
1

FedNILM: Applying Federated Learning to
NILM Applications at the Edge

Yu Zhang, Guoming Tang, Qianyi Huang, Yi Wang, Xudong Wang, Jiadong Lou

Abstract—Non-intrusive load monitoring (NILM) helps disag-
gregate the household’s main electricity consumption to energy
usages of individual appliances, thus greatly cutting down the cost
in fine-grained household load monitoring. To address the arisen
privacy concern in NILM applications, federated learning (FL)
could be leveraged for NILM model training and sharing. When
applying the FL paradigm in real-world NILM applications,
however, we are faced with the challenges of edge resource
restriction, edge model personalization and edge training data
scarcity.

In this paper we present FedNILM, a practical FL paradigm
for NILM applications at the edge client. Specifically, FedNILM
is designed to deliver privacy-preserving and personalized NILM
services to large-scale edge clients, by leveraging i) secure
data aggregation through federated learning, ii) efficient cloud
model compression via filter pruning and multi-task learning,
and iii) personalized edge model building with unsupervised
transfer learning. Our experiments on real-world energy data
show that, FedNILM is able to achieve personalized energy
disaggregation with the state-of-the-art accuracy, while ensuring
privacy preserving at the edge client.

Index Terms—NILM, federated learning, model compression,
transfer learning.

I. INTRODUCTION

NON-INTRUSIVE load monitoring, also known as energy
disaggregation, was first proposed by Hart in 1992 [1].

It is a single-channel blind source separation (BSS) problem
that aims to decompose the aggregated power readings of a
household into appliance-wise power consumption. One of
the major purposes of NILM is to help reduce household
energy consumption efficiently. Evidences have shown that such
feedback of itemized information could encourage householders
to use energy in a more sustainable way, achieving about 15%
energy saving [2], [3]. Besides, NILM can be leveraged to
evaluate conservation programs, improve the quality of load
forecasting, and provide references for power grid manage-
ment [4]. For example, with real-time NILM applications, utility
companies could suggest switching operations on particular
appliances (e.g., air conditioners) for load shifting in peak
power hours [3].

Although proposed for decades, the NILM problem has not
been addressed completely, and traditional solutions referring
to man-made appliance signatures have run into bottlenecks [5],
[6]. Most recently, it shows that the deep neural network (DNN)
based approaches could greatly improve the performance of
NILM [7]–[10], as neural networks are able to automatically

Y. Zhang, G. Tang, Q. Huang and Y. Wang are with the Peng Cheng
Laboratory, Shenzhen, China. X. Wang and J. Lou are with the Chinese
University of Hong Kong, Shenzhen, China.

Corresponding author: G. Tang (tanggm@pcl.ac.cn).

learn appliance features (or appliance signatures), either
obvious or latent ones. Various neural network architectures
have been proposed for NILM, including denoising auto-
encoder [7], recurrent neural networks [11], and GAN [12], etc.
Among those DNN based methods, the Seq2Point model [8], a
one-dimensional CNN based auto-encoder architecture, is the
current state-of-the-art model for energy disaggregation.

Arguably, the DNN based NILM models largely rely on
sufficient and diverse training data, whereas realistic datasets
often exist in the form of isolated islands. Although there
are plenty of meter data in different buildings, it is almost
impossible to transmit or integrate these local user data into a
centralized storage, due to limits in communication bandwidth
and legislation in user privacy and data security. Actually, in the
last few years, the emphasis on data security and user privacy
has become a global issue. For example, in the United States,
China, and the European Union, relevant regulations have been
enforced to protect data security and privacy [13], [14], making
it high-risk to gather massive user energy consumption data. In
consequence, it is impractical to train powerful NILM models
with existing paradigms.

A. Motivations and Challenges

To address such problems, federated learning (FL) has
recently emerged as a promising paradigm. In a canonical
FL system, user data is kept on client devices and the NILM
model training is realized by i) local model updates with users’
own data and ii) cloud model fusion with all users’ models.
In this way, client data remains locally and separate clients
are integrated to build a up-to-date cloud model, thus allowing
local models to collectively reap the benefits of cloud model
trained from rich data [15]. It seems natural to apply the FL
paradigm to the NILM problem for privacy preserving, which
was theoretically verified in [16] recently. When dealing with
real-world NILM applications at local houses, however, we are
still faced with the following major challenges.

Challenge 1: One critical limitation of adopting the typical
FL system to NILM applications is the constrained resource in
local homes (or edge clients), in terms of computation power,
communication bandwidth, memory and storage size, etc. In
reality, usually low-end devices (or edge devices) appear in
local homes, rather than those powerful CPU/GPU servers.
Hence, as the NILM models usually take large memory and
computation overheads, network training on such resource-
constrained edge devices could take prohibitively long time
or even be terminated immediately. Since we cannot perform
the model fusion at cloud without local updates, the resource

ar
X

iv
:2

10
6.

07
75

1v
1 

 [
cs

.L
G

] 
 7

 J
un

 2
02

1



2

lack at the edge client literally hinders the FL paradigm from
applying in NILM applications.

Challenge 2: The second one relates to the personalization
of NILM models. Although recent DNN based approaches are
promising for NILM, it is not clear whether existing models are
transferable among the diverse edge clients, since most of the
models are trained on public datasets (e.g., REDD [17] and UK-
DALE [18]). In other words, even with satisfied performance
on the common training datasets (or source domain), these
models may perform badly in a testing house (or target domain),
owing to the distribution difference between training and testing
data [19]. Generally speaking, different households usually have
different appliances as well as energy usage patterns, making
those models hardly capture edge clients’ heterogeneity and
resulting in poor scalability in practice [19].

