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Radio Frequency Fingerprint Collaborative
Intelligent Blind Identification for Green Radios
Mingqian Liu, Member, IEEE, Chunheng Liu, Yunfei Chen, Senior Member, IEEE, Zhiwen Yan and Nan

Zhao, Senior Member, IEEE

Abstract—Radio frequency fingerprint identification (RFFI)
technology identifies the emitter by extracting one or more
unintentional features of the signal from the emitter. To solve the
problem that the traditional deep learning network is not highly
adaptable for the contour features extracted from the signal, this
paper proposes a novel RFFI method based on a deformable
convolutional network. This network makes the convolution
operation more biased towards the useful information content
in the feature map with higher energy, and ignores part of the
background noise information. Moreover, a distributed federated
learning system is used to solve the problem of insufficient
number of local training samples for a multi-party joint training
model without exchanging the original data of the samples.
The federated learning center receives the network parameters
uploaded by all local models for aggregation, and feeds the
aggregated parameters back to each local model for a global
update. The proposed blind identification method requires less
information and no training sequences and pilots. Thus, it
achieves energy-efficiency and spectrum-efficiency. Simulation
verifies that the proposed method can achieve better recognition
performance and is beneficial for green radios.

Index Terms—Blind identification, deformable convolutional
network, federated learning, radio frequency fingerprint.

I. INTRODUCTION

RADIO frequency fingerprint identification (RFFI) refers
to the analysis and extraction of the characteristics in

the emitted signals to identify their frequency fingerprint [1].
The characteristics of the frequency fingerprint can be divided
into two types: unintentional modulation and intentional mod-
ulation. Common intentional modulation includes frequency
modulation, amplitude modulation, and phase modulation.
Unintentional modulation comes from the inevitable subtle dif-
ference in the performances of oscillators, amplifiers, digital-
to-analog converters, pulse modulators, and other electronic
equipment in a radio transmitter caused by the hardware.
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Therefore, these features from the signal represent different
radio equipment and can be used to identify them.

Green communications is to reduce public’s exposure to
radiation to a minimum level which is compatible with a
good quality of service. Blind identification requires less in-
formation and no training sequences and pilots for energy and
spectrum efficient radio communications [2]. The traditional
blind identification method uses information, such as signal
power, modulation mode, center frequency, and symbol rate,
to identify RFFI [3]-[4]. However, with the increase in the
number of radiation source devices and the need for accuracy
in identification, these traditional features no longer meet the
requirements for more accurate classification of individual
radiation sources. Therefore, more subtle information is being
used to describe the hardware differences in the RFFI from
the signal [5]. Duan et al. proposed a method of using
short-time Fourier transform to extract the time-frequency
distribution of the signal as a fingerprint feature recognition
method. This method was more suitable for non-stationary
signals, such as chirp signals, but it was less effective for
complex and irregular signals [6]. Reference [7] proposed an
identification method based on the Wegener-Well distribution,
but this method had the disadvantage of the existence of
cross-interference terms. Reference [8] proposed an individual
identification method based on empirical mode decomposition,
which unfortunately suffered from modal aliasing. Zhu et al.
extracted the fractal dimension, pulse rise, fall time, kurtosis
and other characteristics to identify RFFI, but this method was
sensitive to noise [9]. Hilbert-Huang transform was employed
in [10] to extract instantaneous frequency and instantaneous
amplitude by combining empirical mode decomposition and
Hilbert transform.

On the other hand, deep learning methods are widely
used in RFFI. Most traditional convolutional neural network-
based methods for the identification of RFFI use network
structures directly from the field of image processing. In
image processing, natural pictures are used so that the natural
picture is rich in detail. The pixel information of each position
of the picture may help to understand the content of the
whole picture. In this case, using traditional convolution to
uniformly sample the data gives good results. However, the
fixed structure of traditional convolution has problems when
processing contour-type features extracted from radio signals
[11]. The content shown in the frequency domain or the time-
frequency characteristic of a specific emitter signal is divided
into a few places of higher energy, which occupy only a small
part of the whole picture and correspond to a kind of contour
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Fig. 1. Radio frequency fingerprint collaborative intelligent identification
system model.

information. Meanwhile, most of the background information
in the receptive domain of the convolutional kernel is noise,
which is of little help to RFFI identification.

