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A Region-based Collaborative Management Scheme
for Dynamic Clustering in Green VANET

Bingyi Liu, Zhipeng Fang, Wei Wang, Xun Shao, Wei Wei, Dongyao Jia, Enshu Wang, Shengwu Xiong

Abstract—Green Vehicular Ad-hoc Network (VANET) is a
newly-emerged research area which focuses on reducing harmful
impacts of vehicular communication equipments on the natural
environment. Recent studies have shown that grouping vehicles
into clusters for green communications in VANETs can signifi-
cantly improve networking efficiency and reduce infrastructure
costs. As a dynamic network system, maintaining the network
connectivity and reducing the communication overlap are two
critical challenges for green VANET clustering. However, most
existing work studies connectivity and overlap separately, lacking
a deep understanding of the relationship between them. To
address this issue, we present a comprehensive analysis that
jointly considers the two critical factors in one model. Specifically,
we first design a state resemblance prediction (SRP) model
based on the historical trajectory feature relevance between
vehicles; Combined with the SRP model, we propose the region-
based collaborative management scheme (RCMS) to establish
the dynamic clustering; Lastly, we take extensive experiments
to verify the region-based collaborative management scheme for
dynamic clustering. The results demonstrate that the proposed
clustering algorithm can achieve high networking efficiency and
better communication stability.

Index Terms—VANETs, Green communication, Network con-
nectivity, Communication overlap, Dynamic clustering

I. INTRODUCTION

VANETs enable direct communication among vehicles
in a vehicle-to-vehicle (V2V) manner and promote to

form a green and swarm intelligent network system in which
vehicles perform as network nodes. With the help of V2V
communication, vehicles on the roads can share different
types of information (e.g., traffic situations, road accidents) to
improve road safety and traffic efficiency, allowing for a more
environmentally friendly smart and sustainable transportation
system [1].

Similar to the communications in internet of things (IoTs)
[2]–[5], when facing the continuously increasing traffic de-
mand, the fundamental challenge in greening communication
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and networks then turns to be: can we and how can Send
More Information bits with Less Energy (SMILE) [6]. Mean-
while, the high dynamic and density of vehicles in urban
traffic environments often lead to frequent communication
disconnection and high communication overhead. Inspired by
cloud computing and fog computing [7], [8], some existing
studies utilize a hierarchical network structure by grouping
vehicles into clusters instead of a flat network structure [9].
Within the cluster, ordinary vehicles communicate directly
with core vehicles, and the core vehicles implement inter-
cluster communication.

Obviously, for such a hierarchical network structure, it is
critical to design an effective dynamic clustering algorithm.
Some traditional clustering algorithms, e.g., beacon-based
clustering [10], [11], mobility-based clustering [12], [13], and
backbone-based clustering [14], are designed based on large-
scale message dissemination and need to update the clustering
states at a fixed period continually by utilizes k-hop cluster
architecture to enhance clustering efficiency. Moreover, some
prediction-based clustering algorithms [15]–[19] and learning-
based networking schemes [20], [21] have been proposed
based on nodes’ spatial-temporal properties, which help to
form the relevance among the current position and potential
destinations, and determines the cluster or networking struc-
ture. Although the aforementioned studies are fundamentally
vital for clustering algorithms, several issues have not been
fully addressed. First, most existed clustering algorithms are
devoted to implementing the clustering construction session
but slightly consider the cluster maintenance aspect. Since the
highly dynamic network topology severely affects the original
network structure and the uneven distribution of vehicles gives
rise to high communication overhead, cluster maintenance
is considered as an indispensable procedure of clustering in
VANETs. Besides, few studies consider the clustering method
with an in-depth understanding of the relationship between
network connectivity [22] and communication overlap. For
network connectivity, most existing studies focus on optimiza-
tion based on the mobility of vehicles, e.g., relative positions
and relative speed, to maintain network connectivity. However,
complex urban traffic may severely affect vehicle mobility
and network topology, resulting in excessive communication
overlap and network congestion.

In this paper, we propose a region-based collaborative
management scheme for dynamic clustering, named RCMS,
aiming at improving the clustering performance in terms
of maintaining the network connectivity and reducing the
communication overlap. Such a task gives challenges from
the following aspects. Firstly, the high dynamics of vehicles
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in real-world traffic environments may cause the instability
of network topology, resulting in low network quality and
high communication overhead. Thus, It is critical to adjust
the network structure as the environment evolves. Secondly,
the management of network structure often requires additional
computation and communication resources. The limited on-
board resources pose challenges to the communication process
of the whole system so that the resources can be fully utilized.
In RCMS, we clarify how the metrics of network connectivity
and communication overlap affect network quality and com-
munication overhead. Also, We jointly consider the two critical
factors into one model, intending to achieve low end-to-end
latency and stable communications. The main contributions of
this paper are summarized as follows.
• We propose the state resemblance prediction (SRP) model

for obtaining the trajectory features relevance between
vehicles. According to the SRP model, we can group the
vehicles with similar trajectory features to improve the
clustering performance.

