refinement procedure after the disjoint optimization to reduce
the number of computations. Hence, in this paper, we propose
a disjoint alternation optimization approach with affordable
computational cost.

In the alternating approach, we first solve (30) (and/or
(29)) for a given {Θ(t−1)} and obtain {P(t)}. We then solve
(30) over {Θ} for the given {P(t)} to obtain {Θ(t)}. The
convergence of this algorithm is ensured since this approach
generates a non-decreasing sequence for the objective func-
tion. Unfortunately, even if we fix {Θ(t−1)} (or {P(t)}), the
corresponding optimization problems are not convex, so we
propose to find a suboptimal solution by employing MM. In
the following, we first consider the WSRM problem and then,
modify the algorithm to solve the MWRM problem.

A. Optimization of covariance matrices

We fix {Θ(t−1)}, which simplifies the optimization problem
as

max
{P}∈P

L∑
l=1

K∑
k=1

λlkrlk, s.t. rlk ≥ r̄lk, ∀l, k, (31)

This problem is not convex since the rates are not concave
in {P}. Thus, we apply MM to obtain a stationary point
of (31). To this end, we first find a lower-bound concave
function for the user rate. As can be observed through (24),
the rate of each user can be written as a difference of two
concave/convex functions. This feature of the rate expressions
allows us to apply convex-concave procedure (CCP) to derive
a lower-bound for the rates [48]. That is, we approximate the

convex part of the rate (−rlk,2) by an affine (linear) func-
tion by employing the first-order Taylor expansion expansion
given by (32) on the top of the next page, where r

(t−1)
lk,2 =

rlk,2
(
{Θ(t−1)}, {P(t−1)}

)
and

∂rlk,2({Θ(t−1)},{P(t−1)})
∂Pij

is the
derivative of rlk,2 with respect to Pij at {Θ(t−1)}, {P(t−1)}.
The derivative is
∂rlk,2 ({Θ}, {P})

∂Pij
=

1

2 ln 2
HT
ij,iDlk ({P}, {Θ})−1 Hij,i.

(33)
Note that we employ the first-order Taylor expansion to ap-
proximate the convex part of the rates since an affine function
is the closest concave lower bound for a convex function.
Replacing the lower bound r̃

(t−1)
lk in (31), the corresponding

surrogate optimization problem is convex and can be effi-
ciently solved by the existing numerical solvers. It is worth
emphasizing that the error in the lower-bound approximation
in (32) does not affect the optimality convergence of our
algorithm since it falls into MM algorithms [48].

B. Optimization of the reflecting-coefficient matrix

In this subsection, we tackle the optimization of the reflect-
ing coefficients for the two feasibility sets. To this end, we first
consider feasibility set TI since it is a convex set. Note that
|θmn |2 is a convex function, and consequently, the constraint
|θmn |2 ≤ 1 is a convex constraint. In this case, the WSRM
problem for the given {P(t)} is

max
{Θ}∈TI

L∑
l=1

K∑
k=1

λlkrlk

(
{Θ}, {P(t)}

)
, (34a)

s.t. rlk

(
{Θ}, {P(t)

lk }∀l,k
)
≥ r̄lk, ∀l, k. (34b)

This optimization problem is non-convex because of the rate
functions. To solve (34), we first employ MM by obtaining
suitable surrogate functions for the rates. To this end, we use
the inequality in the following lemma.

Lemma 2 ( [7], [36]). Consider arbitrary matrices V and
V̄, and positive definite matrices Y and Ȳ, where all these
matrices are N ×N . Then the following inequality holds:

ln
∣∣I + VVHY−1

∣∣ ≥ ln
∣∣I + V̄V̄HȲ−1

∣∣
− Tr

(
V̄V̄HȲ−1

)
+ 2R

{
Tr
(
V̄HȲ−1V

)}
− Tr

(
(Ȳ−1 − (V̄V̄H + Ȳ)−1)H(VVH + Y)

)
(35)

Theorem 1. A concave lower-bound function
r̂
(t−1)
lk

(
{P(t)}, {Θ}

)
for the rate of users rlk

(
{P(t)}, {Θ}

)
can be found as in (36), shown on the top of the next page,
where r(t−1)lk = rlk

(
{P(t)}, {Θ(t−1)}

)
is the rate of ulk at

the beginning of the step, and

Vlk,l = Hlk,l ({Θ}) P
(t)1/2

lk , (37)