As well, deep learning-based identification methods greatly
improve the accuracy of RFFI, but its training process requires
a large number of samples. It is difficult to have a large
training data sample for radio frequency fingerprint. Thus, it is
important to break the phenomenon of "data islands" without
directly exchanging the original sample data for multiple data
owners to participate in training to achieve efficient learning.

In this paper, an intelligent blind RFFI identification method
based on deformable convolutional neural network is pro-
posed. The main contributions of this work are summarized
as follows:

• We introduce an intelligent representation of Choi-
Williams distribution (CWD), ambiguity function (AF)
and bi-spectrum for efficient processing of radio frequen-
cy fingerprint. These features fully represent the various
features of the radio frequency fingerprint for distributed
sensor system.

• Our proposed method replaces part of the convolutional
layer in the traditional convolutional network with a
deformable convolutional layer, and uses the idea of deep
separable convolution to perform convolution.

• We employ federated learning for learning and recog-
nition. The multi-sensor distributed learning realizes ef-
ficient radio frequency fingerprint identification while
ensuring the information security of all sensors.

• Compared with the existing methods, our experiments
indicate that the proposed method has better identification
performance. Moreover, the proposed method requires
only a small amount of information without training
sequences and pilots.

The remainder of this paper is organized as follows. We
introduce the system model in Section II. In Section III, we
present an intelligent representation of radio frequency fin-
gerprint. Intelligent recognition of radio frequency fingerprint
based on deformable convolutional network and federated
learning are discussed in Section IV. Simulation studies are
given in Section V. Section VI summarizes the whole paper.

II. SYSTEM MODEL

In this paper, we consider a transmission network with
multiple sub-nodes and distributed federated learning structure

as the radio frequency fingerprint collaborative intelligent
blind identification system, which is shown in Fig. 1. The sub-
recognition system blindly identities RFFI using signals from
each sensor and deformable convolutional network. A central
node is selected from all edge nodes as the fusion center
for parameter fusion and output coordination to complete
federated learning. In the system, the received signal can be
written as [1]:

X(t) = HS(t) +N(t), (1)

where S(t) is the automatic dependent surveillance CE broad-
cast (ADS-B) signal, H stands for the transmission channel
and N(t) represents the additive Gaussian noise. As a common
radiation source, ADS-B signal is often used to verify the RFFI
identification technology of radiation source. Therefore, this
paper adopts ADS-B signals as input.

III. INTELLIGENT REPRESENTATION OF RADIO
FREQUENCY FINGERPRINT

In order to fully exploit of a deep learning network, the radio
frequency fingerprint needs to be intelligently characterised be-
fore being fed into the learning network. The proposed method
extracts the time-frequency feature, ambiguity function (AF)
and bi-spectrum of the radio frequency fingerprint as intel-
ligent representation. The three intelligent representation are
used to convert one-dimensional signals into two-dimensional
features, similar to images, which have a good fit for deep
learning networks.

A. Choi-Williams Distribution

Choi-Williams distribution (CWD) describes the time-
frequency characteristics, which belongs to the Cohen-
like time-frequency distribution. CWD is obtained by two-
dimensional convolution of the Wigner-Ville distribution with
a kernel function, which is an improved method for the defects
of the Wigner-Ville distribution as [12]

CWs(t, ω)=

+∞∫
−∞

+∞∫
−∞

√
σ

4πτ2
exp

(
−(t−u)

2

4τ2/σ

)
rs(t, τ)e

−jωtdτdu, (2)

where σ is the scaling factor that plays an important role in
localizing the time-frequency energy marginals of a signal.
rs(t, τ) is called the kernel function, representative of par-
ticular distribution function, u and τ give the time lag and
the frequency lag, respectively. CWD has a good cross-term
suppression effect and can well present the distribution of
signal frequency information in the time plane.