Challenge 3: The third one is on training data scarcity
at edge clients. For NILM applications, obtaining unlabelled
testing data (i.e., mains power data) is quite easy, as current
utility smart meters report the whole-home energy consumption
periodically. To acquire labelled training data (i.e., power
consumption data of individual appliances), however, is ex-
tremely expensive if not impossible. Although there are various
power sensing devices and we could equip each appliance with
a power sensor, this would incur enormous installation and
maintenance costs, and thus is unscalable across large-scale
households. As current DNN based NILM models are generally
trained from large amounts of labelled data [19], the scarcity
of training data further limits the scalability of NILM systems
and applications.

B. Our Ideas and Contributions

To tackle the resource limitation at the edge client (Chal-
lenge 1), our idea is to compress the complex NILM model to
a simpler one that the edge device can afford. More specifically,
the cloud NILM model under the FL paradigm could be pruned
before being circulated to edge clients, and thus the edge
devices would be able to implement local computation based
on the compressed global state. Besides, a compressed NILM
model is also desirable for cloud-edge communications. Then,
to build personalized NILM models for diverse edge clients
(Challenge 2), particularly under the condition of training data
scarcity (Challenge 3), we propose to leverage the unsupervised
transfer learning. By aligning the feature map distributions
between the source and target domains, the unsupervised
transfer learning techniques (e.g., CORAL in Sec. VI-B) could
be incorporated with existing NILM modelling process, and
properly address the domain shift issue for NILM model
personalization.

In this work we present FedNILM, a practical FL paradigm
for real-world NILM applications at the edge. FedNILM
aims to provide privacy-preserving and personalized energy
disaggregation for the large-scale edge clients, aided by the
cutting-edge DNN model compressing and transfer learning
techniques at resource constrained edge devices. This paper
shows that, the adapted FL framework can be highly preferable
to be applied in tackling NILM problems, which is expected to
promote NILM applications and make it practical in real-world

implementations. Our major contributions can be summarized
as follows.
• We propose FedNILM, a FL paradigm designed for real-

world NILM applications. Aided by the FL paradigm and
with practical considerations, FedNILM is expected to
provide scalable NILM services with the state-of-the-art
accuracy across large-scale households while retaining
data privacy for edge clients.

• We adopt cloud model compression for edge adoption
in FedNILM. By exploring how compression techniques
influence accuracy and overhead of the NILM model, we
are able to effectively cut down the computation cost at
the edge while retaining satisfied performance.

• We incorporate unsupervised transfer learning with Fed-
NILM for client model personalization. By introducing
the CORAL loss into the state-of-the-art NILM model, we
manage to realize local transfer learning without relying
on labelled training data at the edge client.

• We make extensive evaluations to validate the performance
of FedNILM. The results demonstrate that, aided by the
model compression at cloud and model personalization at
edge, FedNILM can provide a comparable performance to
the state-of-the-art without compromising the user privacy.

The rest of the paper is organized as follows. In Sec. II,
we give the background knowledge and related literature.
Sec. III briefs the state-of-the-art NILM model and the federated
learning rationale. Then, we present the design of FedNILM in
Sec. IV, including the paradigm overview and workflow. Two
key operations of FedNILM, cloud model compression and
edge model personalization are presented in Sec. V and Sec. VI,
respectively. The experimental evaluations are performed in
Sec. VII. The paper is concluded in Sec. VIII.

II. BACKGROUND AND RELATED WORK

Recently, there are growing interests on deploying NILM
applications and systems by energy service providers, energy
aggregators and distribution system operators [12]. With
the urgent request of privacy preserving, the FL paradigm
has been exploited [16], where the NILM model/service is
deployed/delivered across the edge clients for energy dis-
aggregation. In real-world implementations, however, some
challenges could arise.

A. NILM Model Compression

The first challenge is how to perform DNN-based NILM
model inference at edge clients where only resource constrained
devices could be installed. Deploying compressed NILM
models on edge devices might be a promising approach. It
has been demonstrated that model compression may not do
harm to the NILM performance while significantly reducing
the computational overhead [20], [21].

There are various algorithms for compressing or pruning
neural networks. In [21], the authors leverage filter pruning [22]
and tensor decomposition [23] methods to compress the
convolutional layers, where the former refers to sparsify the
neural network by removing less important parameters and
the later is to perform a low-rank decomposition of the learnt



3

filter matrix. Surprisingly, experimental results in [21], [24]
show that compressing of neural networks might bring some
performance gain due to better generalization in test cases.

Although the compressed NILM models could be deployed
at the edge client for inference, the training of personal NILM
models still needs to be conducted on the powerful GPU/CPU
servers at the cloud end. Thus, one client needs to upload
his/her energy data to the cloud for personal NILM model
training, and the data privacy concern still exists.

B. NILM Model Transfer

The other challenge is on the degradation of the cloud model
at the edge client. When applying the FL paradigm for NILM,
the same model trained at the cloud would be delivered to
various client ends. When the distributions between the client
data and the cloud data are different, which is the most likely
case, we would see more or less performance degradation from
the NILM model at the client.

To this end, the transferability issue of NILM models has
been preliminarily explored. In [19], the authors investigate two
transfer learning schemes, i.e., the appliance transfer learning
(ATL) and cross domain transfer learning (CTL). Both ATL
and CTL freeze the convolutional layers and merely tune the
fully connected layers during retraining. Recently, apart from
the canonical CNN structure, the authors of [12] develop the
TrGAN-NILM, which is based on the generative adversarial
networks (GANs), to automatically extract common feature
representations between source and target domains through
minimizing the statistical distance between different domains.