• Based on the SRP model, we propose a region-based
collaborative management scheme for dynamic clustering
in VANET. Specifically, we propose the region-based
collaborative management scheme to jointly consider
the relationship between the network connectivity and
communication overlap. According to the analysis, we
provide both intra-region and inter-region procedures
and aim at achieving better network quality and lower
communication overhead.

• We simulate real traffic and communication scenarios
on a simulation platform and take extensive experiments
to evaluate networking efficiency and communication
performance. The results validate the efficiency of the
region-based collaborative management scheme for dy-
namic clustering.

The rest of this paper is organized as follows. Section
II summarizes the related work, and Section III presents
the system model and problem description. We then present
a state resemblance prediction method in Section IV and
analyze the performance of the region-based collaborative
management scheme in Section V, respectively. Finally, the
paper is concluded in section VI.

II. RELATED WORK

Using vehicle clustering to support green vehicular commu-
nications is an important technique that focuses on reducing
overhead and costs of VANETs. Recently, various clustering
algorithms have been extensively proposed in the literature,
e.g. [23], [24]. Considering our work is highly relevant to
the clustering algorithm, in this section, we first introduce
traditional clustering algorithms and then, in particular, focus
on predictive clustering algorithms.

A. Traditional Clustering Algorithms

Traditional clustering algorithms normally update the clus-
tering states continually via large-scale message dissemination
[25], [26], and utilize k-hop cluster architecture to enhance

clustering efficiency. The various traditional clustering algo-
rithms are classified as follows.

As for typical beacon-based clustering algorithms, clusters
are constructed based on the beacon messages of network
parameters detected by receiving vehicle, containing the pa-
rameters, e.g., the vehicle speed, vehicle density, and connect
time [27]. The cluster-based beacon dissemination process
(CB-BDP) in [28] provides vehicles with a local vehicle
proximity map of their nearby vehicles, informing drivers
of hazard situations to avoid accidents. To cope with the
channel contention caused by the fixed beacon interval, [29]
has proposed a full distributed adaptive beacon control scheme
to avoid the rear-end collision in dense scenarios based on
individually estimated danger coefficient.

Density-based clustering can provide robust connectivity
within a cluster according to the density information about
the composition of the cluster. In [30], the author proposes
a mobility-aware TDMA MAC, named MoMAC, which can
allocate each vehicle a time slot according to vehicles’
mobility and road topology. The mobility-based clustering
aims to minimize relative mobility among the vehicle and
thereby maintain clustering convergence, and dynamics [12].
For example, Wang et al. [31] takes into account the impact
of wireless channel conditions, MAC protocol, and vehicle
mobility, and proposes the closed-form expressions about
throughput and average packet loss probability of a VANET
cluster. Similar to [32], [13] chooses the central node in the
cluster as the cluster head to improve the stability of cluster
management.

In recent years, some studies focus on k-hop clustering
algorithms to improve the clustering efficiency and stability
by reducing the variation in cluster head and cluster member
lifetime. Each cluster chooses a node as the cluster head, and
the distance between cluster head and cluster member can be
one or more hops [14]. For example, [33] allows vehicles to
connect to the VANET through a roadside unit so that each
vehicle can obtain and share the necessary information about
its multi-hop neighbors to perform the clustering process. The
clustering stability can be enhanced by electing both slave
cluster head and master cluster head.

B. Predictive Clustering Algorithms

The predictive clustering algorithms predict the movement
of a vehicle based on current geographic information and
vehicle states. Some of these algorithms can be categorized
as follow.

The main idea for position-based clustering algorithms is
that vehicles are grouped into a cluster on the basis of
geographic position among the vehicles [15], [34]. To analyze
the network topology with the vehicular position information,
Qu et al. proposes a dynamically evolving networking (DEN)
[35] to take realistic vehicular traces as input and explores the
impact of node addition, node deletion, and link loss on the
network due to node movement. As for the connectivity-based
clustering algorithms, due to the spatial-temporal properties of
the vehicle, the network connectivity is important to indicate
the networking efficiency. In [36], the author proposes an
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Fig. 1. Region-based collaborative management scheme for VANET in urban scenarios

algorithm named connectivity prediction method (CP), which
combines the communication range and vehicle density to
build up a connectivity prediction model for dynamic clus-
tering. For understanding the connectivity probabilities under
different communication manners, the author [37] analyzes
and predicts the connectivity probabilities for the Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communi-
cations on one direction and bi-direction road, respectively.
Recently, some proposed predictive clustering algorithms have
taken advantage of fog computing. The paper [17] presents
an FoG-oriented architecture that utilizes road junctions for
route discovery and vehicles in the parking area for packet
transmission.