B. Ambiguity Function

AF is a secondary time-frequency distribution that depicts
the internal structure of the signal. The AF AFs (τ, ξ) is the
joint representation of the signal on the time delay τ and the
Doppler frequency shift ξ, which can be given by [13]

AFs (τ, ξ) =

+∞∫
−∞

s (t) s∗ (t+ τ) ej2πξtdt. (3)



3

C. Bi-spectrum

Bi-spectrum is a signal obtained by two-dimensional Fourier
transform, and contains phase information that is not avail-
able in the second-order statistics. It reflects the relationship
between every two frequency points of the signal in the
frequency domain [14]. Because the high-order statistics of the
Gaussian signal equal to zero, the bi-spectrum can suppress
the Gaussian noise. The third-order cyclic cumulant of the
received signal s(t) can be written as

C3s (τ1, τ2) = E {s∗ (t)x (t+ τ1)x (t+ τ2)} , (4)

where C3s (τ1, τ2) is the third-order cyclic cumulant of each
signal. The bi-spectrum Bs (ω1, ω2) can be obtained from the
third-order cumulant of the signal as

Bs (ω1, ω2) =
∑
τ1

∑
τ2

C3s (τ1, τ2) e
−j(ω1τ1+ω2τ2). (5)

The above three intelligent representations can describe
the internal information of the radio frequency fingerprint.
Therefore, they will be merged and input from the three
channels into the deformable convolutional network to be
discussed below.

IV. RADIO FREQUENCY FINGERPRINT COLLABORATIVE
BLIND IDENTIFICATION

A. Deformable Convolutional Network

Convolutional neural network is not only a machine learning
architecture which contains a large number of neuron nodes,
but also is a deep learning network structure that simulates the
neural model of the visual cortex of the biological brain. Com-
pared with the traditional feature extractor, the convolutional
neural network does not need to manually design the feature
extraction section and it is carried out along with the training.
Moreover, the feature extraction of the convolutional neural
network is composed of a neural network whose weights are
obtained through training. This transforms manual analysis
into automatic processing to improve the quality of features
[15].

The geometric structure of the receptive field in the tra-
ditional convolutional neural network model was fixed. The
input feature processing will be limited by the size of the
convolution kernel and the input feature can only be sampled
at a fixed position. For traditional image processing, the pixel
information at each position of the picture may contribute to
the understanding of the content of the entire picture due to the
rich details of natural pictures. In this case, using traditional
convolution to uniformly sample the data can get good results.
However, the fixed structure of traditional convolution will
cause problems when processing features extracted from radio
signals.

If this normalized rectangular receptive field can be broken,
the network will be more inclined to useful information
content during convolution operations and ignoring part of the
background noise information, which will be more conducive
to the network’s learning of signal features for better classifica-
tion results. Deformable convolution adds a two-dimensional

offset to the sampling position of traditional convolution,
which can freely deform the size of the convolution kernel and
focus on the area of interest. Fig. 2 (a) shows the sampling
position of the traditional convolution while Fig. 2 (b) and
Fig. 2 (c) depict the sampling position with the offset in
the deformable convolution. In Fig. 2 (b) and Fig. 2 (c), it
is shown that the size, aspect ratio, and rotation angle of
the sampling window in the deformable convolution can be
changed. These offsets are learned from the input feature by
adding a new convolutional layer. Therefore, the size of the
sampling window depends on the input features [16].

Fig. 2. Sampling positions of traditional convolution and deformable
convolution.