Nevertheless, the aforementioned transfer learning techniques
are in need of labelled training data on target domain. In other
words, they cannot been directly applied in the situation where
the target domain is unlabeled, which is quite common in
real-world NILM applications. In consequence, for buildings
that are newly added to the NILM service provider portfolio,
obtaining labelled appliance meter data and performing transfer
learning are prohibitively expensive and time consuming.

In this work, we design FedNILM, a practical FL paradigm
for real-world NILM applications. Particularly, FedNILM
tackles the computation limitation issue by incorporating
model compression techniques, and addresses the model
personalization problem with unlabelled target domain.

III. PRELIMINARY

A. NILM Problem Definition

The goal of NILM is to recover the energy consumption
of individual appliances from the mains meter signals. Given
the aggregate power readings from T time periods, we can
denote them by y = (y1, y2, ..., yT ), where yt ∈ R+. Then,
let x(i) = (x

(i)
1 , x

(i)
2 , ..., x

(i)
T ) in which x(i)t ∈ R+ denotes the

power reading of the i-th appliance at time t. Therefore, at each
time instant t, yt is assumed to be the sum of all N appliances’
power readings. Normally, we are only interested in the first
N ′ appliances used widely and consuming the most energy.
Then, the power consumption of the remaining appliances can

Cov Layer1

Cov Layer5

FC Layer1

FC Layer2

Input

. . .

Cov Layer1

Cov Layer5

FC Layer1

FC Layer2

Input

. . .
Shared

Layers

. . .Output-1 Output-NOutput

(a) (b)

Fig. 1. (a) The DNN structure adopted by Seq2Point model. (b) The DNN
structure for MTL-Seq2Point model, i.e., shared convolutional and fully
connected layers for N appliances.

be represented as u = (u1, u2, ..., uT ) and the aggregate power
consumption could be represented as follows:

yt =

N ′∑
i=1

x
(i)
t + ut + εt (1)

where εt denotes a Gaussian noise.

B. State-of-the-Art NILM Model

We introduce the state-of-the-art model, i.e., sequence to
point (Seq2Point) [8], recently developed for solving the
NILM problem. The Seq2Point learning model maps a window
of the mains signal readings to the midpoint point of the
corresponding window of the target individual appliances. For
each time instant t, given a fixed time window with size of w,
the Seq2Point model uses the mains power signal sequence
yt:t+w−1 = [yt, yt+1, · · · , yt+w−1] as the input and the middle
element x(i)t+w/2 in power readings of the target appliance
i as the output. In other words, instead of estimating the
whole power signal sequence of the target appliance, the
Seq2Point model merely predicts the middle signal element of
the appliance in corresponding time window.

Mathematically, for a target appliance i, it assumes that there
exists a function f (i) : Rw

+ → R1
+, and the function gives the

power estimation of appliance i at time t+ w/2 by:

f (i)(yt:t+w−1) = x
(i)
t+w/2 (2)

Thus, the key task in Seq2Point is to learn the specific form
of function f (i). Once obtained f (i), we are able to estimate
the power signal of the target appliance i with the aggregate
(mains) signals, thus achieving energy disaggregation.

More specifically, to learn the parameters of f (i), Seq2Point
employs the convolutional neural network (CNN) as the training
structure, as illustrated in Fig. 1(a). It was demonstrated that
such a DNN structure could inherently learn the signatures of
target appliances and shows superior performance than other
models [7].



4

C. Federated Learning
At the beginning of FL, the server trains a cloud model based

on the original dataset. When we adopt deep neural networks
to learn both the cloud and client models, the learning objective
of the global model could be formulated as:

argmin
ω

fs(ω) =
1

n

n∑
i=1

L(xi, yi;ω) (3)

where L(xi, yi;ω) denotes the loss of prediction on server
samples {xi, yi}ni=1 made with model parameters ω, i.e., the
weights and bias.

The server then sends the current global state ω to each of the
clients, thus enabling each client to perform local computation
based on the global state and its local dataset. Technically, the
learning objective of client u can be denoted as:

argmin
ωu

fu(ω
u) =

1

nu

nu∑
i=1

L(xui , yui ;ωu) (4)

where {xui , yui }n
u

i=1 are local samples with nu denoting their
sizes. After the client model fu is trained, the local computation
results, namely local model parameters ωu, would be uploaded
to the server. For parameter transmission between cloud and
client, homomorphic encryption is usually adopted to avoid
information leakage [25].

Then, with enough local updates, the cloud server performs
federated aggregation [15] to align user models and obtain a
new global state. Assuming that there are K clients which are
indexed by k and each client locally updates its gradient to
ωk
t+1 using its local data. The server then takes a weighted

average of all these local models, which can be formulated as:

ωt+1 =
1

K

K∑
k=1

ωk
t+1 (5)

where ωt+1 denotes the updated global parameters. After ade-
quate rounds of iterations and the global model has satisfactory
generalization ability, the global model is distributed to the
client for local deployment.

IV. FEDNILM PARADIGM

Modern DNN based NILM models cannot succeed without
access to large amount of training data at the client side.
However, this also causes severe concerns on user privacy and
data security. To tackle these issues, we leverage the federated
learning approach to the NILM problem and design FedNILM
in this section.

A. Overview
Without loss of generality, we consider one cloud server and

multiple served clients at the edge, as illustrated in Fig. 2.
• At cloud side, the cloud server trains a Seq2Point model

with readily-available open datasets, prunes it into a slim
version, and shares it among the associated edge clients.

• At client side, each takes over the pruned model from
cloud, further tailors it through a local transforming
process, and adopts the personalized model for individual
appliance monitoring.