Although the clustering algorithms mentioned above are
essential to support clustering, most existing studies only
consider network connectivity during the cluster construction
phase, regardless of its importance in the cluster maintenance
phase. Furthermore, the highly dynamic network topology
severely affects the original network structure; dealing with
communication area overlap gradually becomes a high priority
in the cluster maintenance phase. In addition, most studies
treat connectivity and overlap as separate metrics without
consideration of their intrinsic connection. This paper proposes
a region-based collaborative management scheme for VANETs
in urban scenarios. Moreover, the joint control schemes of
overlap and connectivity can achieve better clustering man-
agement and have wider adaptability especially in complex
urban scenarios.

III. SYSTEM MODEL AND PROBLEM
DESCRIPTION

In this section, we first describe the traffic scenario and
communication model in an urban area and then give a
description of the vehicle movement model. To facilitate the
following descriptions, we first summarize the notations in
Table I.

A. Traffic Scenario and Communication Model

In this study, we consider a typical traffic scenario that
consists of roads and intersections. As illustrated in Fig. 1,
a hierarchical network structure is proposed for dynamic
clustering. Such a hierarchical network structure is suitable
for large-scale VANETs in urban environments. Compared
with the traditional flat network structure, the hierarchical
network can achieve a dynamic balance of networking effi-
ciency and communication stability Specifically, considering
unique characteristics of vehicular networks, such as highly
heterogeneous resources and highly dynamic system status,
the hierarchical network structure alleviates the high coupling
among vehicles in a flat network structure by grouping vehicles
into clusters. Moreover, it enables logically centralized control
by decoupling management and communication planes, and
enhances system reliability, scalability and flexibility. In this
paper, the hierarchical network structure consisted of three
layers. The layer of core vehicles manages relationships among
regions and needs to conduct region operations including
region construction, region aggregation, and region decom-
position. The layer of gateway vehicles is responsible for
connection among regions. The layer of ordinary vehicles
focuses on direct communication and information exchanges
in the same region.

To support the region operation, we assume that all vehicles
are equipped with on board units (OBU) and global positioning
systems (GPS) for capturing the kinetic dynamic states (e.g.,
speed, acceleration, position) and realizing V2V communica-
tion. The messages are disseminated among the vehicles based
on IEEE 802.11p standard. Each vehicle enters VANETs with
its own unique identity and meets the requirement of strict
security and privacy.

B. Vehicle Movement Model

Our objective is to propose a region-based collaborative
management scheme that integrates multiple vehicles with
similar historical and current states. Each core vehicle is
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Fig. 2. the state-resemblance-prediction framework

TABLE I
NOTATION

Symbol Description
vκi Vehicle i, i is the ID of vehicle, κ denotes the

vehicle type.
si(t) the state of vehicle vκi at the time t
γi the road segment vκi stays
~si the vehicle vκi ’s speed
~ai the vehicle vκi ’s acceleration
δTTI the traffic condition
θ the vehicle’s driving direction
ζ the estimated interaction time for received message
λSRP the similarity between vehicle voi and vci trajecto-

ries
ht the hidden state at time t
h̃t the candidate hidden state at time t
zt the update gate
rt the reset gate
τcoo the cooperative threshold among vehicle voi and vci
τcom the competitive threshold among vehicle voi and vci
ϕagg the region aggregation threshold among vehicle vci

and gateway node
ϕdec the region decomposition threshold among vehicle

voi and vci

responsible for region operations and message dissemination.
In the following content, we formulate vehicles’ states and
vehicle trajectory information.

Definition 1: the states of vehicle node vκi at time t denoted
as

statei(t) = {κ, γi, ~si, ~ai, θ, δTTI}

For the vehicle node vκi , i means the unique identity, and κ
denotes the vehicle type. Other notations about the vehicle’s
features are described as follows, γi denotes the road segment
that the vehicle stays at the time t, ~si represents the vehicle’s
speed, ~ai denotes the acceleration of the vehicle. In addition,
θ represents the vehicle’s driving direction, which is a relative
value referring to the core vehicle’s driving direction. If the
vehicle is driving in the same direction as the core vehicle,
the value of θ = 1. Otherwise, θ = −1. In order to quantify
traffic conditions, we introduce the concept of the travel time
index (TTI), which calculated by in Equation (1),

δTTI =
ΣNri=1

γi
~si
· ωi∑Nr

i=1
γi
Vfreei
· ωi

(1)

where ωi denotes the weight of the road segment γi based on
different urban road hierarchy, and Nr represents the number
of road segments. Vfreei is the free flow of γi. The δTTI is the
evaluation index, i.e., the ratio of the actual travel time and the
free flow time, and can reflect the urban congestion degree.
A larger value of the index implies a worse traffic congestion
level.

Definition 2: The trajectory information of each vehicle is
defined as

Tvκi (n) = {(statei(t0), t0), (statei(t1), t1),

. . . , (statei(tn), tn)}

where Tvκi denotes vehicle vκi trajectory, and statei(tn) rep-
resents vehicle vκi states at time tn.

IV. STATE RESEMBLANCE PREDICTION MODEL

In this section, we first overview the proposed SRP model
and then detail overall training algorithm of the SRP model.