In order to achieve deformable convolution, it is necessary
to create an additional convolution layer to model the offset
and use the conventional convolution kernel to sample on the
input feature. For the output feature y, the position is obtained
as

y (p0) =
∑
pi∈F

wi · x (p0 + pi), (6)

F = {(−1,−) , (−1, 0) , ..., (0, 1) , (1, 1)} , (7)

where F represents the receptive field that can be sampled by
the convolution kernel, wi is the weighted value at position
pi, y (p) and x (p) refer to the feature value at p, and pi is
the preset offset of the conventional convolution kernel. After
adding a new offset ∆pi, y (p0) becomes

y (p0) =
∑
pi∈F

wi · x (p0 + pi +∆pi). (8)

Thus, the sampling position of the convolution kernel be-
comes an irregular offset position pi + ∆pi. Since the offset
∆pi is usually a decimal, (8) needs to be implemented by
bilinear interpolation as

x (p) =
∑
q

G (q, p) · x (q), (9)

where p = p0 + pn +∆pn represents the decimal position, q
traverses all positions in the input feature x, G (·, ·) denotes a
two-dimensional bilinear interpolation kernel, which consists
of two one-dimensional spatial kernels

G (q, p) = g (qx, px) · (qy, py) , (10)

where g (q, p) = max (0, 1− |q − p|).
Fig. 3 shows the principle of deformable convolution. The

offset is obtained by creating a new convolution layer on the
same input feature map. The channel size 2N corresponds
to N two-dimensional offsets, and the deformed convolution
kernel has the same spatial resolution and expansion as the
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current convolution layer. During the training, the convolution
kernel and the offset are learned at the same time to generate
the output feature, where the offset is back-propagated through
the bilinear operation in (10) to learn the gradient descent.

Conv

offset field

offset

2N

input feature map output feature map

Fig. 3. Deformable convolution principle.

The structure of the deformable convolutional network is
similar to that of the convolutional neural network, except
that the convolutional layer is replaced with a deformable
convolutional layer. Considering that the feature map becomes
smaller and the feature contour becomes blurred as the number
of layers deepens, it is only necessary to replace the first few
convolutional layers with deformable convolutional layers.

The input feature map and the convolution in traditional
convolutional neural networks are both three-dimensional,
while deformable convolution adds an offset to the two-
dimensional space to process data. The proposed method
has three channels in the input layer, as the time-frequency
diagram, ambiguity function and bi-spectrum. Different from
the three channels of image processing, the energy distribution
and contours of these three feature maps are quite different,
and the offset of the convolution kernel when using deformable
convolution is also completely different. Therefore, each chan-
nel needs to be processed separately in two dimensions during
the convolution operation. Depth separable convolution as a
light-weight modal method can not only operate on the input
feature map of each channel individually, but also reduce the
computational burden of the network.

B. Grouped Convolution and Pointwise Convolution
Grouped convolution was first proposed by Google. The

idea is to perform channel-by-channel convolution. Each chan-
nel will only be convolved by one convolution kernel, and
each convolution kernel is only responsible for one channel.
Grouped convolution separately collect the characteristics of
the data on each channel, in line with the requirement of
inputting three different characteristics in the three channels
in this paper.

For example, an input of H×W×C, where H and W are the
length and width of the feature map, and C is the number of
channels, is divided into C groups, and each group contains the
data on one channel. Then performs K ×K two-dimensional
convolution for each group. The number of convolution kernels
is the same as the number of channels. Fig. 4 shows the
principle of grouped convolution.

The idea of point-wise convolution is to mix the information
at the same position of each channel. For example, it is also

input

filters

output

Fig. 4. Grouped Convolution principle.

an input of H×W×C, doing H×W three-dimensional convo-
lution. Each position on the input feature map is weighted in
the depth direction, and there are as many output feature maps
as there are convolution kernels. Fig.4. shows the principle of
point-wise convolution.

input

filters

output

Fig. 5. Point-wise convolution principle.

C. Distributed Federated Learning

Data silos seriously hinder the development of big data
and artificial intelligence, but the data they own is a valuable
asset, and even involves a lot of privacy for any data owner.
Therefore, how to realize resource sharing and improve the
identification ability of the network under the premise of
ensuring that private data is not leaked, federated learning
has been widely concerned. Federated learning is an emerging
technology that combines big data processing and artificial
intelligence. The idea of federated learning is to break the
data islands to ensure the information security of all parties
[17]-[18].

