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Abstract—Aerial base stations (ABSs) allow smart farms to
offload processing responsibility of complex tasks from internet
of things (IoT) devices to ABSs. IoT devices have limited energy
and computing resources, thus it is required to provide an
advanced solution for a system that requires the support of ABSs.
This paper introduces a novel multi-actor-based risk-sensitive
reinforcement learning approach for ABS task scheduling for
smart agriculture. The problem is defined as task offloading
with a strict condition on completing the IoT tasks before
their deadlines. Moreover, the algorithm must also consider the
limited energy capacity of the ABSs. The results show that our
proposed approach outperforms several heuristics and the classic
Q-Learning approach. Furthermore, we provide a mixed integer
linear programming solution to determine a lower bound on
the performance, and clarify the gap between our risk-sensitive
solution and the optimal solution, as well. The comparison proves
our extensive simulation results demonstrate that our method is
a promising approach for providing a guaranteed task processing
services for the IoT tasks in a smart farm, while increasing the
hovering time of the ABSs in this farm.

Index Terms—Energy Efficient Computation Offload, Un-
manned aerial vehicle (UAV), Aerial base station (ABS), Smart
farm, Risk-Sensitive Reinforcement Learning, Internet of Things
(IoT).

I. INTRODUCTION

Agriculture is sensitive to environmental changes and even

slight changes can alter the outcome of the crops or livestock.

Smart farms use Internet of Things (IoT) sensors, such as

cameras, to monitor such environmental changes. The sensors

can capture images to monitor the status of hundreds of acres

of land. We can then use the captured images and image

recognition techniques to extract valuable information about

the status of the farm such as, the presence of fire, the presence

of pests, and the growth rate of the crops and livestock. Jhuria

et al. trained neural networks to recognize certain diseases

on crops during the growing process [1]. Dhumale et al.

introduced a robot that captures images of crops, and use

image processing techniques to detect pests and diseases on

the crops, and spray the appropriate crops with pesticide [2].

IoT cameras have become essential wireless sensors for smart

agriculture and precision farming because they provide real-

time information on the status of the farm and they relay that

information to a central location. With IoT sensors, farmers

now have the capability to monitor multiple acres of land from

one location and provide precise care to their farm.

Image processing is an intensive task and the central pro-

cessing units on the IoT sensors may not have the capacity

to perform such intensive tasks. In addition, some image

processing tasks can be time-sensitive such as fire detection.

In such circumstances, we can make use of aerial base

stations (ABS) that can connect the sensors to much more

powerful computational resources. The ABSs equipped with

computational units can perform the tasks themselves, or relay

the tasks to a nearby multi-access edge computing (MEC)

device. This enables the task to be done before the deadline.

Because the ABSs are hovering above large remote farm-

lands, they must be battery operated. As previously mentioned,

image processing tasks are computationaly intensive and will

require large amounts of power. If the ABS does too many

tasks, it can shorten the longevity of the ABS’ operation

time. On the other hand, without the ABS, the IoT sensors

cannot send their tasks and the sensor network is no longer

operational. Therefore, we aim to extend the longevity of the

battery life of the ABSs. However, if the ABS does not perform

any tasks in order to conserve its energy, the MEC device

would have to do all of the tasks, then the tasks may not

be able to meet their deadline. This may lead to detrimental

consequences such as significant loss of farmland due to a

slow fire detection. Therefore the network needs to have a

decision making process that considers both the time-critical

nature of the image processing tasks, as well as controlling the

energy consumption of the ABSs in order to maximize their

longevity.

Every decision comes with tradeoffs, especially in a system

with multiple objectives. The network’s decision making algo-

rithm must decide which resources will process the task based

on several factors such as the ABS’ current energy level, and

the deadline of the task. It must also prioritize between the two

objectives, the ABS network’s longevity, or the potential costs

of not meeting the deadline. But, missing the image processing

tasks’ deadlines potentially can have damaging consequences,

therefore the decision making process must also evaluate the

risk of each possible outcome and select the optimal decisions

that will minimize the risk.
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Fig. 1: Illustration of the proposed smart farm.

A. Main Contributions

Machine learning is a promising approach for solving wire-

less network optimization problems [3]–[5]. In our previous

study, we presented a Q-Learning solution for a joint task-

oriented delay-aware offloading as well as increased ABS

hovering time [6]. Following our prior work, in this paper, we

propose a risk-sensitive reinforcement learning (RL) approach

to guarantee that deadlines will be met for IoT devices in

our smart farm network. By using this method, we isolate

the constraints from the other KPIs, and dynamically change

the weight of the KPIs while training the model. The results

reported in this paper prove that our risk-sensitive method

significantly reduces the number of deadline violations and

constrains it to a specific threshold. To the best of our

knowledge, the multi-agent-based risk-sensitive RL method is

proposed for the first time for a constrained MDP problem in

this paper. Our contributions can be summarized as follows:

1) We solved a constrained MDP problem by modifying the

training phase of a machine learning (ML) algorithm for

an aerial base station (ABS)-supported smart farm envi-

ronment. We created a Q-table that is trained separately

from the other objectives in the problem. Therefore,

we could have determined the borders of a risky task-

oriented constraint and adaptively changed the direction

of the learning process by considering the threshold of

this constraint.