A. Framework Overview

Since vehicles’ trajectory features are time-dependent, we
formulate the prediction process of vehicles’ trajectory features
as the time series forecasting tasks. Due to the ability of
automatic feature extraction, the Recurrent Neural Network
(RNN) is very effective in processing data with time-series
features. Meanwhile, we use a smooth approximation based
on dynamic time warping (DTW) [38] to train our RNN.
Compared with the traditional loss function, like MSE, DTW
can better capture the difference between the two trajectories.
Hence, we integrate the Sequence To Sequence (Seq2Seq)
RNNs model with the DTW algorithm in the SRP model. As
illustrated in Fig. 2, the proposed framework utilizes two GRU
networks, namely the encoder-decoder framework, consisting
of the encoder module and decoder module.

1) GRU module: GRU is a highly effective variant of RNN,
which alleviates the sequence-based tasks with long-term
dependencies in RNN. To alleviate these adverse effects, GRU
applies the update and reset gates. The activation ht restricts
updating process between the previous activation ht−1 and the
current candidate activation h̃t is shown in Equation (2),

ht = zt � ht−1 + (1− zt)� h̃t (2)
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where the update gate zt decides how much the previous
moment ht−1 is updated to the current ht given in the
following Equation (3),

zt = σ (Wzxt + Uzht−1 + bz) (3)

where W , U , and b are the parameters of our model, the dif-
ferent subscripts correspond to different formulas. Moreover,
their values are updated during training. The matrix W multi-
plies the vectors by xt and produces a new vector. Similarly,
the matrix U multiplies the vectors by ht−1 and produces a
new vector. These two new vectors and the parameter bias
are summed, and each component of the result is passed to
the sigmoid function. Further, Equation (4) mainly calculates
the element-wise multiplication of the reset gate rt and ht−1,
which determines the previous information being retained or
forgotten,

h̃t = tanh (Whxt + Uh (rt � ht−1) + bh) (4)
rt = σ (Wrxt + Urht−1 + br) (5)

The reset gate rt primarily determines how much past infor-
mation needs to be forgotten, as given in Equation (5).

2) Encoder module: The encoder module obtains the sur-
rounding ordinary vehicles’ moving status to build the tra-
jectory sample and obtains its vehicle status information to
generate the vector information. The Encoder module encodes
the input sequence {I1, I2, . . . , IL} of length L of trajectory
state information into the corresponding hidden states and
obtains the final output hL−1 after L times recursive loops.
Then, the encoder module transfers hL to the decoder module,
and the decoder module uses it as the initial cell state for the
following sequence generation.

3) Decoder module: The Decoder uses vector information
from the encoder module to detect the trajectory’s state
resemblance and recursively generates subsequent trajectory
samples. The Decoder Module commences with its previous
output as the Decoder input hL. Besides, each updating
process necessitates taking the last moment output h′l−1 as
the input and connects the fully connected network through
the activation function called Rectified Linear Unit (ReLU).
Furthermore, the decoder module recursively generates the
output sequence {O1, O2, . . . , On}.

B. Overall Training Algorithm

In this part, we present the overall training algorithm of
SRP model. For an ordinary vehicle voi , we use the DTW
to compare the two time-series dissimilarities given in the
following Equation (6),

DTW (Tvci , Tvoi ) = min

√∑n
i=1 pi
n

(6)

where pi is defined as the warping path of length n. The i th
element of p is defined as pk = (i, j), which corresponds to
the mapping of trajectory sequence. Tvci and Tvoi denote the
trajectory of core vehicles and ordinary vehicles, respectively.
To handle the trajectory information, we investigate the vehicle
trajectories continuously and capture vehicle nodes’ movement

information among road segments from the temporal and
spatial perspective.

Due to the non-differentiable property of DTW, inspired
by the perspective proposed in [39], we define the objective
function combining DTW as shown in Equation (7),

ξSRP (Tvci , Tvoi ) = − log

(
L∑
i=1

exp

(
−
DTW (Tvci , Tvoi )

L2

))
(7)

where L denotes the length of trajectory Tvκi . For the trajectory
information of length L, the vehicle dynamics characteristics
are included in the form of time series, effectively alleviating
the vehicle dynamics challenges by combining the forward and
backward transfer in our model. During the training process,
our objective function compares the ordinary vehicle trajectory
Tvoi with the core vehicle trajectory Tvci . The trajectory dis-
tortion terms are based on the alignment between the ordinary
vehicle trajectory Tvoi and the core vehicle trajectory Tvci . Our
loss function, based on DTW, focuses on the dissimilarity
between core and ordinary vehicles’ trajectory information
by temporally aligning the trajectory series between core and
ordinary vehicles. In DTW, the warping path is based on a
binary matrix M ⊂ {0, 1}L2

, where Mc,o = 1 when the
trajectory Tvci is associated with Tvoi , otherwise Mc,o = 0.