Federated learning defines a new framework. Under this
framework, each data owner does not need to upload its own
data, but only needs to train the model locally, encrypt the
network weight and loss function through the sensor and
upload them to the aggregation center. After the aggregation
center receives and decrypts the network weight and loss
function, it calculates the global weight and the global loss
function according to the aggregation criteria and feeds them
back to each local model. All sensors perform the next step of
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gradient optimization based on the data from the aggregation
center until the network model converges. Only the loss
function information during network training is uploaded for
security. From the above, federated learning has the following
excellent characteristics:

• Data information isolation: the original data at the input
end is only locally processed and will not be leaked to
the outside, which meets the needs of data owners for
information security and privacy protection;

• Every sensor has the same status and can enjoy the
network model finally trained, so that data owners can
participate in cooperation in a fair and equitable manner;

• The aggregation center feeds back global information,
and all sample information participates in the training
to ensure the better performance and quality of the joint
training model than the model trained by either sensor;

• The data owners of all sensors exchange model param-
eters during local distributed training to jointly improve
the quality of the model.

Federated learning consists of two elements: data source and
federated learning network. The relationship between them is
shown in Fig. 6. This structure can ensure that no one except
the original owner of the data can access their original data,
even at the server. The server can only obtain local network
weight and loss function, which ensures that everyone can
safely share the global training model [19]-21].

Data Owner 1 Data Owner 2 Data Owner N

Database 1 Database 2 Database N

Local Model 1 Local Model 2 Local Model N

Aggregation Center

Fig. 6. Distributed federated Learning Structure.

The entire work-flow of federated learning can be divided
into several steps. Firstly, all training participants use their
own data and initialization parameters to train the network
model locally. Each local model updates the network weight
according to its own loss function. When the number of
updates reaches a specified number of times, the network
parameters are encrypted and uploaded to the aggregation
center through the sensor node. The aggregation center obtains
the data from all the sensors, decrypts the data, calculates
the global information according to the aggregation criteria,

and transmits it back to each sensor node. After each local
model receives the global information from the aggregation
center, it continues to train the network according to the global
information, until a global convergence is achieved.

The purpose of training the network is to keep the network
loss function smaller and make the predicted value of the
network closer to the true label value. For federated learning,
the purpose of training is to minimize the global loss function.
In federated learning, the weight update process is divided
into local update and global update. When the local model is
trained, the batch size is set to bi. After training bi samples,
a network weight w will be obtained and the loss function
fi (w) will be calculated once, and the network weight will
be locally updated through the loss function; When a global
update is required, all local sensor nodes will encrypt and
upload fi (w), w and bi to the federated learning aggregation
center. After the aggregator receives and decrypts the data from
N sensors, it calculates the weighted average of these data to
obtain the global loss function as

F (w) =

N∑
i=1

fi (w)× bi

N∑
i=1

bi

. (11)

The ultimate goal is to minimize the global loss function or

w∗ = argminF (w) , (12)

where w∗ is the optimal weight. Due to the inherent complex-
ity of most machine learning models, it is usually impossible
to find a closed-form solution to (12). Therefore, the gradient
descent method is usually used to solve (12). Here, a typical
distributed gradient descent algorithm is used to solve (12). At
present, this algorithm is widely used in federated learning.

Each local model has its own network weight wi (t). when
t = 0, the weights of all local models are initialized to the
same value. When t > 0, the network weight will be updated
by the gradient descent method according to the last weight
along the negative direction of the loss function, and the new
value of wi (t) will be calculated. After the local model under-
goes a specified number of local updates, it performs a global
aggregation. After global aggregation, the network weights on
each local model are usually changed. For convenience, use
∼
wi (t) to represent the network weight of the local model i
after global aggregation. If no aggregation operation has been
performed at the t-th update, then

∼
wi
i
(t) = wi (t). If the

aggregation operation is performed in the t-th iteration, then
∼
wi (t) ̸= wi (t), set

∼
wi (t) = w (t), where w (t) denotes the

weighted average of wi (t) and can be expressed as

w (t) =

N∑
i=1

wi (t)× bi

N∑
i=1

bi

. (13)