2) We implemented this method with a multi-agent RL

approach. Thus, this method can address larger networks

due to the scalability capability of this approach for this

risk-sensitive-based problem.

3) We provided an upper-bound analysis with a MILP

Solver. Therefore, we evaluated our RL approach with

the different weights for our multi-objective NP-Hard

problem.

4) We accomplished several stress tests on the proposed so-

lution. Thus, we analyzed the robustness of the proposed

method in cases of unexpected changes in the smart farm

environments.

The rest of the article is organized as follows. The related

work is discussed in Section II. Then, in Section III we

describe our smart farm model and its problem definition.

Section IV details the risk-sensitive RL approach, and Section

V provides the detailed results of this approach. Finally, in

Section VI, we conclude the paper.

II. RELATED WORKS

In one of the recent unmanned aerial vehicle (UAV) based

studies, Liao et al. decomposed their task offloading and

resource allocation problems into two subproblems [7]. Then,

they solved these two problems separately with an actor-critic-

based learning algorithm and a heuristic algorithm. As a result,

they demonstrated that their proposed method reduces queuing

delay more than their referenced solutions. A similar problem

is addressed in [8] using the successive convex approximation

method. The task-oriented guaranteed delay is a main objective

in our paper, and Zhao et al. also focused on this guaranteed

delay problem [9]. However, they preferred the relaxation

techniques to solve this hard-constrained problem. Khairy et

al. also used Lagrangian relaxation for the constraints in their

UAV-based communication problem [10]. Next, they solved

this dual problem with a deep RL algorithm. Ghdiri et al.

have a distinctive study that also targets the task deadline and

the limited UAV battery problems [11]. However, their aim

was to find the optimum cluster heads’ locations and UAV

trajectory planning. Zhang et al. also aimed at the trajectory

planning problem and addressed it by proposing a Safe-DQN

solution [12].

Yang et al. minimized the total energy consumption of

UEs and UAVs in their wireless network [13]. They have

proposed several heuristics for different subproblems of their

main nonconvex problem. Another heuristic solution for a

UAV network was suggested by Xu et al., where the authors

optimized a broad number of critical decisions [14]. As an

alternative for heuristic approaches, Yao et al. introduced a

game-theoretic solution for resource allocation and the channel

access problem [15]. They provided a promising method in

terms of reducing the total energy consumption in their pro-

posed network. Another energy-efficient solution is proposed

in [16], where UAVs process and relay cell-edge users’ tasks.

Risk-sensitive RL has attracted attention in recent wireless

networks papers due to its promising performance to solve

constrained problems. Khalifa et al. used this method for
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TABLE I: Summary of the notations.

Sets Size Description

t ∈ T T set of time intervals
j ∈ J J set of ABSs

〈j, t〉 ∈ 〈J , T 〉 J, T tuple of tasks
l ∈ L L set of MEC devices

j′ ∈ J+ J+L set of computational resources
k ∈ K K set of task types

Task Param. Range Description

αB
〈j,t〉

{0, 1} a task comes to ABS j in time interval t

αP
〈j,t〉

R the processing time of this task

αI
〈j,t〉

R the transmission delay between IoT &
ABS for this task

αD
〈j,t〉

R the deadline for this task

∆〈j,t〉 R end-to-end delay of this task

Energy Param. Range Description

ΥB
j N battery capacity in ABS j

ΥH
j R hovering energy cons. in ABS j

ΥA
j R signal trans. energy cons. in ABS j

ΥI
j R idle energy cons. in ABS j

ΥC
j R computing energy cons. in ABS j

ΥR
j R remaining energy in ABS j

Weight Param. Range Description

ΥL
j N+ battery reward level

VL
j N violation reward level

W [0, 1] energy consumption weight

ΘD R scaling factor for deadline violation

ΘM R scaling factor for mean delay

Variables Domain Description

x〈j,t〉j′ {0, 1} task 〈j, t〉 is processed in resource j′

pA
〈j,t〉j′t′

{0, 1} the time intervals (t′) used to processed
the corresponding task

pS
〈j,t〉j′t′

{0, 1} the starting time interval (t′) for the
corresponding task

pE
〈j,t〉j′t′

{0, 1} the ending time interval (t′) for the
corresponding task

v〈j,t〉 {0, 1} the corresponding task does not finish
before its deadline

targeting strict latency requirements of URLLC traffic [17].

Their results showed that they can increase the number of suc-

cessfully received URLLC packets while keeping the number

of lost packets lower than a threshold value. The example of

another wireless network solution was suggested by Alsenwi

et al., where they used their novel ”conditional value at risk”

approach to prevent eMBB users from getting lower data rates

due to concurrent URLLC traffic in the network [18].