V. THE REGION-BASED COLLABORATIVE
MANAGEMENT SCHEME

In this section, we provide a complete region-based collab-
orative operations scheme that monitors metrics, e.g., com-
munication overlap and network connectivity, and performs
appropriate region management to guarantee clustering per-
formance, including (1) region construction, (2) core vehicle
replacement, (3) region maintenance.

A. Region Construction

Region construction is triggered when a vehicle connects to
the VANETs. The vehicles will select a suitable region nearby
or form their own region. The region construction criteria are
based on the similarity of the mobility metrics and trajectory
features. In the following, we present the main procedures of
region construction in detail.

First, an ordinary vehicle sends a message, named READ,
to its surrounding one-hop vehicles, triggering a timer for
calculating the waiting time. Next, the ordinary vehicle waits
for the return message ROGER from the core vehicle within
the time ζ, which contains the core vehicle’s unique identifier.
The ζ denotes the estimated interaction time for the received
message. When receiving the core vehicle message, the ordi-
nary vehicle will respond individually based on the number of
ROGER messages:
• If the number of ROGER packets is 0, the vehicle enters

the waiting mode and waits for the next ζ interval to send
the READ message again.

• If the number of ROGER packets is 1, the vehicle
directly regards the packet’s sender as its core vehicle.

• If the number of ROGER packets is greater than one,
the ordinary vehicle will select the core vehicle with the
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Algorithm 1: Region Construction
Ordinary Vehicle voi :

1 voi send READ message to one-hop vehicles ;
2 voi start WaitingTime() // waiting for the return

message ;
Core Vehicle vci :

3 vci receive the READ message from ordinary vehicle ;
4 if δTTI > 1.5 then
5 vci send ROGER messages to two-way vehicles ;
6 else
7 vci send ROGER messages to same direction

vehicles ;
8 end

Ordinary Vehicle voi :
9 if WaitingTime() < ζ and voi Receive the ROGER

message from core vehicle then
10 if one ROGER message is received then
11 voi send cooperative request to core vehicle ;
12 else if more than one ROGER message is received

then
13 for Each core vehicle in contact with the voi do
14 voi calculate the cooperative threshold τcoo

using Equation (8) ;
15 end
16 voi send cooperative request to core vehicle

with the highest cooperative threshold ;
17 else
18 voi reset the WaitingTime() and enter the waiting

mode ;
19 end

Core Vehicle vci :
20 vci receive the cooperative request from ordinary

vehicle ;
21 vci send a agreement to cooperative ordinary vehicle ;

highest cooperative threshold to join according to the
Equation (8).

It shall be noted that, when receiving the ROGER mes-
sage from the multiple core vehicles, the ordinary vehicle
will evaluate the cooperative threshold, respectively. In this
situation, the ordinary vehicle has the ability to communicate
with multiple core vehicles, and we define this kind of ordinary
vehicle as a gateway node. The cooperative threshold between
vehicle voi and corresponding vci is calculated by Equation (8),

τcoo =

{
exp(−∆ ~sij ∗∆dij), 1 < δTTI <= 1.5,

λSRP ∗ exp(−∆ ~sij ∗∆dij), δTTI > 1.5.
(8)

The above equation takes into account the influence of three
factors: the relative speed ∆ ~sij , the relative distance ∆dij , and
the similarity of vehicle trajectories λSRP . A higher similarity
means that the ordinary vehicle may stay longer with the core
vehicle. Further, the basic idea of δTTI is the ratio of free-flow
speed and actual speed. According to [40], based on the value
of TTI, the traffic conditions can be classified into six different
degrees (e.g., traffic tie-up, congestion, light congestion, slow,

smooth, free flow). In this paper, the TTI value above 1.5
indicates congestion or even traffic jam. Otherwise, it means
that the traffic is smooth or free-flow conditions. Specifically,
the value of δTTI can be set in two ranges:
• If δTTI is less than 1.5, it means that the traffic is

smooth in this situation. To mitigate the problem of link
disconnections due to the fast movement of vehicles, we
evaluate the influence of relative speed and distance on
the cooperative threshold. Ordinary vehicles that maintain
lower relative mobility metrics to core vehicles are more
suitable for maintaining the network’s stability.

• If δTTI is greater than 1.5, it indicates that the overall
traffic flow is slow. In this condition, the core vehicle
can adequately handle the trajectory similarity λSRP with
ordinary vehicles to select more suitable ordinary vehicles
for the region and alleviate the communication overhead.

After calculating the cooperative threshold, the ordinary
vehicle selects the core vehicles with the highest score, sending
the cooperative request. Then, the core vehicle will return
an agreement to the ordinary vehicle. The complete region
construction procedure is described in Algorithm 1.

B. Core Vehicle Replacement

As time passed, the high dynamic of the vehicle may impact
the region’s stability. The choices of core vehicles are probably
no longer optimal. Hence, in this situation, we will find a new
vehicle to replace the previous core vehicle for maintaining
the intra-region structure’s stability.