Client 1 Client 2 Client N

Dataset NDataset 2Dataset 1

…

Cloud Server

②

③

Local model 1

③

Local model 2 Local model N

① Cloud model compression

② Local model personalization

③ Federated averaging

④ Local model updating

①

②

④

Fig. 2. Overview of the FedNILM framework.

B. Workflow

As shown in Fig. 2, the workflow of FedNILM mainly
consists of four steps.
• Step-1: Based on the state-of-the-art NILM model (in-

troduced in Sec. III-B) and public datasets, the cloud
server develops a compressed model with model pruning
techniques. Refer to Sec. V for the details of model
pruning. Then, the compressed NILM model is distributed
to all the associated edge clients.

• Step-2: Based on the shared model from the cloud, each
edge client further train a personalized NILM model with
their own data at hand. An unsupervised transfer learning
method is applied for the local model personalization.
Refer to Sec. VI for the detailed transfer learning process.

• Step-3: The parameters of personalized models at the edge
are encrypted and uploaded to the cloud server, where
the original cloud model is updated through the federated
aggregation process (introduced in Sec. III-C).

• Step-4: The updated cloud model could be distributed to
either new edge clients for personalized model building,
or existing edge clients for continuous model refining with
fresh local data.

Generally speaking, the complete FedNILM workflow in-
cludes the starting process (i.e., Step-1 and Step-2 in sequential)
and a repeating process (i.e., Step-3 and Step-4 in iterative).
Next we introduce the two key operations in the workflow,
i.e., cloud model compression in Step-1 and client model
personalization in Step-2, respectively.

V. CLOUD MODEL COMPRESSION

As we have mentioned in Sec. III-B, the Seq2Point model
trains a separate model for each individual appliance. That is to
say, to monitor n appliances for an edge client, we have to train
and deploy n appliance-specific models on the corresponding
edge device. This could trigger tremendous resource demands
and hardly be satisfied by the resource constrained edge devices.
In this section, we show how model compression techniques
could be leveraged in FedNILM.



5

A. MTL-Seq2Point

Multi-task learning (MTL) refers to share representation,
usually layers in neural network, between analogous tasks, and
empowers the neural network to have better generalization
ability [26]. Intuitively, leveraging excess information that
comes from auxiliary tasks enables the MTL model to perform
well in main task [27]. By leveraging MTL techniques in the
Seq2Point modeling (we name the variant MTL-Seq2Point), we
are able to train one single model for all target appliances for
NILM applications. This can significantly reduce the resource
overhead at the edge device.

More specifically, we leverage hard parameter sharing
method in Seq2Point model, where the set of five convolutional
layers and one fully connected layers are commonly shared
for all appliances. Then after these shared layers, this model
diverges to several task-specific layers for different appliances.
Refer to Fig. 1(b) for the network structure of MTL-Seq2Point.
In contrast with the original Seq2Point model, MTL-Seq2Point
could help save large computation and memory overheads at
the edge devices in our scenario.

B. Pruned MTL-Seq2Point

In addition to the multi-task learning, we also seek other
effective techniques to further compress the NILM model in
compatible with the less powerful edge devices. There has
been some progress recently towards this direction, including
weights pruning, filter pruning [22], neuron pruning and tensor
decomposition [23]. As convolutional layers accounting for
most of the computation cost in our NILM model [20], [21],
we propose to leverage filter pruning in convolutional layers
to build a “slimmer” MTL-Seq2Point model while retaining a
comparable NILM performance. We name the model pruned
MTL-Seq2Point in this work.

Specifically, in the network structure of MTL-Seq2Point,
let ni denote the number of input channels for the i-th
convolutional layer and wi the window size of input. Given the
kernel size k, we have 1D kernel K ∈ Rk×1 (e.g., 10 × 1 in
the first layer). Supposing that the number of output channels
in the i-th convolutional layer is ni+1, the 3D filters matrix
Fi ∈ Rni+1×ni×k could transform the input Xi ∈ Rni×wi

into the output Xi+1 ∈ Rni+1×wi+1 . Then, given the stride
size s, we have wi+1 = wi − k + s. Thus, the number of
operations in the i-th convolutional layer is ni+1nikwi+1. By
removing one of the ni+1 filters in Fi, we could eliminate
nikwi+1 operations, as illustrated by Fig. 3. Moreover, pruning
a filter also results in the removal of corresponding feature
maps and kernels of the following layer, thus cutting down
another ni+1kwi+2 operations. Hence, we can conclude that,
by pruning m filters of layer i, we could reduce the computation
cost by m/ni+1 at both the i-th and (i+ 1)-th layers.

Since not all trained filters are equally important, thus in
order to minimize the performance drop, we choose and prune
the less instrumental filters. More specifically, the relative
importance of the filters are measured through calculating the
sum of L1-norm [22] or L2-norm [28], [29] on convolutional
filters. As there are no noticeable differences between these
two criteria in filter selection [22], we leverage the L1-norm to

k

in

iw

…

…

in

+1in

+1iw

…

+1in
…

… …

Fig. 3. Pruning a filter results in reduction of computation overhead.

score the filters and prune k% of them in each layer with the
least L1-norm values. By increasing the pruning percentage of
the network iteratively, we can also investigate the variation
of model performance and thus find the optimal pruning
percentage for our model.

Overall, the procedure to obtain the best pruned MTL-
Seq2Point model consists the following four steps: i) train
a convergent MTL-Seq2Point model, ii) score corresponding
convolutional filters based on the sum of L1-norm values,
iii) prune the least important filters as per their scores, and
iv) retrain the pruned MTL-Seq2Point model (for a certain
iterations) to compensate for incurred performance degradation.