In their task offloading problem, Zhou et al. extended the

available processing resources by adding satellites to their

network [19]. Then, they proposed a centralized deep risk-

sensitive solution to achieve their energy consumption con-

straint. Despite the fact that this paper has a related problem,

we provide a task-oriented approach to finish the IoT tasks

before their deadline. Moreover, our risk-sensitive solution

is a distributed approach in which each ABS has its own

intelligent local agent to make offloading decisions. To the best

of our knowledge, this is the first work that proposes a multi-

agent-based risk-sensitive RL solution for the task offloading

problem in a UAV/ABS based wireless network.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we briefly describe the scenario, detail the

energy consumption and delay models, specify the system

constraints, and finally formulate the guaranteed deadline

problem [6]. Table I summarizes the notations we use in the

remainder of the article.

A. Scenario

Figure 1 illustrates the scenario we use in this study. We

assume a time-interval-based model. In each time interval (t ∈
T ), a set of ABS (j ∈ J ) devices collect the tasks from

IoT devices scattered accross a smart farm. If ABS j receives

a task in time interval t, the decision-maker in this ABS is

informed by the αB
〈j,t〉 = 1 indicator 1. Then, ABS j decides on

a computational resource (j′ ∈ J+) to process the task while

taking into account the type of task (k ∈ K), and the network

conditions such as the expected transmission delay to offload a

task to another ABS. Furthermore, the computational resource

set is not limited to just ABS devices, but also contains nearby

MEC devices (l ∈ L).

Given Data:

• A binary indicator signifying that ABS j received a task

in time interval t (αB
〈j,t〉). The task’s processing time

(αP
〈j,t〉) and deadline (αD

〈j,t〉).

• Transmission delays between IoTs and ABSs (αI
〈j,t〉).

• Energy consumption of each component in the ABSs

(ΥH
j ,ΥA

j ,Υ
I
j ,Υ

C
j ).

• Battery capacity of each ABS (ΥB
j ).

Objectives:

• Increasing the hovering time of ABSs. We aim to maxi-

mize the operating time before we need to recharge any

of the ABSs in our smart farm.

• Reducing the mean end-to-end delay for processing of

the tasks generated by IoTs.

• Ensure that the number of deadline violations will not

exceed a certain amount.

Decisions:

• Each ABS j should independently decide the optimum

resource to process the received task 〈j, t〉. If an ABS

chooses to process that task locally, it will queue the

request and begin to process it whenever its processing

resource is available. Otherwise, the ABS will offload the

task to another ABS or a MEC device in the smart farm.

B. Energy Consumption and Delay Models

In the interest of increasing the hovering time, we have

to find the change in the remaining battery energy for each

ABS (ΥR
j′ ) according to their decision. Eq. 1 calculates

the remaining battery level where ΥH
j′ , ΥA

j′ , ΥI
j′ are the

hovering, signal transmission, and idle energy consumptions

respectively. We assume these values do not change with

the offloading decision, and they are fixed values during our

evaluation period (T ). On the other hand, computing energy

1The length of a time interval is significantly small. Therefore, an ABS
receives at most one task in a time interval. Hence, we may represent a task
with a tuple “〈j, t〉” in which j is the received ABS and t is the received
time interval.
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consumption, ΥC
j′ , is determined by task processing decisions

(pA〈j,t〉j′t′) which equals to one if the resource processes a task.

ΥR
j′ =ΥB

j′ − (ΥH
j′ +ΥA

j′ +ΥI
j′) ∗ T

−
∑

t′∈T

∑

〈j,t〉∈〈J ,T 〉
(ΥC

j′ −ΥI
j′) ∗ p

A
〈j,t〉j′t′ (1)

Finalizing each task before their deadline is another one

of our key performance indicators (KPI). Therefore, for each

task, we have to calculate the time difference between the

task’s generation at the IoT device and the task’s completion

at the computational resource. Eq. 2 formulates this in which

(t′) is the start time of the task at the resource. That starting

time is determined by the binary decision variable pS〈j,t〉j′t′ ,
which equals to one if resource j′ has started to process that

task at time interval t′. At any other time, it is equal to zero;

thus, the summation of the first term equals t′. The other terms

in this equation are t, αI
〈j,t〉, and αP

〈j,t〉, which are the received

time of the task at ABS, the transmission delay between IoT

and ABS, and the processing delay, respectively. Lastly, we

calculate the mean delay with Eq. 3, in which we sum the

end-to-end delays of all tasks and then divide it by the total

number of tasks.

∆E
〈j,t〉 =

∑

j′∈J+

∑

t′∈T
pS〈j,t〉j′t′ ∗ (t

′)− t+ αI
〈j,t〉 + αP

〈j,t〉 (2)

δ =

∑

〈j,t〉∈〈J ,T 〉
∆E

〈j,t〉 ∗ α
B
〈j,t〉

∑

〈j,t〉∈〈J ,T 〉
αB
〈j,t〉

(3)

In Eq. 4, αD
〈j,t〉, ∆

E
〈j,t〉, and v〈j,t〉 are the deadline, end-to-

end delay, and violation indicator of task 〈j, t〉, respectively.

In addition, we have an M term which is a significantly large

number. In the case of the deadline violation (αD
〈j,t〉−∆E

〈j,t〉 <
0), the left side of this equation will be lower than zero. Thus,

to grant Eq. 4, the right side of this equation is enforced to be

lower than zero, which could be achieved by only v〈j,t〉 = 1.