V̄lk,l = Hlk,l

(
{Θ(t−1)}

)
P

(t)1/2

lk , (38)

Ylk,l = Dlk

(
{P(t)}, {Θ}

)
, (39)

Ȳlk,l = Dlk

(
{P(t)}, {Θ(t−1)}

)
. (40)
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rlk ≥ r̃(t−1)lk = rlk,1 − r(t−1)lk,2 −
∑
∀i,j

Tr

(
∂rlk,2

(
{Θ(t−1)}, {P(t−1)}

)
∂Pij

(Pij −P
(t−1)
ij )

)
, (32)

rlk (·) ≥ r̂(t−1)lk (·) = r
(t−1)
lk − 1

2 ln 2
Tr
(
V̄lk,lV̄

H
lk,lȲ

−1
lk,l

)
+

1

ln 2
R
{

Tr
(
V̄H
lk,lȲ

−1
lk,lVlk,l

)}
− 1

2 ln 2
Tr
(

(Ȳ−1lk,l − (V̄lk,lV̄
H
lk,l + Ȳlk,l)

−1)H(Vlk,lV
H
lk,l + Ylk,l)

)
(36)

Proof. We can easily obtain (36) by considering the rate
function in (23) and employing the inequality in Lemma 2.

Note that we can easily compute P
(t)1/2

lk since P
(t)
lk is a

positive semi-definite matrix. Considering TI , {Θ(t)} can be
obtained by solving

max
{Θ}

L∑
l=1

K∑
k=1

λlkr̂
(t−1)
lk

(
{Θ}, {P(t)}

)
, (41a)

s.t. r̂
(t−1)
lk

(
{Θ}, {P(t)}

)
≥ r̄lk, ∀l, k, (41b)

|θmn |2 ≤ 1 ∀m,n, (41c)

where r̂
(t−1)
lk (·) is given by Theorem 1. The optimization

problem (41) is convex and can be efficiently solved. The
whole algorithm for the feasibility set TI falls into MM and
converges to a stationary point of the original problem.

We now consider the feasibility set TR in which |θmn | = 1.
We rewriting |θmn | = 1 as the two following constraints: (41c)
and

|θmn |2 ≥ 1. (42)

As can be observed, the only difference between TI and TR
is in the non-convex constraint (42). To deal with (42), we
employ the convex-concave procedure (CCP) and approximate
|θmn |2 with a linear lower-bound function:

|θmn |2 ≥ 2R
{
θ(t−1)

∗

mn θmn

}
− |θ(t−1)mn |

2 ≥ 1 ∀m,n,
(43)

where θ(t−1)mn is the value of θmn at the previous step. To speed
up the convergence of the algorithm, we relax the constraint
(43) as

2R
{
θ(t−1)

∗

mn θmn

}
− |θ(t−1)mn |

2 ≥ 1− ε ∀m,n, (44)

where ε is a small value. Hence, the surrogate optimization
problem for TR is

max
{Θ}

L∑
l=1

K∑
k=1

λlkr̂
(t−1)
lk

(
{Θ}, {P(t)}

)
, (45a)

s.t. (41b), (41c), (44). (45b)

This optimization problem is convex, and therefore can be
efficiently solved. Let us call the solution of (45a) as {Θ(?)}.
Since we relax (43) by introducing ε, {Θ(?)} might not
satisfy |θmn | = 1. Thus, we normalize {Θ(?)} as {Θ̂(?)}
to ensure that the new {Θ} satisfies |θmn | = 1 for all m,n.
It may happen that the normalized {Θ̂(?)} does not satisfy

Algorithm I Proposed IGS algorithm for WMRM with TI .
Initialization
Set t = 1, {P} = {P(t−1)}, and{Θ} = {Θ(t−1)}

While
(
min
∀l,k

r
(t)
lk −min

∀l,k
r
(t−1)
lk

)
/min
∀l,k

r
(t−1)
lk ≥ ε

Optimizing over {P(t−1)} by fixing {Θ} = {Θ(t−1)}
Derive r̃(t−1)

lk

(
{P}, {Θ(t−1)}

)
in (32)

Obtain {P(t)} by solving (47)
Optimizing over {Θ} by fixing {P} = {P(t−1)}

Derive r̂(t−1)
lk

(
{P(t)}, {Θ}

)
in Theorem 1

Obtain {Θ(t)} by solving (48)
t = t+ 1

End (While)
Return {P?} and {Θ?}.