VI. CLIENT MODEL PERSONALIZATION

When adopting the compressed cloud NILM model at the
edge client, however, we are faced with the domain shift
problem, i.e., the difference of distributions between the cloud
and client data. Thus, the common model can perform very
well upon the cloud dataset, while may be greatly degraded
at different client ends. To this end, we leverage the transfer
learning technique and build personalized models for different
clients. Particularly, we adopt the unsupervised transfer learning
to work with unlabelled client data, hence addressing the
training data scarcity problem at the edge client.

A. Transferability Analysis

Transfer learning works under the scenario where observa-
tions from the source domain (denoted by Ds) have a different
distribution with those from the target domain (denoted by
Dt). In our case, the source domain refers to the public dataset
at cloud, while the target domain is the personal dataset at
each client. There have been interests towards identifying the
transferability of features in each layer of the DNN model,
especially in Computer Vision [30].

For our NILM model, to investigate the transferability of
different model layers, we propose the following three-step
procedure.

1) Train an initial NILM model (i.e., the pruned MTL-
Seq2Point model) on Ds.

2) Fix and fine-tune one of the multiple layers in the pre-
trained model, and randomly initialize the parameters in
the rest of layers.

3) Retrain the model on Dt and compare the prediction
performance from the multiple transferred models.

Note that the NILM model in our scenario is composed
of five convolutional layers and two fully connected layers,



6

Conv Layer5

Conv Layer1

Frozen

Train

FC Layer1 FC Layer1
Shared

…

Conv Layer5

Conv Layer1

…

Shared

Shared

Target DataSource Data

Regression Loss CORAL Loss

FC Layer2 FC Layer2
CORAL

Fig. 4. The transfer learning process at the edge client.

as illustrated in Fig. 1. Thus, through procedurally freezing
or tweaking these layers, we have (2 × 7) different transfer
learning models, which are then retrained and tested on target
domain data. By wrapping up all the results, we have the
following observations (refer to Sec. VII-C for more details).
• The convolutional layers of the model are good at

extracting low-level and generic features. The transferable
load features, such as the ON/OFF switching points,
power level of appliances and typical usage durations,
are insusceptible to the difference between source and
target domains.

• The fully connected layers take responsibility for learning
high-level features for specific appliances. Thus, when
applying to a new edger client (target domain), they need
to be further fine-tuned. The client model personalization
can then be realized by largely referring to the transferred
features from convolutional layers and substantially fine-
tuning the fully connected layers for specific appliances.

These observations are coincide with those from [19] that,
the features in lower levels of layers are highly transferable
as lower layers tend to learn common and coarse information,
whereas the features in higher layers are more tailored for
specific tasks and thus are more personalized. Accordingly, in
our case of transfer learning at the client side, we propose
to freeze the convolutional layers in model transforming (i.e.,
keep their parameters fixed in back propagation) and merely
update the weights on fully connected layers.

B. Correlation Alignment

Correlation alignment (CORAL) is an instrumental domain
adaptation method, which tackles the domain shift via aligning
the feature distributions of source and target samples [31]. More
specifically, deep CORAL aligns the source and target data
distributions through learning a nonlinear transformation, i.e.,
a differentiable loss function (CORAL loss), between source
and target layer activations [32]. This nonlinear transformation
is designed to minimize the distance between the second-order
statistics (covariance) of the source and domain layer features.

Given the source domain training data Ds (with labels Ls)
and target input data Dt = ui, we aim to align the distribution

difference in layer I which generates the σ-dimensional deep
layer features x of input Ds and u of input Dt. With x and
u, we could compute the covariance matrices Cs and Ct.
Therefore, the CORAL loss is defined as the distance between
the second-order statistics, namely covariance, of the source
and target features:

LCORAL =
1

4σ2
‖Cs − Ct‖2F (6)

where ‖ · ‖2F denotes the squared matrix Frobenius norm. Let
λ denote the trade-off parameter and LR the regression loss
of the edge model. The loss in the client model training can
be designed as:

LEDGE = LR + λ · LCORAL (7)

The above loss serves as a constraint and regulates the distance
between source and target domains during the fine-tuning
process. By jointly optimizing the regression loss and CORAL
loss, we can obtain a personalized client model with both
generic signatures pre-trained on the source domain and specific
features working well on the target domain.

Fig. 4 shows the detailed model structure tailored for the
unsupervised transfer learning process. In this way, the local
devices are able to reap the shared benefits of common features
pre-trained on a large generic dataset while retaining the
speciality fine-tuned on client data.

VII. EXPERIMENTS

In this section, we use real-world energy datasets to evaluate
the proposed FedNILM paradigm, including cloud model
compression and client model personalization, respectively.

A. Experimental Settings

1) Cloud and Edge Systems: In our experiments, an AMAX
server with four Tesla V100 GPUs serves as the cloud end. A
low-end desktop (with Nvidia GTX 960M) and an edge device
(Nvidia Jetson Nano) serve as two different client ends.

2) Datasets: Three benchmark datasets are used to evaluate
the performance of FedNILM, including REFIT [33], UK-
DALE [18] and REDD [17]. All contain similar appliance
categories, allowing the evaluation of model transferability.
Also, they have been widely applied in previous NILM
researches [7], [8], [19], and thus enabling performance
comparison with the state-of-the-art solutions.