Contrastingly, if no deadline violation has occurred, the left

side of this equation will be higher than zero (αD
〈j,t〉−∆E

〈j,t〉 ≥
0). Hence, v〈j,t〉 may equal either to zero or one. Therefore,

Eq. 5 will model that case. In this equation, if we can finish

a task before its deadline (αD
〈j,t〉 − ∆E

〈j,t〉 ≥ 0), the left side

will be higher than zero. Thus, the right side of this equation

should also be higher than zero, which can only be realized

by v〈j,t〉 = 0.

αD
〈j,t〉 −∆E

〈j,t〉 ≥ −M ∗ v〈j,t〉, ∀〈j, t〉 ∈ 〈J , T 〉 (4)

αD
〈j,t〉 −∆E

〈j,t〉 < M ∗ (1− v〈j,t〉), ∀〈j, t〉 ∈ 〈J , T 〉 (5)

C. System Constraints

This subsection presents the constraints of our optimization

problem. Eq. 6 denotes that a computational resource (j′ ∈
J +) should process at most one task in a time interval (t′ ∈

T ). Eq. 7 guarantees that a task is processed by at most one

resource in a time interval (t′ ∈ T ).
∑

〈j,t〉∈〈J ,T 〉
p̟〈j,t〉j′t′ ≤ 1,

∀j′ ∈ J +, ∀t′ ∈ T , ∀̟ ∈ {A,S,E} (6)
∑

j′∈J+

p̟〈j,t〉j′t′ ≤ 1,

∀〈j, t〉 ∈ 〈J , T 〉, ∀t′ ∈ T , ∀̟ ∈ {A,S,E} (7)

Eq. (8-11) maintain the association between the task pro-

cessing binary decision indicators. Assume that the resource

j′ is idle in time interval t′, which yields pA〈j,t〉j′t′ = 0. Then,

it starts to process task 〈j, t〉 in the next time interval (t′+1),

which leads to pA〈j,t〉j′(t′+1) = 1. Hence, the starting time

indicator in this time interval (pS〈j,t〉j′(t′+1)) also becomes one

due to Eq. 8. In addition, the ending time indicator in this time

interval (pE〈j,t〉j′(t′+1)) equals zero due to Eq. 9.

pA〈j,t〉j′(t′+1) = pA〈j,t〉j′t′ + pS〈j,t〉j′(t′+1) − pE〈j,t〉j′(t′+1) (8)

pS〈j,t〉j′(t′+1) + pE〈j,t〉j′(t′+1) ≤ 1,

∀〈j, t〉 ∈ 〈J , T 〉, ∀j′ ∈ J +, ∀t′ ∈ T (9)

pA〈j,t〉j′(0) = pS〈j,t〉j′(0) (10)
∑

t′∈T
p̟〈j,t〉j′t′ ≤ 1,

∀〈j, t〉 ∈ 〈J , T 〉, ∀j′ ∈ J +, ∀̟ ∈ {S,E} (11)

In addition, for a special condition in which a computational

resource starts to process a task at the beginning of the

simulation (t′ = 0), we need Eq. 10 to indicate the starting

time (pS〈j,t〉j′(0) = 1). Now assume that in time interval t′, the

j′ processes the task 〈j, t〉, which yields pA〈j,t〉j′t′ = 1. Then,

it stops processing that task in the next time interval (t′ + 1),

which leads to pA〈j,t〉j′(t′+1) = 0. Therefore, the ending time

indicator turns to one (pE〈j,t〉j′t′ = 1) due to Eq. 8. Lastly,

Eq. 11 ensures that a task has only one starting and ending

time.

T
∑

t′=t

∑

j′∈J+

pA〈j,t〉j′t′ ∗ x〈j,t〉j′ = αB
〈j,t〉 ∗ α

P
〈j,t〉,

∀〈j, t〉 ∈ 〈J , T 〉 (12)

t−1
∑

t′=0

∑

j′∈J+

pA〈j,t〉j′t′ ∗ x〈j,t〉j′ = 0, ∀〈j, t〉 ∈ 〈J , T 〉 (13)

∑

j′∈J+

x〈j,t〉j′ ≤ 1, ∀〈j, t〉 ∈ 〈J , T 〉 (14)

Each received task (αB
〈j,t〉 = 1) must be processed by

a resource for a time period equal to its processing time

(αP
〈j,t〉). Eq. 12 maintains that if a task is offloaded to j′,

the offloading decision equals one (x〈j,t〉j′ = 1), and that

equation simplifies as
T
∑

t′=t

pA〈j,t〉j′t′ = αP
〈j,t〉. Thus, we have to

allocate αP
〈j,t〉 number of time intervals at j′. Eq. 13 ensures

that a computational resource starts to process a task after

it has received the task, meaning that task processing time
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intervals (t′ ∈ T ) should be higher or equal to task received

time intervals (t ∈ T ). Lastly, Eq. 14 bounds the number of

offloading decisions for each task to prevent a multiple task

offloading case.