In the region, the core vehicle will adjust communication
policy with the ordinary vehicle according to different δTTI
environments as shown in Algorithm 2. When more than half
of the ordinary vehicles disconnect with the core vehicle, it
means that the current core vehicle deviates from its managed
region, it will commence the replacement process. The candi-
date core vehicle is supposed to maintain a relatively center
position within the region and to move at an approximate speed
to the ordinary vehicles. Accordingly, we propose the com-
petitive threshold of core vehicles. The competitive threshold
includes two dimensions: historical and current driving status
data, and can be calculated by Equation (9),

τcom = λSRP ∗
∑No
i=1 ∆dij
No

(9)

∆dij represents the distance between the candidate core
vehicle and another ordinary vehicle. No denotes the number
of ordinary vehicles in the same region. The core vehicle has
the following two different situations:
• If there is more than one candidate core vehicle, the core

vehicle will calculate competitive threshold, respectively.
The vehicle with the highest competitive threshold, which
has a relatively center intra-region position than the
former core vehicle, replaces the former core vehicle.

• When the core vehicle fails to communicate with the
region due to a significant state change (e.g., the core
vehicle makes a U-turn while ordinary vehicles keep the
original direction), the core vehicle has no replaceable
core vehicle. Hence, the vehicle will select a suitable
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Algorithm 2: Core Vehicle Replacement
Core Vehicle vci :

1 while vci send message to corresponding ordinary
vehicles do

2 vci check the OVNum() //number of the ordinary
vehicles ;

3 end
Ordinary Vehicle voi :

4 voi receive the message from core vehicle ;
5 if δTTI < 1.5 then
6 voi update the new information every updating

interval ;
7 else if δTTI > 1.5 then
8 if Change in velocity of more than 50% within the

current timestamp then
9 voi update newly information every updating

interval ;
10 else
11 voi update newly information in two

consecutive updating interval ;
12 end

Core Vehicle vci :
13 if more than half of reduction of ordinary vehicles in

the region then
14 if more than one candidate core vehicle then
15 for Each candidate core vehicle do
16 vci calculate the competitive threshold τcom

using Equation (9) ;
17 end
18 vci send request to ordinary vehicle with the

highest threshold ;
19 else if a suitable candidate core vehicle is not

available then
20 goto Region Constuction
21 end

region nearby or repeats the region construction as shown
in Algorithm 1, and the original region also selects a new
core vehicle.

C. Region Maintenance

In this paper, network connectivity and communication
overlap are two essential metrics for the whole system. The
network connectivity can be measured by data transmission
rate and delay. While the communication overlap can be
measured by the number of vehicles that are applied to connect
different clusters. Apparently, The network structure with high
overlap means that the connectivity can be enhanced with
more vehicles acting as gateway vehicles to connect different
clusters. However, the communication overhead may be too
high due to the overfrequent exchange of information among
clusters. Conversely, the network structure with low overlap
may decrease network connectivity and even cause commu-
nication disconnection. To improve the networking efficiency
and communication overhead, we propose region aggregation
and decomposition schemes.

Algorithm 3: Region Aggregation
Gateway Node :

1 Gateway node detect the overlap of the region ;
2 if more than half of the gateway nodes are in the

overlapping region during two consecutive ζ periods
then

3 met the criteria for aggregation operation ;
4 calculate the ϕagg using Equation (10) ;
5 Gateway node send the merging right to vehicle

with the highest score ;
6 end

Newly Core Vehicle :
7 Newly core vehicle broadcast the change of the region,

and the former core vehicles become the candidate
core vehicle ;

1) Region aggregation: In some traffic situations, the over-
lap between regions may gradually increase with the dynamic
of traffics, leading to the dramatic increase of communica-
tion overhead among regions and affect region management
efficiency. For the region aggregation operation, the purpose
is to alleviate the excessive communication overhead caused
by communication overlap, so the different clusters can be
integrated into one region.

The gateway node initiates the region aggregation opera-
tion. This is because: (1) As the regions’ overlap gradually
increases, the gateway node detects this situation’s occurrence,
indicating region aggregation conditions. (2) The gateway
node already obtains information about the core vehicles
during the region construction and maintenance sessions. No
additional communication overhead is required. (3) In the
region construction and maintenance session, the gateway node
sojourns within the communication range of multiple core
vehicles and receives status information from the core vehicles.
Specifically, the vehicles within the communication range of
multiple core vehicles can be selected as gateway nodes,
namely candidate gateway nodes. In between two consecutive
ζ intervals, if the overlap rate is more than 50%, the gateway
node will initiate a region aggregation operation. The region
aggregation threshold given in Equation (10),