rlk

(
{P(t)}, {Θ̂(?)}

)
≥ r

(t−1)
lk . To address this issue, we

choose {Θ(t)} as

{Θ(t)} =

{
{Θ̂(?)} if rlk

(
{P(t)}, {Θ̂(?)}

)
≥ r(t−1)lk

{Θ(t−1)} Otherwise.
(46)

C. Minimum-weighted-rate maximization

The approach for the WSRM can easily be applied to the
MWRM problem since the WSRM and MWRM problems
have a very similar structure. Indeed, we only need to replace
the objective function with a new optimization variable r
similar to (29). For the sake of completeness, we only mention
the final surrogate optimization problems for each part. The
covariance matrices {P(t)} can be obtained by solving

max
r,{P}∈P

r, s.t. λlkr̃
(t−1)
lk ≥ r, ∀l, k, (47)

where r̃(t−1)lk is given by (32). Additionally, {Θ(t)} for TI is
given by

max
r,{Θ}

r, (48a)

s.t. λlkr̂
(t−1)
lk

(
{Θ}, {P(t)}

)
≥ r̄lk, (48b)

|θmn |2 ≤ 1 ∀l, k,m, n, (48c)

where r̂(t−1)lk (·) is given by Theorem 1. For the ease of readers,
the proposed IGS scheme for WMRM with the feasibility
set TI is summarized in Algorithm I. Note that it is also
straightforward to derive {Θ(t)} for TR as in the previous
subsection.

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on March 10,2022 at 11:25:07 UTC from IEEE Xplore.  Restrictions apply. 



2473-2400 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2021.3140150, IEEE
Transactions on Green Communications and Networking

9

TABLE II: List of most important parameters.

Parameter αBR αRU αBU PL0,BR PL0,RU PL0,BU GBS GRIS γ Noise Power Density Channel Bandwidth
Value 2.2 2.2 3.75 30 30 35.9 6 5.5 3 −174 dBm/Hz 1.5 MHz

V. ENERGY EFFICIENCY OPTIMIZATION

In this section, we consider the EE metrics for the system
and solve the GEE maximization and minimum-weighted
EE (MWEE) problems. The EE and GEE functions have
a fractional structure in {P}. Thus, it is more complicated
to optimize the EE metrics rather than spectral efficiency
ones, especially when we optimize over {P}. To solve these
problems, we employ Dinkelbach-based algorithms as well as
MM and alternating approach [14], [43], [49].

A. GEE maximization

The GEE maximization problem is

max
{Θ}∈T ,{P}∈P

GEE, s.t. rlk ≥ r̄lk, ∀l, k, (49)

where rlk ≥ r̄lk is the QoS constraint similar to (30) and
has to be chosen such that (49) is feasible. The optimization
problem (49) is not convex, but we can obtain a suboptimal
solution for it by an alternating optimization approach similar
to the proposed algorithm in Section IV.

1) Optimization of covariance matrices: We first fix
{Θ(t−1)} and maximize the GEE over {P}. To this end, we
employ MM and the Dinkelbach algorithm (DA) to solve the
GEE maximization problem [18], [43]. That is, we first employ
the concave lower-bound functions for the rates in (32), which
leads to the following surrogate optimization problem

max
{P}∈P

∑L
l=1

∑K
k=1 r̃

(t−1)
lk∑L

l=1

∑K
k=1 (Pc + ηTr (Plk))

, (50a)

s.t. r̃
(t−1)
lk ≥ r̄lk, ∀l, k, (50b)

This optimization problem is not convex; however, we can
obtain its global optimal solution by the Dinkelbach algorithm
as indicated in Lemma 3.

Lemma 3. The global optimal solution of (50) can be
obtained by iteratively solving

max
{P}∈P

L∑
l=1

K∑
k=1

r̃
(t−1)
lk − µ(i)

(
L∑
l=1

K∑
k=1

(Pc + ηTr (Plk))

)
,

(51a)

s.t. r̃(t−1)lk ≥ r̄lk, ∀l, k, (51b)

and updating µ(i) as µ(i) =

∑L
l=1

∑K
k=1 r̃lk

(
P

(i−1)
lk

)
∑L
l=1

∑K
k=1

(
Pc+ηTr

(
P

(i−1)
lk

)) ,
where P

(i−1)
lk is the solution of (51) at the (i− 1)th step.