D. Problem Formulation

We have two problem definitions, P1 and P2, for the

smart farm scenario. The main difference between these two

definitions originates from their perspective on deadline vio-

lation. While minimizing the number of deadline violations is

included in the objective function of P1, the approach on P2

is to limit the number of deadline violations to a threshold

(Eq. 17).

(P1) Maximize:
(x, v, pS

, p
A)

W ∗min
j′∈J

ΥR
j′ −

1−W

2 ∗ΘM
δ

−
1−W

2 ∗ΘD

∑

〈j,t〉∈〈J ,T 〉
v〈j,t〉 (15)

Subject to: Eqs. (6− 14)

Eq. 15 depicts the objective function of the first problem, in

which W , ΘM , and ΘD are the weight of the hover time, mean

delay, and deadline violation scaling factors, respectively.

ΥR
j′ is the remaining battery energy of ABS j′, which is

calculated by Eq. 1. Task processing decisions (pA〈j,t〉) play

a significant role on this calculation. δ is the mean delay

of all received tasks, and v〈j,t〉 is the indicator of deadline

violation of task 〈j, t〉. Mean delay is calculated by Eq. 3 and

the deadline violation is determined by Eqs. (4-5). The starting

time decision of each task pS〈j,t〉 affects these equations. Lastly,

these two decision variables (pA〈j,t〉, p
S
〈j,t〉) are limited by the

corresponding task’s offloading decision (x〈j,t〉), as shown in

Eqs. (12-13).

As we mentioned earlier, the deadline violation KPI is not

included in the objective function of P2 (Eq. 16). Instead, it is

considered as a constraint in Eq. 17, in which V is the upper

bound of the allowed number of deadline violations.

(P2) Maximize:
(x, v, pS

, p
A)

W ∗min
j′∈J

ΥR
j′ −

1−W

ΘM
δ (16)

Subject to:
∑

〈j,t〉∈〈J ,T 〉
v〈j,t〉 ≤ V (17)

Eqs. (6− 14)

Task offloading problems are generalized assignment prob-

lems that are NP-Hard [20]. Therefore, we solve these two

problems with a MILP solver and we propose machine

learning-based solutions. The latter is explained explicitly in

the next section.

IV. PROPOSED MACHINE LEARNING-BASED METHODS

This section details the reinforcement learning algorithms

we use to solve the explained smart farm problems. These

algorithms run independently in each ABS in a distributed

manner which improves the scalability of the proposed solu-

tions. In the following subsection, we start to explain a solution

for P1.

A. Q-Learning Approach

P1 (Eq. 15) has three KPIs in the objective function, and

a finite-horizon MDP can address them with a tuple F =
{P,A,R, S,Π}. The details of that tuple are:

• State Transitions: P : S1xAxS2 =⇒ R

A transition is triggered whenever an ABS receives a new

task:

1) First, the agent analyzes its current state S1.

2) Second, it makes a decision for the action A.

3) Finally, it observes the environmental changes due

to its action and determines the new state S2 and

the immediate reward R.

Because of the uncertainty of task arrivals and the

stochastic properties of the wireless channel model, the

state transitions are not deterministic.

• Action: A = {ja|ja ∈ J +}
Delegating the received task to a computational resource

(ja) is the action that an ABS agent should do in this

MDP framework. The resource may be at the same ABS,

another ABS, or a MEC. Therefore the action domain

includes all of these options (J+).

• State: S = {k, {∆j′ |j
′ ∈ J +}, {ΥL

j |j ∈ J }}
Task type (k) contains two pieces of information (task

processing time and deadline) for determining the impact

of an action on the system performance. Second, the

expected delay (∆j′ ) is crucial for calculating the system

mean delay and deadline violations. Finally, ABS battery

levels (ΥL
j′ ) should be included in the state space in order

to improve the hover time KPI.

• Policy(Π): We choose the epsilon-greedy policy for the

tradeoff between exploration and exploitation in the learn-

ing process. Also, we use the value iteration method to

compute the optimal policy illustrated by Fig. 2a. In this

figure, α, γ, and R are the learning rate, discount, and

immediate reward, respectively. The latter is detailed in

the following paragraph.

• Reward:

R = W ∗ (ΥL
ja

− 1)−
1−W

2 ∗ΘM
∗∆ja

+
1−W

2 ∗ΘD
∗
[

(1− E(vja )) + VL
ja

∗ E(vja )
]

(18)

ΥL
ja

=











2, if E(ΥR
ja
)−maxj′∈J (E(ΥR

j′ )) ≥ −ǫ

0, if E(ΥR
ja
)−maxj′∈J (E(ΥR

j′ )) ≤ −2 ∗ ǫ

1, otherwise

(19)

VL
ja

=



















P4, if E(vjm ) = 0

P3, if E(vjr ) = 0

P2, if ∃j′ ∈ (J /(jr ∪ ja))(E(vj′ )) = 0

P1, otherwise

(20)

The main goal of the MDP model should be compatible

with the objective function (Eq. 15) in order to obtain

the maximization problem in P1. However, an MDP

model may only attain that goal as a summation of the

immediate rewards, R, which can be found by following



6

(a) Value iteration for Q-Learning method.
(b) Value iteration for risk.