ϕagg =

∑Nc
i=1 e

−ηi · τcooi∑Nc
i=1 τcooi

(10)

where Nc represents the number of core vehicles within the
communication range. ηi indicates the distance between the
gateway node and their corresponding core vehicles. The
region aggregation operation is given in the following.
• The gateway node detects the overlap of the core vehicle’s

communication region.
• If more than half of the gateway nodes are in the over-

lapping communication region of the core vehicle during
two consecutive ζ periods, and the distance between the
core vehicles does not exceed half of the communication
region, the gateway will initiate the aggregation opera-
tion. Moreover, the adoption of this strategy can, to a
certain extent, alleviate the sudden change in overlap
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Algorithm 4: Region Decomposition
Ordinary Vehicle voi :

1 if voi approach an intersection then
2 met the criteria for decomposition operation ;
3 if voi different from the subsequent direction of the

moving of the core vehicle then
4 voi leave the corresponding region ;
5 goto Region Construction ;
6 else
7 voi calculate the ϕdec using Equation (11) ;
8 voi with ϕdec < 0 leave the region ;
9 end

10 end
Core Vehicle vci :

11 vci broadcast the change of the region ;

caused by the traffic flow convergence or communication
disconnection.

• The region aggregation threshold ϕagg is calculated by
the Equation (10). The gateway node with the highest
ϕagg takes over the merged region management.

• The newly core vehicle broadcasts the change of the re-
gion, and the former core vehicles becomes the candidate
core vehicle.

The region aggregation process is described in Algorithm 3.
2) Region decomposition: Some ordinary vehicles within

the same region tend to leave the communication range due to
the different velocities and moving directions at intersections,
which may lead to connection instability. For the region
decomposition operation, the purpose is to avoid the uneven
distribution of vehicles in a region to affect the network
connectivity, so the region can be decomposed into several
appropriate clusters.

Here we propose decomposition value in Equation (11),

ϕdec =
1− e−|∆dij |

1 + e−|∆(vci−voj )| (11)

where |∆(vci−voj )| denotes the relative speed between ordinary
vehicles and core vehicles. As the difference in movement pat-
terns between vehicles gradually increases, the distance |∆dij |
between core vehicle and ordinary vehicle also increases,
which will affect network connectivity and the region stability.
The region aggregation process is described in Algorithm 4.

VI. EXPERIMENTAL RESULT

The section evaluates our solution via extensive simulations,
we first present the experimental setting, followed by the
baseline and parameter settings, and finally, we evaluate the
performance of the proposed region-based collaborative man-
agement scheme in terms of networking and communication
performance. To facilitate further discussions, we summarize
the simulation parameters in Table II.

A. Experimental Settings

In our experiments, we utilize the Veins simulator, which
combines OMNeT++ for network simulation and SUMO for

TABLE II
SIMULATION PARAMETERS

Parameter Value
Simulation Time 650s
Road Topology 3km×3km
Speed Range 10 - 30 m/s
Physical/Mac protocol IEEE 802.11p
Path loss model Free-space (α=2)
Fading model Nakagami-m (m=3)
Transmission power 20 dBm
Transmission range 250m
Date rate 6Mb/s
Updating Interval 1s
Waiting Time ζ 2s

the vehicular mobility simulation. For the traffic scenario,
unless noted otherwise, we consider a 3km×3km grid in which
the road segment is the two-way four-lane with a length of
500m. We set 1200 free-running vehicles in the experiment,
and each vehicle has randomly distributed on the road network.
Since the experiments simulate an urban scenario, we set
the vehicle’s maximum speed as 30m/s. We use the Veins
and SUMO to simulate scenarios with traffic light control;
The vehicles’ behavior in the simulator is modeled by a
typical car-following model and lane-changing model, and
follows the traffic regulations, e.g., obeying the intersection
traffic lights. We implement IEEE 802.11p standard for V2V
communication, and the maximum communication range is set
to 250m. The region process starts at the 50s until all vehicles
entered the map. After the 50s, the vehicle executes the region
procedure, and the total simulation time is 650s.

The trajectory data are collected from DiDi Express and
DiDi Premier drivers. The measurement interval of the track
points is approximately 2-4 seconds. The track points are
bound to physical roads to match the trajectory data and the
actual road information. (Data source: DiDi Chuxing GAIA
Open Dataset Initiative)

B. Dynamic Clustering Simulation Results

We propose a region-based collaborative management
scheme for dynamic clustering, named RCMS. We compare
RCMS with the two existing clustering algorithms, the vehic-
ular multihop algorithm for stable clustering (VMaSC) [14]
and the mobility-based stability-based clustering algorithm
(MSCA) [32]. VMaSC utilizes the relative mobility metric to
estimate the average relative speed with respect to neighboring
vehicles. Based on the vehicle’s moving metrics, MSCA
estimates the lifetime of communication links. Hence, we
adopt the two algorithms as our experiments’ baselines.