2) Optimization of the reflecting-coefficient matrix: For a
given {P(t)}, the GEE maximization problem has a structure
similar to the WSRM and MWRM problems. Hence, we can
solve it by the proposed algorithm in Section IV. That is, we

first approximate the rates by the lower bound in Theorem 1.
Considering the feasibility set TR, the GEE maximization is

max
{Θ}

∑L
l=1

∑K
k=1 λlkr̂

(t−1)
lk

(
{Θ}, {P(t)}

)∑L
l=1

∑K
k=1

(
Pc + ηTr

(
P

(i−1)
lk

)) , (52a)

s.t. (41c), (44), (52b)

r̂
(t−1)
lk

(
{Θ}, {P(t)}

)
≥ r̄lk, ∀l, k, (52c)

which is a convex optimization problem and can be solved
efficiently. Finally, {Θ} is updated according to (46). Note
that, for feasibility set TI , {Θ} is updated by solving

max
{Θ}

∑L
l=1

∑K
k=1 λlkr̂

(t−1)
lk

(
{Θ}, {P(t)}

)∑L
l=1

∑K
k=1

(
Pc + ηTr

(
P

(i−1)
lk

)) , (53a)

s.t. (52c), (41c). (53b)

B. Minimum weighted EE maximization

The MWEE maximization problem can be written as

max
{Θm}∀m∈T ,{Plk}∀l,k∈P

min
∀l,k
{λlkEElk} , (54a)

s.t. rlk ≥ r̄lk, ∀l, k. (54b)

which is very similar to the maximization of the GEE. The
main difference of these two problems is that MWEE is
multiple-ratio fractional program (instead of single ratio), and
we have to employ the generalized DA (GDA) for optimizing
covariance matrices [14], [43], [49].

1) Optimization of covariance matrices: At this step, we
fix {Θ(t−1)} and solve the MWEE problem for {P} by
employing the GDA and MM. That is, we first approximate
the rates with the concave lower-bound in (32), which yields
the following optimization problem

max
{Plk}∀l,k∈P

min
∀l,k

{
λlk

r̃
(t−1)
lk

Pc + ηTr (Plk)

}
, (55a)

s.t. r̃
(t−1)
lk ≥ r̄lk, ∀l, k. (55b)

Although this optimization problem is not convex, we can
obtain its global optimal solution by employing the GDA as
mentioned in the following lemma [18], [43].

Lemma 4. The global optimal solution of (55) can be derived
by iteratively solving

max
{Plk}∀l,k∈P

min
∀l,k

{
λlkr̃

(t−1)
lk − µ(i) (Pc + ηTr (Plk))

}
,

(56a)

s.t. r̃
(t−1)
lk ≥ r̄lk, ∀l, k. (56b)

and updating µ(i) as µ(i) =

min∀l,k

{
λlk

r̃
(t−1)
lk ({Θ(t−1)},{P(i−1)})

Pc+ηTr(Plk)

}
, where P

(i−1)
lk is

the solution of (56) at the (i− 1)-th step.
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Fig. 3: System topology.

2) Optimization of the reflecting-coefficient matrix: For a
given {P(t)}, the MWEE optimization problem can be solved
similar to the GEE maximization problems. In other words,
we can approximate the rates by the lower-bound in Theorem
1, which results in the following convex optimization for the
feasibility set TR

max
{Θ}

min
∀l,k

λlkr̂
(t−1)
lk

(
{Θ}, {P(t)}

)
Pc + ηTr

(
P

(i−1)
lk

)
 , (57a)

s.t. (41c), (44), (57b)

r̂
(t−1)
lk

(
{Θ}, {P(t)}

)
≥ r̄lk, ∀l, k, (57c)

and {Θ} is updated according to (46). Additionally, for
feasibility set TI , {Θ} is updated by solving the following
convex problem

max
{Θ}

min
∀l,k

λlkr̂
(t−1)
lk

(
{Θ}, {P(t)}

)
Pc + ηTr

(
P

(i−1)
lk

)
 , (58a)

s.t. (57c), (41c). (58b)

VI. NUMERICAL RESULTS

In this section, we provide some numerical results. We
consider both large-scale and small-scale fading to accurately
evaluate the performance of RISs. The large-scale path loss in
dB is given by