(c) Value iteration for immediate reward. (d) A third Q-table with a dynamically changed ζ value.

Fig. 2: Value iteration processes in Q-Learning and Risk-sensitive RL methods for an example scenario with one MEC server

and 4 ABSs (U1 to U4).

the policy Π in each state-action pair (SxA). Therefore,

we transform the objective function into Eq. 18 which

evaluates the recent action (A = ja) regarding the KPIs

in the objective function.

P1 has three objectives, therefore the immediate reward

should also consist of these three objectives. The first

objective, increasing hovering time, is described as the

total operating time before any of the ABSs have to

recharge their battery, and in the problem definition

section, we formulate that KPI as a MaxMin problem.

We address that KPI with the battery reward levels (Eq.

19) in the MDP model. That value has three levels [0,1,2]

according to the expected remaining energy difference

between the selected ABS E(ΥR
ja
) and the ABS, which

has the maximum battery energy maxj′∈J (E(ΥR
j′ )). If

that energy difference is lower than a certain level (ǫ),
the reward function returns positive feedback. Therefore

we can balance the battery energies between the ABSs.

Lastly, hysteresis [-ǫ,-2ǫ] is introduced to prevent a ping-

pong effect.

The second objective is minimizing mean delay, which is

calculated for each action separately in the immediate

reward calculation (∆ja ). Therefore, we will get the

total delay for all actions due to the cumulative reward

calculation at the end of a simulation.

The third objective depends on the expected deadline

violation E(vja ). It is equal to zero if the action ja
is expected not to cause a deadline violation, and the

reward function returns one for this objective. Otherwise,

the reward function returns a negative value which is

defined in Eq. 20. That value has four severity levels.

The highest severity level, P4, occurs when we could

have avoided the violation if we had chosen a MEC

as a computational resource (E(vjm) = 1). This case

has the highest severity level because MEC devices have

more powerful resources, and they don’t have to consume

valuable battery energy in order to process a task. The

second-highest severity level, P3, occurs when a local

resource could have processed that task without causing a

violation. This case should have a higher penalty because

offloading a task caused extra overhead and delay without

benefiting from this action. The third level denotes the

case if we have another ABS that could have processed

that task without causing a violation. The final and the

lowest severity level is a case where we expect a deadline

violation as a result of any action.

B. Risk-Sensitive Learning Approach

P2 has a deadline violation constraint (Eq. 17) which can

be achieved by only choosing an appropriate offloading action

in each state-action pair. Therefore, that constraint is isolated

from the other KPIs in order to limit the number of deadline

violations to be lower than a threshold (V). This separation can

be addressed by a finite-horizon constrained MDP (CMDP)

[21]. The CMDP is defined by tuple F = {P,A,R,C, S,Π}.

The details of that tuple are:

• State Transitions: P : S1xAxS2 =⇒ R

State transitions are the same as in the Q-Learning

approach that is explained in Section IV-A.

• State: S = {k, {∆j′ |j
′ ∈ J +}, {ΥL

j |j ∈ J }, ja}
In addition to the states in the Q-Learning approach,

the risk-sensitive method includes the recent offloading

decision into the state space. Thus, we can split the states

into two groups regarding risk expectation. Briefly, the
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“risk states set” is a subset of the “states set”, and an

agent falls into such a state when a deadline violation

is expected (Φ = {s | s ⊂ S, and E(vja )}). Here, the

expected deadline violation (E(vja ) = I(αD
k ≤ ∆ja)) is

calculated by Eqs.(4-5).

• Action: A = {ja|ja ∈ J +}
The set of available resources (ja) is the actions for the

risk-sensitive approach.

• Reward:

R = −

[

W ∗ (ΥL
ja

− 1)−
1−W

ΘM
∗∆ja

]

(21)

The main goal of the MDP model should be compatible

with the objective function (Eq. 16) to obtain the max-

imization problem in P2. Therefore, we transform this

objective function into Eq. 21 which evaluates the recent

action (A = ja) in terms of the KPIs in the objective

function. The details of this equation are explained in

Section IV-A. Another point we want to emphasize is

that, unlike the Q-Learning approach, we reverse the

reward function sign because the policy’s exploitation

phase chooses an action with the minimum q-value

(argminja∈J+ S1).

• Cost for Risk:

C =

{

−VL
ja
, if S1 ∈ Φ

−1, otherwise
(22)

In order to isolate and then prevent the risk in P2, we

propose Eq. 22 to calculate the risk of each state-action

pair. Calculation of the severity level (VL
ja

) is detailed in

Section IV-A.

• Policy(Π): Since we have a separate cost function to

evaluate the risk for each state-action pair, we have a

q-table solely dedicated to the risk estimation. Fig. 2b

shows the value iteration to calculate the risk in a smart

farm. Meanwhile, we have another q-table to evaluate the

other KPIs, shown in Fig. 2c. While these two isolated

q-tables are used for the cumulative reward and risk

calculations, we have to choose the same state-action pair

in each step for these tables. Therefore we have a third

q-table that picks the action for the corresponding state

by using the classic epsilon-greedy approach (Fig. 2d).