3) Performance Metrics: Mean absolute error (MAE), signal
aggregate error (SAE) and F1-score are used to evaluate the
performance of FedNILM, all of which have been leveraged in
prior NILM research [7]–[9], [21]. In particular, the former two
metrics, i.e., MAE and SAE, aim to measure the performance
of power consumption estimation, while the F1-score could
reflect the performance of appliance ON/OFF states estimation.

B. Evaluations on Cloud Model Compression

At the cloud end, we train the Seq2Point model with/without
pruning and MTL on the REDD dataset, and compare the NILM
performance, run-time and memory overhead from different
model adoptions. To show the impacts of model compression,



7

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 FC2
Transferred layers

5

10

15

20

25

M
A
E

Fix
Fine-tune

(a) MAE

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 FC2
Transferred layers

20

30

40

50

60

70

80

90

SA
E

Fix
Fine-tune

(b) SAE

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 FC2
Transferred layers

0.70

0.75

0.80

0.85

F1

Fix
Fine-tune

(c) F1-score

Fig. 5. (a) The MAE of transferred models (lower is better). (b) The SAE of transferred models (lower is better). (c) The F1-score of transferred models
(higher is better). The x-axis indicates till which layer we transfer the parameters and initialize the rest.

TABLE I
MAE RESULTS FROM CLOUD MODEL COMPRESSION ON REDD DATASET

(SEQUENCE LENGTH 499)

Model Washing
m. Fridge Dish

w.
Micro
wave

Time
(s)

Size
(MB)

Seq2Point 20.25 25.61 14.09 13.30 9.36 367.82
30% pruning 18.03 26.16 12.82 9.95 4.78 180.05
60% pruning 18.30 25.75 16.91 10.65 3.06 58.80
90% pruning 20.53 44.57 48.36 13.76 2.33 3.69

MTL-Seq2Point 18.74 27.04 19.40 12.37 2.69 91.97
30% pruning 18.55 27.93 21.94 12.74 1.26 45.02
60% pruning 19.18 28.39 19.26 13.15 0.83 14.7
90% pruning 19.39 75.21 28.86 20.60 0.68 0.93

TABLE II
MAE RESULTS FROM CLOUD MODEL COMPRESSION ON REDD DATASET

(SEQUENCE LENGTH 99)

Model Washing
m. Fridge Dish

w.
Micro
wave

Time
(s)

Size
(MB)

Seq2Point 14.97 25.80 19.35 9.16 3.13 55.32
30% pruning 14.59 23.77 11.97 9.86 2.74 27.10
60% pruning 14.73 22.71 16.60 8.65 2.67 8.87
90% pruning 15.46 30.70 32.23 10.52 2.55 0.58

MTL-Seq2Point 17.62 26.78 16.06 14.51 0.83 13.84
30% pruning 17.26 25.40 13.05 12.65 0.75 6.79
60% pruning 18.67 28.78 10.66 15.78 0.72 2.22
90% pruning 19.59 30.45 18.34 18.83 0.74 0.15

we prune the parameters of Seq2Point and MTL-Seq2Point by
30%, 60% and 90%, respectively. The results are summarized
in Table I and Table II, for input sequence lengths of 499 and
99, respectively.

Based on the experimental results in Table I and Table II,
we observe that both multi-task learning and filter pruning
could significantly reduce the model size along with decent
inference time benefits, without drastically compromising
NILM performance. In particular, for the sequence 499,
pruning 60% of filters on classical Seq2Point model can save
approximately two-thirds of running time and reduce memory
cost by up to 84% while retaining comparable prediction
accuracy. Meanwhile, the multi-task learning structure virtually
takes one fourth of the original computation and memory
overhead, as it simultaneously generates the disaggregation
results of four selected appliances. The combination of filter
pruning and multi-task learning techniques could help save
nearly 92% of inference time and 96% of model space with
slight (<10%) performance degradation.

For sequence length 99, the unoptimised model occupies 6×
more space and requires more inference time than the optimised
model pruned 60% of filters with similar performance. Same
as we have found with the model of sequence length 499, for
sequence length 99, the multi-task learning structure helps save
nearly three fourths of running time and space, whereas filter
pruning may not have much influence on inference time as
the time required for these three pruned models with different
pruning percentages are almost the same. Note that we merely
prune the filters in convolutional layers and in a forward pass.
The majority of computations takes place in fully connected
layers, not convolutional layers, so the reduction of parameters
in convolutional layers may not reduce much operations in
inference procedure, thus explaining this phenomenon.

In conclusion, the general NILM performance decreases
with the increasing of pruning percentage, and the employment
of multi-task learning structure also contribute to the ED
performance degradation as all the four appliances use the same
set of signatures for prediction. However, we also observe that
in some circumstances, model pruning might rather give rise
to better NILM results, such as the pruned Seq2Point model
performance versus the original Seq2Point model accuracy on
distinguishing the washing machine, which can be explained by
“regularisation effect” as removing the least important weights
from a neural network might lead to better model generalisation.
In general, we choose to build our general cloud model based
on Seq2Point model with multi-task learning and prune 60%
of the filters in its convolutional layers.

C. Evaluations on Client Model Personalization

At the client end, we investigate the transferability of each
layer of the NILM model, determine which layer’s parameters
to freeze or fine-tune during model transfer, and validate the
necessity to perform local transfer learning.

1) Layer Transferability of NILM Model: Based on the
procedure given in Sec. VI-A, we train a Seq2Point model
to disaggregate the mains signal for a dish washer on REFIT
dataset, and then transfer this model to detect the dish washer
in REDD dataset. More specifically, we gradually transfer the
seven layers in Seq2Point model, by either fixing or fine-tuning
them and initializing the rest layers. The experimental results
are shown in Fig. 5, based on which we have the following
observations and empirical findings.