The change of the above weight update is shown in Fig. 7.
After global aggregation, the network will feed back w (t)

to each local model, and each local model will update the
network weight to the global network weight w (t). This step
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Local update Global update

Fig. 7. Network weight update process of the local model.

is the global update. In order to ensure that the loss function
of the update weight is the smallest when the global update is
performed, a new parameter wf is set and used to record the
network weight during the last global aggregation. Calculate
the corresponding loss functions of wf and w (t) according to
(13), and make the weight wf corresponding to the smallest
loss function be

wf = argminF (w) , w ∈
{
wf , w (t)

}
. (14)

Feedback wf to each local model for global update. Assum-
ing that the local model performs a global update after τ
local updates are performed. From the above, the steps of
the distributed gradient descent algorithm are summarized in
Algorithm 1.

Algorithm 1 Distributed gradient descent algorithm

1: Initialize wf , wi (0) and
∼
wi (0) ;

2: Partially update each local model;
3: When the total number of updates T is an integer multiple

of τ , each local model uploads data to the aggregation
center to calculate the weighted average of all network
weights w (t). Update wf by comparing the loss function,
and pass the global weight wf back to each local model;

4: Repeat step 2 and step 3 until the network converges.

According to the deformable convolutional network and
the distributed federated learning system introduced in the
previous section, the specific process of the intelligent iden-
tification method of RFFI based on the deformable convolu-
tional network is introduced as follows: Firstly, each training
participant performs the intelligent representation of radio
frequency fingerprint, and inputs the intelligent representation
of the radio frequency fingerprint into their respective local
deformable convolutional networks, and then obtain their
respective network weights after partial updates based on their
respective data. All participants upload the network weights
to the aggregation center. After aggregation, the aggregation
center feeds back the aggregated network weights to each
local model for global update. The process of local update
and global update is repeated until the network converges.

V. NUMERICAL RESULTS AND DISCUSSION

The simulation was performed on an Intel core i9-9920X
with GPU RTX2080Ti. The simulation signal uses an S-
mode transponder to expand the message (1090es, The ADS-
B signal of 1090 MHz mode s extended squitter) has a

-3 -2 -1 0 1 2 3 4 5 6
SNR/dB
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Fig. 8. Identification performance based on deformable convolutional
network with different features.

working frequency of 1090 MHz, a data rate of 1 Mbps,
and a modulation mode of PPM and 2ASK. The period of
the signal is 120 µs, the leading pulse lasts 8 µs, and the
duration is 0.5 µs. The starting time of the pulses is at 0.1
µs, 3.5 µs, and 4.5 µs respectively. The information pulse
occupies 112 µs and transmits 112 bits of data. One bit of data
represents a message, including the position, altitude, speed,
heading, identification number, and other information of the
aircraft. The 01 and 10 binary data used after PPM modulation
represents each message. We intercept the data of 5 µs length
of ADS-B signal’s leading pulse, use the frequency of 600MHz
to sample, and set three different individuals in total, each
of which generates five different signals. Table I shows the
target parameter settings. The channel has Gaussian white
noise, and the signal-to-noise ratio (SNR) ranges from -3dB to
6dB. Each individual has 800 sample data for network training
and 200 sample data for testing for each SNR. Therefore,
the total number of training samples is 40,000, and the total
number of test set samples is 10,000. The learning framework
is the Keras framework, and GPU computing is used when
training the network model. During training, intelligently
characterize all the signals in the sample set and input the
deformable convolutional neural network for training. The
stochastic gradient descent optimization method is used in the
training process, the loss function is the cross-entropy loss
function, and Table II shows the deformable convolutional
network structure parameter settings.

The identification accuracy when inputting different features
in the input layer of the deformable convolutional network is
shown in Fig. 8. The deformable convolutional layer in the
network is used in the first two layers. From Fig. 8, it can be
seen that the recognition rate of several input features is more
than 99% when the SNR is 3dB, but when the SNR is lower
than 3dB, the performance of inputting three features at the
same time is obviously better than that when only one of the
features is used.