A value iteration process does not generate that q-table,

instead, it is an aggregation of the previous two tables

with a ζ weighting factor.

Choosing a decent ζ is essential to improve the convergence

of the proposed risk-sensitive solution. Deciding on a higher

ζ prioritizes the risk side of the problem, while choosing a

lower one may improve the other KPIs. We decide on a proper

ζ with a dynamic approach shown in Algorithm 1. Given

parameters ζI ,V, λ,NUP , NEP ,G are the initial weighting

value, deadline violation threshold, updating step size, updat-

ing frequency, the number of episodes, and the gap value,

respectively.

This algorithm starts with the initialization of episode and ζ
values. Then, for each episode, we calculate the three q-tables

as they are illustrated in Figs. (2b, 2c, 2d). Line 9 checks the

updating frequency, and then Line 10 compares the number

Algorithm 1 Dynamic update of ζ weighting value between

the risk and reward

1: Given: ζI ,V, λ,NUP , NEP ,G
2: Output: QD, QR, QC

3: episode = 0, ζ = ζI

4: while episode < NEP do

5: QD :: value iteration for risk (Fig. 2b)

6: QR :: value iteration for reward (Fig. 2c)

7: QC = ζ ∗QD + (1 − ζ) ∗QR (Fig. 2d)

8: episode = episode+ 1
9: if episode ≡ 0 (mod NUP ) then

10: if
∑

〈j,t〉∈〈J ,T 〉
v〈j,t〉 +G ≤ V then

11: ζ = min(ζ − λ, 0)
12: else

13: ζ = max(ζ + λ, 1)
14: end if

15: end if

16: end while

of deadline violations with the threshold. In that equation, we

add an additional gap (G) due to the uncertainty property of

the tasks. Therefore, the algorithm guarantees Eq. 17 in some

cases where the IoT devices demand to process an extremely

high number of tasks. Following this comparison, Line 11

decreases the weight of the risk in the case of where Eq. 17

is guarenteed. Otherwise, Line 13 increases the weight of the

risk to attain that constraint.

The proposed risk-sensitive method is an episodic model-

free reinforcement learning algorithm. Jin et al. [22]

prove that the worst-case complexity of this algorithm is

Õ(H2
√

|A||S|NEP ), where H is the number of steps in an

episode, |A|, and |S| are the action and state space sizes,

and NEP is the number of episodes. We train our risk-

sensitive method offline with a collected dataset from the

simulation platform. Each of these datasets has a number of

tasks defining the number of steps (H) in an episode. Thus,

our algorithm’s complexity quadratically increases with the

number of tasks in each episode. According to Section IV.B.,

with the increasing number of ABSs (J), the state space

(|S|) changes quadratically, and the action space (|A|) changes

linearly. Therefore, computation time grows as J
√
3 with the

number of ABSs in the problem. Meanwhile, the number of

episodes (NEP ) is determined according to the algorithm’s

convergence, which is not only related to the size of the given

data. The convergence of the algorithm (training phase) is also

affected by the content of the data. Therefore, we empirically

determine the value of NEP .

V. NUMERICAL RESULTS

A. Simulation Platform

We chose Omnet++ [23] as a discrete event simulator to

simulate the IoT traffic. In addition, we used Simu5G libraries

[24], which is developed over Omnet++, to simulate a 5G

channel model between IoT devices, ABSs and MEC platform.

These libraries implement the TR 36.873 specification [25] to

calculate the channel fading in new radio numerology (µ = 0)
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TABLE II: Simulation parameters.

Task Type (1/λ) αD
〈j,t〉

αP
〈j,t〉

(ABS)

αP
〈j,t〉

(MEC)

Fire detection 0.25s 1s 0.1s 0.05s
Pesticide detection 0.25s 2s 0.2s 0.1s
Growth monitoring 0.5s 15s 1.5s 0.75s

TABLE III: Energy consumption parameters.

ABS No (j′) ΥB
j′

ΥH
j′

ΥA
j′

ΥI
j′

ΥC
j′

0 570 211 17 4320 12960
1 570 211 17 4320 12960
2 627 211 17 4320 12960
3 627 211 17 4320 12960

of a 5G physical layer. Shadow fading standard deviation and

carrier frequency are chosen at 4dB and 2GHz for line-

of-sight communication, respectively. Table II presents the

parameters used in the simulations. In particular, we looked

at a smart farm scenario with four ABSs (J=4) and one MEC

(L=1) devices. We focused on three types of image processing

operations (K) that have different arrival rates, deadlines and

processing times. Interarrival times between the tasks are

exponentially distributed with a mean of (1/λ). Deadlines and

processing times are constants. The results are generated as

the average of ten runs with different seeds and we set the

simulation time to be 50 seconds (T = 50s).

B. Baselines

1) Round Robin: Every computational resource located at

the ABSs and the MEC is utilized in a round robin fashion

when assigning the tasks.

2) Lowest Queue Time and Highest Energy First: This

algorithm considers the destinations’ remaining energy level

and queue time. As stated in [6], queue time is the total time it

takes for the resource to compute all of the tasks in its queue.