PL = PL0 +G0 − 10α log10

(
d

d0

)
, (59)

where PL0 is the path loss at the reference distance d0 = 1m,
d is the link distance, α is the path-loss exponent, and G0 is
the antenna gain at the transmitter side. Note that the channel
attenuation coefficient is β = 10PL/10. In the numerical results,
we consider a two-cell MIMO broadcast channel with two
users in each cell as depicted in Fig. 3. We assume that the
BSs are located at (0, 0, 25) and (400, 0, 25), where 25m is
the height of BSs. We further assume that the users with
height 1.5m are uniformly located in a 20m × 20m area
centered at (x, 0, 1.5) in cell 1 and (400 − x, 0, 1.5) in cell
2. We also assume there is only one RIS with height 15m,
located at (200, 0, 15) unless otherwise is explicitly mentioned.
We choose the noise power density −174 dBm/Hz, channel
bandwidth 1.5 MHz, G0 = 6 dB for BSs and G0 = 5.5 dB

for RISs, PL0 = −30 dB, α = 2.2 for the links related to
RISs, and PL0 = −35.9 dB, α = 3.75 for the direct links
between the BSs and users. In other words, we consider a
scenario that the direct links between the BSs and users are
weaker than the links related to RISs, similar to, e.g., [8].
Some important parameters are summarized in Table II. We
consider a Rayleigh fading as a small-scale fading for the
link between the BSs and the users, which means that each
elements of F̃jk,l for all j, k, l is derived from a zero-mean
complex proper Gaussian distribution with a unit variance,
where Fjk,l = βjk,lF̃jk,l, and βjk,l is the channel attenuation
coefficient (related to the large-scale path loss) for the direct
link between ujk and BS l. Moreover, we consider a Rician
fading as a small-scale fading for the links related to the RISs.
That is, we assume [8]

G̃ =

√
γ

1 + γ
G̃LoS +

√
1

1 + γ
G̃NLoS, (60)

where γ = 3 is the Rician factor, G̃LoS is the line-of-sight
(LoS) component, and G̃NLoS is the non-LoS component,
which is assumed to follow a Rayleigh fading similar to
F̃jk,l. We set γ = 3 similar to [8]. G̃LoS is deterministic
and can be derived as G̃LoS = aNr

(
φA
)
aHNt

(
φD
)
, where

φA ∼ Unif[0, 2π] is angle of arrival, φD ∼ Unif[0, 2π] is
angle of departure, Nt/Nr is the number of transmit/receive
antennas, and

aNr (·)=

[
1, ej

2πd sin(φA)
λ , ..., ej

2(Nr−1)πd sin(φA)
λ

]
, (61)

aNt(·)=

[
1, ej

2πd sin(φD)
λ , ..., ej

2(Nt−1)πd sin(φD)
λ

]
, (62)

where d/λ is chosen 1/2 for simplicity [8]. In the simulations,
we consider an equal weight for all users, i.e., αlk = 1 for
all l, k as well as an equal power budget P for all users. We
average the results over 100 channel realizations. We consider
the IQI parameters as in [18]. Due to space restriction, we skip
the parameters and refer the readers to [18]. The simulation
codes will be available https://github.com/SSTGroup or can be
provided upon request.

To the best of our knowledge, there is no other work
that considers IGS with IQI in RIS-assisted MIMO systems.
Hence, we compare our proposed algorithm with the proposed
PGS scheme as well as a PGS scheme that does not consider
IQI in the design. Moreover, we consider our algorithm with a
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system without RIS. To summarize, the considered algorithms
in the simulations are as follows:
• IGS-M: The proposed IGS scheme for the feasibility set
TI , which can be referred to as an upper-bound for the
IGS performance.

• IGS: The proposed IGS scheme for the feasibility set TU .
• IGS-N: The IGS scheme for traditional multi-cell BCs

(i.e., without RIS).
• IGS-R: The IGS scheme with a random reflecting coef-

ficients.
• PGS-M: The proposed PGS scheme for the feasibility set
TI , which can be referred to as an upper-bound for the
performance of PGS schemes.

• PGS: The proposed PGS scheme for the feasibility set
TU .

• PGS-N: The PGS scheme for traditional multi-cell BCs
(i.e., without RIS).

• PGS-R: The PGS scheme with a random reflecting
coefficients.

• PGS-U: The PGS scheme, which is unaware of IQI, with
optimizing over reflecting coefficients for the feasibility
set TU .

• PGS-RU: The PGS scheme, which is unaware of IQI,
with a random reflecting coefficients.