When the number of deformable convolutional layers in the
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TABLE I
TARGET PARAMETER SETTINGS.

Individual Parameter Parameter Settings

Target 1
Modulation frequency of the phase noise(MHz) 4 6 7 10 15

Phase modulation coefficient 0.16 0.27 0.32 0.15 0.25

Harmonic component 1 0.5 0.3 0.2 0.1

Target 2
Modulation frequency of the phase noise(MHz) 2 5 9 11 13

Phase modulation coefficient 0.21 0.32 0.15 0.24 0.28

Harmonic component 1 0.8 0.6 0.4 0.2

Target 3
Modulation frequency of the phase noise(MHz) 3 5 6 8 12

Phase modulation coefficient 0.34 0.3 0.23 0.21 0.26

Harmonic component 1 0.1 0.08 0.05 0.03

Target 4
Modulation frequency of the phase noise(MHz) 2 5 7 10 15

Phase modulation coefficient 0.21 0.32 0.32 0.15 0.25

Harmonic component 1 0.8 0.3 0.2 0.1

Target 5
Modulation frequency of the phase noise(MHz) 2 5 9 8 13

Phase modulation coefficient 0.21 0.3 0.15 0.21 0.28

Harmonic component 1 0.1 0.15 0.05 0.28

TABLE II
STRUCTURE PARAMETER SETTINGS OF DEFORMABLE CONVOLUTIONAL NETWORK.

Structure Type Size Step Size Number of Filters Activation Function

Input layer 128× 128× 3 - - -

(Deformable) convolutional layers 5× 5 1 96 ReLU

batch normalization layer - - - -

Max pooling layer 3× 3 3 - -

(Deformable) convolutional layers 3× 3 1 256 ReLU

batch normalization layer - - - -

Max pooling layer 3× 3 3 - -

(Deformable) convolutional layers 3× 3 1 384 ReLU

Convolutional layers 3× 3 1 384 ReLU

Convolutional layers 3× 3 1 256 ReLU

Max pooling layer 3× 3 2 - -

Dense layer 1024 - - ReLU

Dense layer 1024 - - ReLU

Dense layer 1024 - - ReLU

Dense layer 5 - - softmax

deformable convolutional network is set to one, two and three,
the RFFI identification accuracy in the three cases are shown in
Fig. 9. It has been found that setting two deformable roll layers
has a better performance than setting one layer. However,
the contour features of the feature map after the deformable
convolution operation are not as obvious as when it was just
input, The identification performance is not satisfactory when
increasing the number of deformable convolution layers.

Fig. 10 compares the identification performance of the
deformable convolutional network and the traditional convolu-
tional neural network. The deformable convolutional network
has three deformable convolutional layers. From Fig. 10, it can
be seen that the deformable convolutional network has a better
identification performance than the traditional convolutional
neural network.The deformable convolutional network has a
better learning effect than the traditional convolutional neural
network in processing this contour-type signal feature. The
identification performance of the deformable convolutional

network for each of the five individuals when the three-layer
deformable convolutional layer is set in Fig. 11. When the
SNR is greater than 3dB, the identification rate is more than
99%.

In the case of setting the same parameters, the deformable
convolutional network requires an additional convolution lay-
er to calculate the offset of the convolution kernel, which
consumes more computing power, and therefore requires a
longer training time. Under the same data and hardware
platform, the training time of the convolutional neural network
is 1023s, while the deformable convolutional network needs
2564s, which increases the burden of computing power while
improving the recognition performance.

Fig. 12 shows the effects of different Doppler frequency
shifts and ground-to-air channel on the identification perfor-
mance caused by the movement of the aerial radiation. In this
simulation, the flight speed of the aircraft is set as the general
speed of a civil airliner (800-1000 km/h), the flying height is
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Fig. 9. Identification performance with different deformable convolutional
layers.
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Fig. 10. Identification performance compared with the different networks.