As shown in Fig. 3(a), under different maximum speeds,
RCMS achieves the longest clustering lifetime, followed by
the MSCA and VMaSC, respectively. Fig. 3(b) illustrates
the clustering lifetime in different TTI. Obviously, compared
with MSCA and VMaSC, RCMS performs better. The reason
explained as follows. VMaSC relies on the current direction
of vehicle movement to establish clusters, while MSCA con-
siders the effect of relative position and link lifetime. On the
other hand, RCMS adopts the state resemblance prediction
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Fig. 3. RCMS performance of cluster lifetime. Relationship between (a)
cluster lifetime and maximum speed of vehicle, (b) cluster lifetime and TTI

of vehicles with the influence of the traffic environment and
can effectively predict vehicle occurrence in the near future.
Therefore, it is longer in terms of cluster lifetime.

Fig. 4(a) illustrates the number of cluster reconstructions
at different moments. It is observed that the number of
reconstructions increases with time. RCMS’s reconstruction is
lower than MSCA and VMaSC. Similarly, Fig. 4(b) reveals the
relationship between the number of clustering reconstructions
and TTI. The increase in the TTI directly leads to an increase
in reconstruction times. Nonetheless, the reconstruction times
of RCMS are less than those of MSCA and VMaSC.

Fig. 5(a) shows that the overlap rate increases with time. The
overlap rate of RCMS is between 9% and 26%, much less than
those of MSCA and VMaSC (between 35% and 61%, 36%
and 71%, respectively). Fig. 5(b) illustrates the relationship
between overlap rate and TTI. Similarly, RCMS’s outperform
both MSCA and VMaSC. The reason is that RCMS considers
and proposes a joint control scheme of network connectivity
and communication overlap. Hence, RCMS can achieve better
connectivity with less overlap through fewer reconstructions.

C. Communication Performance Evaluation

In order to verify the connectivity performance of region-
based collaborative management scheme for dynamic clus-
tering, we use the region-based collaborative management
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Fig. 4. RCMS performance of reconstruction times. Relationship between (a)
reconstruction times and time, (b) reconstruction times and TTI

scheme described in Section V. In this paper, we execute intra-
cluster and inter-cluster operations to maintain the stability of
the network structure. Based on the stable network structure,
we can transmit a message to the designated destination
through the relay nodes as the core vehicles and their corre-
sponding gateway nodes. To precisely evaluate the communi-
cation performance, we use clustering-based routing protocol
and non-clustering-based routing protocol as the baselines.
For the clustering-based routing protocols, we choose the
clustering-based directional routing protocol (CBDRP) [41],
in which the vehicle at the cluster center is selected as the
cluster head, and member vehicle’s routing messages need
to be transmitted to the cluster head first. Then the cluster
head determines the routing path of the message. For the
non-clustering-based routing protocols, we select GPSR [42],
which uses the store-carry-forward routing mode to transmit
data packets to neighboring vehicles without constructing a
routing path directly.

The relationship between data packet delivery rate (DPDR)
and TTI is illustrated in Fig. 6(a). We can observe that as
the TTI index increases, the vehicle density increases accord-
ingly, and so does the data packet delivery rate. However,
the growth slope before 1.75 of TTI is significantly greater
than that after 1.75. As shown in the Fig. 6(b), when the
number of data packets to be delivered (NDPD) increases,
the DPDR decreases. Specifically, RCMS’s DPDR is between
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Fig. 5. RCMS performance of overlap. Relationship between (a) overlap rate
and time, (b) overlap rate and TTI

74% and 88%, CBDRP’s DPDR is between 85% and 58%, and
GPSR’s DPDR is between 70% and 29%. Therefore, RCMS
outperforms CBDRP and GPSR.

Fig. 7(a) demonstrates the relationship between the interac-
tion delay and TTI. The interaction delay of RCMS is lower
than those of CBDRP and GPSR. The GPSR routing algorithm
is an algorithm that uses geographic location information to
implement routing and a greedy algorithm to build a routing
scheme, so its interaction delay is higher than CBDRP and
RCMS. In contrast, RCMS adopts the distance information
of vehicle nodes in bi-direction. Therefore, the interaction
delay of RCMS is lower than that of CBDRP. Also, Fig. 7(b)
illustrates the relationship between interact delay and NDPD.
The same result can be observed that the interaction delay of
RCMS is lower than those of CBDRP and GPSR.

VII. CONCLUSION

Green communications in VANETs have to take two im-
portant issues into consideration: transmission techniques and
communication statues. To cope with such issues in this
paper, we propose a region-based collaborative management
scheme for dynamic clustering in VANETs. Specifically, for
adapting to the traffic demands and communication require-
ments, we utilize a hierarchical network structure by group-
ing the vehicles into clusters. The vehicles within the same
cluster have similar trajectory features determined by the
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Fig. 6. Communication performance. Relationship between (a) DPDR and
TTI. (b) DPDR and number of the packet to delivered

state resemblance prediction (SRP) model. To maintain the
stability of network structure, we propose the region-based
collaborative management scheme (RCMS) to consider the
relationship between network connectivity and communication
overlap jointly. Based on the consideration, we provide intra-
region and inter-region operations and aim to achieve better
network quality and lower communication overhead. We con-
duct extensive experiments that validate the efficiency of the
region-based collaborative management scheme for dynamic
clustering.
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