A. Fairness rate

In this subsection, we consider the WMRM problem. The
minimum rate of the users is also referred to as the fairness
rate [18]. Figure 4 shows the average fairness rate of a two-
cell system with two users in each cell for NBS = Nu = 1,
and NRIS = 100 with different position of users. As can
be observed, the IGS design can substantially outperform the
PGS scheme. The reason is that the rate of PGS schemes
in a broadcast channel with TIN is bounded due to the
intracell interference, but IGS can efficiently manage the
intracell interference. For instance, by employing maximally
IGS, the BS can transmit the signal of each user in orthogonal
dimensions and thus, manage the intracell interference more
effectively [30].

In Fig. 4, we study how the position of users impact on
the RIS performance. As can be observed, the benefits of
RIS decrease when the distance between the RIS and users
increases. It is expected that the benefits of RIS vanishes
if the users are sufficiently close to the BS and far from
RIS as discussed in Section III-A. Additionally, Fig. 4 shows
that RIS may not increase the fairness rate if the reflecting
coefficients are not optimized. We can also observe that the
performance of the reflecting surface is very close to the upper
bound attainable when both the amplitudes and phases of the
reflecting RIS elements are optimized. It means that we do
not lose a considerable gain when only the phases of the RIS
elements are optimized.

Figure 5 shows the fairness rate of a two-cell broadcast
channel with two-users in each cell for NRIS = 100 and
different number of antennas at the BSs and users. As can
be observed, the benefits of employing IGS decrease with the
number of antennas, which is in line with our previous study
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Fig. 4: The average fairness rate versus P for NBS = Nu = 1,
NRIS = 100, L = 2, K = 2, M = 1 with different position of
users.

in [18] for the K-user IC. The reason is that the interference
is more easily managed by PGS when the number of spatial
transmit dimensions increases, and the improvement provided
by IGS can be marginal when the number of resources is much
greater than the number of users. We also observe that our
IQI-aware algorithms can significantly outperform the PGS
scheme, which is unaware of IQI. We again observe that
RIS does not provide a considerable gain when the reflecting
coefficients are not optimized. Additionally, the results suggest
that the performance of reflecting surfaces is very close to the
upper-bound performance specially at low SNRs.
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Fig. 5: The average fairness rate versus P for NRIS = 100, L = 2,
K = 2, M = 1.

In Fig. 6, we compare centralized and distributed imple-
mentations of RIS. We consider three different scenarios: a
centralized RIS with NRIS = 100, two distributed RISs with
NRIS = 50, and four distributed RISs with NRIS = 25 as
illustrated in Fig. 3. Indeed, the total number of RIS elements
is fixed in these scenarios, and only the position of the
elements varies. As can be observed, the average fairness rate
increases when we employ distributed implementations. As
indicated, the distance between RIS elements and users plays
a key role in the performance of RIS. Thus, we should position
the RISs as close as possible to the users, which explains the
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Fig. 6: The average fairness rate versus the number of RISs (M ) for
NRIS = 100

M
, L = 2, K = 2, M = 1.

superiority of distributed implementations of RISs. Note that
Fig. 6b suggests that there can be an optimal value for the
number of co-located RISs, which may depend on the position
of users. It means that the number and position of RISs can be
considered as optimization variables, whose optimnal values
depend on the topology of the network as well as system
parameters such as path-loss components and antenna gains.

In Fig. 7, we show the average fairness rate versus the
number of iterations for a two-cell broadcast channel with two-
users in each cell. As can be observed, the algorithms for RIS-
assisted systems require more iterations to converge, which
implies that these algorithms are slower. Note that one iteration
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of the proposed algorithm consists of solving two convex
optimization problems, and it is therefore computationally
more costly than one iteration of the algorithms that do not
optimize the reflecting coefficients. However, interestingly, we
can observe that after a single iteration the algorithms with
optimized reflecting coefficients provide a better minimum rate
than the final value of the algorithms that do not optimize
the reflecting coefficients. This improvement outweighs the
complexity of our proposed algorithms.