8000-12000 meters, the signal receiving antenna height is 3
meters, and the ground reflection coefficient is 0.4-0.6 [22]. It
can be seen from Fig.12 that the frequency shift and the fading
caused have a greater impact on the identification performance
in a low SNR environment. Compared with the Gaussian white
noise channel, the identification accuracy rate is lower. When
the SNR is greater than 0dB, the identification rate exceeds
90%. When the SNR is close to 6dB, it reaches more than
99% in the ground-to-air channel environment.

Simulations are conducted to verify the effect of distributed
federated learning system on network training. The network
architecture with deformable convolutional network as the
local model is compared with the federated learning and local
model training alone. Three local models are set up in the
simulation, and each local model corresponds to a separate
database. The signals in the three databases are the ADS-B
signals of the five different individuals, and the channel is
AWGN. The SNR is from -3dB to 6dB. Database 1 has 100
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Fig. 11. Each individual identification performance with the deformable
convolutional network.
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Fig. 12. Identification performance with Doppler frequency shift over ground-
to-air channel.

sample data with each individual under each SNR for training,
database 2 has 120 sample data with each individual under
each SNR for training, while database 3 has 150 sample data
for each individual under each SNR. During the training, each
local model is uploaded to the aggregation center for global
update every time it is locally updated.

Fig. 13 shows the identification accuracy of distributed
federated learning and individual training of each local model.
From Fig. 13, it can be seen that distributed federated learning
effectively implements multi-location distributed training, and
the identification performance is significantly better than the
individual training of each local model.

Database 1 only has signals in the SNR environment of -
3dB to -1dB, and 800 samples for each individual under each
SNR are used for training; Database 2 only has signals in the
0dB to 2dB SNR environment, and 800 samples data for each
individual under each SNR are used for training; Database 3
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Fig. 13. Identification performance with the insufficient samples.
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Fig. 14. Identification performance with insufficient SNR information.

only has signals in the SNR environment of 3dB to 6dB, and
800 samples data for each individual under each SNR are used
for training.

Fig. 14 shows the identification accuracy of distributed
federated learning and individual training of each local model
in the case of insufficient SNR information. It can be seen
from Fig. 14 that distributed federated learning effectively
implements multi-location distributed training, and the iden-
tification performance is significantly better than that of each
model training separately.

TABLE III
PERFORMANCE COMPARISON WITH THE DIFFERENT METHODS

Methods -3dB 0dB 3dB 6dB

Proposed 84.0% 97.6% 99.7% 99.9%
Method 1 79.6% 93.4% 99.5% 99.8%
Method 2 73.0% 85.2% 92.6% 96%

Under the same parameter settings and simulation exper-

iments, the signals all use the ADS-B signals of the five
individuals used in the previous experiment, and compare
the different individual identification methods. Each of these
methods sets 3 local models. When the SNR information is
sufficient, the number of samples for each individual under
each SNR in each local database is 100, 80, and 50, respective-
ly. The results are listed in Table III. In Table III, the proposed
method are the deformable convolution network and federated
learning method, method 1 is deep belief networks (DBN) [23]
with federated learning, and method 2 is Multilayer Perceptron
(MLP) [24] with federated learning. Compared with deep be-
lief networks and MLP, the deformable convolutional network
proposed in this paper achieves identification accuracy more
than 99%, when SNR is 3dB. Therefor, the proposed method
has a better identification performance. Under the same pa-
rameters, operating platform and environment, the deformable
convolutional network needs to consume more computing
power because it requires an additional convolutional layer to
calculate the offset of the convolution kernel, so it requires a
longer training time. The training time of the proposed method
in this paper is 8230s, the method 1 training takes 3256s, and
the method 2 training takes 2586s.

VI. CONCLUSION

We have proposed an blind radio frequency fingerprint iden-
tification method based on deformable convolutional neural
network, and the effectiveness of deformable convolutional
network was verified through simulation. In view of the lack
of local training sample data, it is necessary to realize the
problem of multi-party joint training model without exchang-
ing sample original data. In addition, a distributed federated
learning system has been proposed to improve identification
performance. Simulation results have shown that the distribut-
ed federated learning system can effectively realize the multi-
party joint training model, and that the proposed method can
achieve better identification performance.
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