8

• First, we observe the significantly increasing of both
MAE and SAE along with the decreasing of F1-score,
compared with the nearly steady performance from conv1
to conv2, once we begin to share the fully connected
layers. This implies that the convolutional layers virtually
learn the generic features that are common in source and
target domains, while the fully connected layers focus on
extracting domain specific signatures. In other words, the
number of transferred convolutional layers generally have
little, if any, influence on the final prediction, while the
more the dense layers we transfer the less the accuracy
we get on the target domain.

• Second, we find that the NILM performance of fine-tuning
transferred layers is better than fixing them, with lower
MAE and SAE and higher F1-score. This indicates that
fine-tuning the last dense layers could further help us
promote the NILM performance on target domain.

• Finally, we also observe a slight performance improvement
as we procedurally transfer layers from conv1 to conv5.
Note that if we choose to freeze or fine-tune one particular
convolutional layer, the parameters in this convolutional
layer are pre-trained in source domain. Thus when
transferring to target domain, the transferred layers could
also leverage the information pre-trained in source domain,
rather than learning from scratch. Arguably, the extra
information from source domain enables the transfer
learning model to generalize better on target domain.

2) Effectiveness of Transfer Learning: To validate the
effectiveness of local transfer learning, particularly the CORAL
approach, we conduct experiments on the edge devicxe
of Nvidia Jetson Nano to simulate the procedure of local
updates. Basically, we train a pruned MTL-Seq2Point model
with one-month REDD data (for four appliances: washing
machine,fridge, dish washer and microwave), which serves as
the cloud model trained on source domain. Then, to validate
the effectiveness of transfer learning, we leverage the pre-
trained cloud model to detect appliances in UK-DALE dataset.
Arguably, the REDD is literally distinct from the UK-DALE,
as the households in former dataset are located in the US while
those in latter dataset are sited in the UK.

For the test without applying transfer learning, we directly
employ the pre-trained cloud model on UK-DALE dataset for
energy disaggregation. For the test with transfer learning, we
first retrain the model using the deep CORAL approach and
then leverage the retrained model to detect appliances in UK-
DALE dataset. With results from the above two tests, we can
compare their performances and see whether transfer learning
takes effect.

The results are shown in Table VII-C2, from which we could
observe that: for both model with sequence length 99 and 499,
the model with local transfer learning outperforms the original
one by up to 45% in MAE, 85% in SAE and 40% in F1-
score, respectively. In particular, for MAE, the performance is
improved for all four appliances with transfer learning; for SAE,
the accuracy is improved for three appliances; for F1-score,
transfer learning model shows better performances on dish
washer and microwave and comparable performance on fridge.
In general, local transfer learning takes effect on minimizing

TABLE III
THE EFFECTIVENESS OF TRANSFER LEARNING

Appliance Metric
None

Transfer
Transfer
Learning Average

Improvement99 499 99 499

Washing
Machine

MAE 38.83 51.59 25.43 23.54 45.84%
SAE 7.79 1.58 0.87 0.78 82.39%

F1-score 0.47 0.30 0.25 0.31 -27.27%

Fridge
MAE 68.78 68.75 55.67 66.95 10.84%
SAE 11.40 11.15 0.88 2.36 86.63%

F1-score 0.58 0.58 0.58 0.58 0

Dish
Washer

MAE 13.54 14.21 11.18 10.29 22.63%
SAE 1.17 0.76 2.21 2.49 -143.52%

F1-score 0.05 0.18 0.02 0.31 43.48%

Microwave
MAE 41.87 31.85 25.21 23.76 33.57%
SAE 3.01 2.17 2.08 1.97 21.81%

F1-score 0.30 0.15 0.31 0.32 40.00%

the difference in source and target domains, compensating for
the performance degradation due to domain shift.

In our implementations on the edge device, the model
training time for each appliance is around 100 seconds in
average, whereas the inference merely takes less than one
second. During each local updating process, once receiving the
cloud model, the edge client could perform transfer learning
based on its own power readings to fine-tune the model
parameters in dense layers, and conduct energy disaggregation
with this personalized model promptly. Meanwhile, the updated
local model would be uploaded to the cloud for further
federated averaging, with the goal to collaboratively train more
powerful and up-to-date cloud models.

VIII. CONCLUSION

We presented FedNILM, a federated learning paradigm
designed for privacy-preserving and personalized NILM ap-
plications at low-end edge devices. FedNILM realized data
privacy-preserving through federated learning, efficient model
compression via filter pruning and multi-task learning, and
personalized model building by unsupervised transfer learning,
respectively. The results from the experiments on real-world
energy data demonstrate that, FedNILM can achieve accurate
and personalized energy disaggregation without compromising
the user privacy.

REFERENCES

[1] G. W. Hart, “Nonintrusive appliance load monitoring,” Proceedings of
the IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.

[2] C. Fischer, “Feedback on household electricity consumption: a tool for
saving energy?” Energy Efficiency, vol. 1, no. 1, pp. 79–104, 2008.

[3] K. Ehrhardt-Martinez, K. A. Donnelly, S. Laitner et al., “Advanced
metering initiatives and residential feedback programs: a meta-review
for household electricity-saving opportunities.” American Council for
an Energy-Efficient Economy Washington, DC, 2010.

[4] J. E. Froehlich, E. C. Larson, S. Gupta, G. A. Cohn, M. S. Reynolds,
and S. N. Patel, “Disaggregated end-use energy sensing for the smart
grid,” IEEE Pervasive Computing, 2011.