B. Sum-rate maximization

Figure 8 shows the average sum rate of a two-cell broadcast
channel with two-users in each cell for NBS = Nu = 1,
NRIS = 100, and M = 1. In this figure, we assume that
the minimum required rate of users can be 0, which means
that some users may be switched off if they do not have
good channel gains. Thus, the interference level can be lower,
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Fig. 9: The average fairness EE versus Pc for NRIS = 100, L = 2,
K = 2, M = 1 with different NBS , Nu.

which in turn reduces the benefits of IGS as an interference-
management technique. This is due to the fact that the higher
the interference level is, the more benefits by IGS can be
achieved as also showed in [18]. We can observe this issue in
Fig. 8, where the proposed IGS scheme outperforms the PGS
schemes, but the IGS benefits are lower than those observed in
terms of the fairness rate. Moreover, we observe that there are
only minor gains by employing RIS when the RIS components
are chosen randomly and not optimized. On the contrary, RIS
can provide a considerable gain when the RIS elements are
optimized properly. Additionally, we observe that the reflecting
surfaces perform very close to the upper-bound performance
of RIS. Finally, we observe that PGS, which is unaware of
IQI, performs even worse than the PGS scheme without RIS.
This result shows the importance of implementing IQI-aware
schemes.

C. Fairness EE

Figure 9 shows the fairness EE of a two-cell broadcast
channel with two-users in each cell for NRIS = 100 and
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Fig. 10: The average global EE versus Pc for NRIS = 100, L = 2,
K = 2, M = 1.

different number of antennas at the BSs and users. As can
be observed, the proposed IGS scheme outperforms PGS
schemes. Moreover, there is a huge performance improvement
by optimizing RIS components in both IGS and PGS schemes.
Similar to WMRM and WSRM, RIS does not provide a con-
siderable gain when the RIS components are chosen randomly.
Additionally, the reflecting surface performs very close to the
upper-bound performance, which is given by jointly optimiz-
ing the amplitude and phase of RIS components. Finally, we
observe that the IQI-aware scheme significantly outperforms
the PGS scheme, which is unaware of IQI.

D. Global-EE maximization

Figure 10 shows the global EE of a two-cell broadcast chan-
nel with two users in each cell for NRIS = 100 and different
number of antennas at the BSs and users. As can be observed,
we can get a considerable improvement by optimizing over
the RIS components. However, the performance of RIS with
random but fixed phases is very close to the case without
RIS. Additionally, we observe that the IGS and PGS schemes

perform very close to each other. In other words, IGS provides
only minor improvements over the PGS scheme. This is in
line with the results in [18] in which it was shown that the
benefits of IGS from global EE perspective vanishes in the K-
user MIMO ICs with HWI. Note that our IQI-aware schemes
always outperform the PGS scheme, which is unaware of IQI.

E. Summary of numerical results

Our results show that IGS can substantially improve the
spectral and energy-efficiency of RIS-assisted systems. It
is precisely the combined use of RISs together with an
interference-management technique such as IGS that makes it
possible to achieve satisfactory results in interference-limited
multicell MIMO scenarios. Interestingly, our numerical results
suggest that employing RIS substantially boosts the benefits
of IGS especially in SISO systems. Finally, our results also
show that a distributed implementation of RIS outperforms a
centralized implementation, thus indicating that the location
of the different RISs in the network should be optimized to
maximize performance.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed IGS schemes to improve the
spectral and energy efficiency of a multicell RIS-assisted
broadcast channel with IQI, showing the performance im-
provements that improper signaling schemes can bring to this
scenario. Additionally, we proposed schemes to optimize the
RIS elements. Our numerical results showed that RIS may
provide only minor benefits if the RIS components are chosen
randomly. We also showed that the benefits of RISs highly
depend on their position. If the distance between the RIS and
users is large, it may not offer considerable gains. Furthermore,
we showed that distributed RIS implementations can bring
more benefits than centralized implementations. Altogether,
these results suggest that the number and position of RISs
should be considered as optimization parameters. We also
considered a RIS implementation for which the amplitude and
phase of each RIS component can be independently optimized,
which can be seen as an upper bound on the RIS performance.
Our numerical results suggest that reflecting surfaces, in which
only the phases are optimized, can perform very close to the
upper bound where both amplitudes and phases are optimized.
Finally, we showed that neglecting IQI in the design can result
in a huge performance degradation, while IQI-aware schemes
significantly improve system performance.

As future lines of work, the asymptotic behavior of the
spectral and energy efficiency metrics can be studied for BSs
with a large number of antennas (massive MIMO). Further-
more, the performance of IGS in the presence of imperfect
and/or statistical CSI is undoubtedly another aspect to be
investigated. It can be also interesting to study the performance
of IGS when a NOMA-based technique is employed in RIS-
assisted systems. Finally, the development of distributed and/or
low complexity versions of our algorithms is an interesting
research avenue.
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