[5] C. Beckel, W. Kleiminger, R. Cicchetti, T. Staake, and S. Santini, “The
eco data set and the performance of non-intrusive load monitoring
algorithms,” in Proceedings of the 1st ACM conference on embedded
systems for energy-efficient buildings, 2014, pp. 80–89.

[6] M. Zhong, N. Goddard, and C. Sutton, “Interleaved factorial non-
homogeneous hidden markov models for energy disaggregation,” arXiv
preprint arXiv:1406.7665, 2014.



9

[7] J. Kelly and W. Knottenbelt, “Neural nilm: Deep neural networks
applied to energy disaggregation,” in Proceedings of the 2nd ACM
International Conference on Embedded Systems for Energy-Efficient Built
Environments, ser. BuildSys ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 55–64. [Online]. Available:
https://doi.org/10.1145/2821650.2821672

[8] C. Zhang, M. Zhong, Z. Wang, N. Goddard, and C. Sutton, “Sequence-
to-point learning with neural networks for nonintrusive load monitoring,”
2016.

[9] C. Shin, S. Joo, J. Yim, H. Lee, and W. Rhee, “Subtask gated networks
for non-intrusive load monitoring,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, pp. 1150–1157, 2019.

[10] Y. Jia, N. Batra, H. Wang, and K. Whitehouse, “A tree-structured neural
network model for household energy breakdown,” in The World Wide
Web Conference, 2019.

[11] G. Bejarano, D. DeFazio, and A. Ramesh, “Deep latent generative models
for energy disaggregation,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 850–857.

[12] A. M. Ahmed, Y. Zhang, and F. Eliassen, “Generative adversarial
networks and transfer learning for non-intrusive load monitoring in
smart grids,” in 2020 IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGridComm).
IEEE, 2020, pp. 1–7.

[13] E. Union, “General data protection regulation (gdpr),” https://eur-lex.
europa.eu/legal-content/EN/TXT, 2016.

[14] N. Inkster, China’s Cyber Power. USA: Routledge, 2016.
[15] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–
1282.

[16] H. Wang, C. Si, and J. Zhao, “A federated learning framework for
non-intrusive load monitoring,” arXiv preprint arXiv:2104.01618, 2021.

[17] J. Z. Kolter and M. J. Johnson, “Redd: A public data set for energy
disaggregation research,” Sustkdd, vol. 25, 2011.

[18] J. Kelly and W. Knottenbelt, “‘uk-dale’: A dataset recording uk domestic
appliance-level electricity demand and whole-house demand,” eprint
arxiv, 2014.

[19] M. D’Incecco, S. Squartini, and M. Zhong, “Transfer learning for non-
intrusive load monitoring,” IEEE Transactions on Smart Grid, vol. 11,
no. 2, pp. 1419–1429, 2019.

[20] D. K. Dennis, S. Gopinath, C. Gupta, A. Kumar, A. Kusupati, S. Patil,
and H. Simhadri, “Edgeml machine learning for resource-constrained
edge devices,” URL https://github. com/Microsoft/EdgeML. Retrieved
January, 2020.

[21] R. Kukunuri, A. Aglawe, J. Chauhan, K. Bhagtani, R. Patil, S. Walia,
and N. Batra, “Edgenilm: towards nilm on edge devices,” in Proceedings
of the 7th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation, 2020, pp. 90–99.

[22] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[23] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” arXiv preprint arXiv:1412.6553, 2014.

[24] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the state
of neural network pruning?” arXiv preprint arXiv:2003.03033, 2020.

[25] R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “On data banks and
privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, pp. 169–180, 1978.

[26] S. Ruder, “An overview of multi-task learning in deep neural networks,”
arXiv preprint arXiv:1706.05098, 2017.

[27] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp.
41–75, 1997.

[28] H. Zhou, J. M. Alvarez, and F. Porikli, “Less is more: Towards compact
cnns,” in European Conference on Computer Vision. Springer, 2016,
pp. 662–677.

[29] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” Advances in neural information
processing systems, vol. 29, pp. 2074–2082, 2016.

[30] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in neural information
processing systems, 2014, pp. 3320–3328.

[31] B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain
adaptation,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, no. 1, 2016.

[32] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep do-
main adaptation,” in European conference on computer vision. Springer,
2016, pp. 443–450.

[33] D. Murray, L. Stankovic, and V. Stankovic, “An electrical load measure-
ments dataset of united kingdom households from a two-year longitudinal
study,” Scientific data, vol. 4, no. 1, pp. 1–12, 2017.

https://doi.org/10.1145/2821650.2821672
https://eur-lex.europa.eu/legal-content/EN/TXT
https://eur-lex.europa.eu/legal-content/EN/TXT

	I Introduction
	I-A Motivations and Challenges
	I-B Our Ideas and Contributions

	II Background and Related Work
	II-A NILM Model Compression
	II-B NILM Model Transfer

	III Preliminary
	III-A NILM Problem Definition
	III-B State-of-the-Art NILM Model
	III-C Federated Learning

	IV FedNILM Paradigm
	IV-A Overview
	IV-B Workflow

	V Cloud Model Compression
	V-A MTL-Seq2Point
	V-B Pruned MTL-Seq2Point

	VI Client Model Personalization
	VI-A Transferability Analysis
	VI-B Correlation Alignment

	VII Experiments
	VII-A Experimental Settings
	VII-A1 Cloud and Edge Systems
	VII-A2 Datasets
	VII-A3 Performance Metrics

	VII-B Evaluations on Cloud Model Compression
	VII-C Evaluations on Client Model Personalization
	VII-C1 Layer Transferability of NILM Model
	VII-C2 Effectiveness of Transfer Learning


	VIII Conclusion
	References