Every ABS stores the remaining energy level and queing time

of every possible offloading destination. The ABSs regularly

update their neighbours with such information. The decision

making algorithm begins by finding the lowest queue time

amongst the neighbouring resources. If an ABS’s queue time

is lower than the current ABS’s queue time by at least 0.5s,

we will use the this value as the lowest queue time. Else, the

algorithm will use the current ABS’s queue time as the lowest

queue time. Next, the algorithm will find the neighbour that

has the highest remaining energy level and the queue time is

equal or less than the lowest queue time. If such a node exists

and its energy level is higher than the current ABS’s energy

level by at least 1%, then the current ABS will offload the task

to that node. If not, then the task will be computed locally.

3) Energy-Centric Approach: This method prioritizes the

Max-min fairness over the deadline violation minimization.

Therefore, it provides a higher hovering time for the smart

farm. Implementation is based on the proposed risk-sensitive

method. Meanwhile, the size of the difference between the

highest energy battery and the lowest energy battery is defined

as risk. Thus Algorithm 1 keeps the ζ value at higher levels

while this gap is larger than a certain threshold.

TABLE IV: Machine Learning Parameters.

Parameter Notation Value

Learning Rate α 0.05
Discount γ 0.85

Number of Episodes NEP 100k
Updating frequency NUP 1k

Initial weighting value ζI 0.00
Step Size λ 0.02

Max. Deadline Violation V 3
Gap value G 2

Weighting value for Q-Learning W 0.5
Mean delay & deadline violation scalers ΘM ,ΘD 1, 1

Deadline violation severity levels P4,3,2,1 −{4, 3, 2, 1}

C. Energy Consumption Parameters

We used the parameters found in Table III and Eq. 1

in order to model an ABS’s remaining battery energy. By

considering limited simulation time, idle and busy CPU energy

consumptions are defined as ABSs that would be run for

ten hours to expose the performance differences between the

techniques.

D. Convergence of Machine Learning Approaches

We use an offline learning approach for machine learning

(ML) solutions. First, we generate one hundred different data

sets with Omnet++ for the learning phase. Then, we run Q-

Learning, Energy-centric and Risk-sensitive methods for 100k

episodes, in which each episode uses another data set to

prevent an overfitting problem. Then, we transfer the generated

tables in this learning phase to the test phase. Finally, in the

test phase, we use Omnet++ to simulate a real 5G wireless

channel model and evaluate the generated tables according to

several KPIs. That KPI evaluation is detailed in the following

subsection. Table IV represents the numerical values used in

ML algorithms.

Fig. 3a illustrates the convergence of the Q-learning baseline

method. As seen, this method practices the argmax approach

to find the state-action value. If we turn to the risk-sensitive

method, Fig. 3b and Fig. 3c show the convergence of reward

and risk tables in the learning phase, respectively. Owing to

multi-actor-based approach and use of different datasets in

each episode, the variations in the cumulative reward and risk

represent the extreme levels in both tables. On the other hand,

it is seen that each actor (in other terms, each ABS) learns at

the same speed and approaches the zero level.

Fig. 4a shows the trend of convergences in these two tables.

As mentioned in Algorithm 1, we prioritize the risk table at

the beginning of the learning phase. Fig. 4a confirms that

algorithm; while the cumulative reward reduces in the risk

table 57% (from 140 to 60), it is only 20% (from 14 to 9) in

the reward table at the same episode. We should note that the

tradeoff between different KPIs may adaptively change with

Algorithm 1 for different smart farm scenarios. This can be

seen easily in Fig. 4b. This figure shows the learning trend

of the Energy-centric approach, which prioritizes the MaxMin

fairness of energy usage in the batteries of ABSs.
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(a) Q-learning convergence.
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(b) Reward convergence in Risk-sensitive.
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(c) Risk convergence in Risk-sensitive.

Fig. 3: Convergences of Q-learning and Risk-sensitive method.
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(b) Energy-centric method.

Fig. 4: Dynamically change of convergences between reward and risk q-tables.

E. KPI Evaluations

Fig. 5 shows the remaining energy levels in the batteries

of ABSs for different solution methods. As it is explained in

the problem definition, we aim to increase the hovering time

of ABSs. Then, we propose a MaxMin solution in which we

maximize the energy of the ABS, which has the minimum

battery. That value is 78% for our proposed risk-sensitive

method, which is higher than the heuristics but lower than

the Q-Learning approach. The main reason for that output

is prioritizing deadline violations in risk-sensitive solutions.

Also, the energy-centric baseline performs better than the risk-

sensitive approach and provides an extensive fairness between

the ABSs. Meanwhile, the risk definition of that approach

might be revised for outperforming the classical Q-learning

method.

Fig. 6 illustrates the mean delay KPI. It is clear that ML

approaches outperform the heuristics. Meanwhile, there is

no decisive optimal ML solution in terms of mean delay

minimization in different computational resources. Q-Learning

has better performance in the ABSs, but it has a dramatically

higher delay in MEC. This is because the Q-Learning policy

sends more tasks to MEC. On the other hand, the risk-sensitive

approach provides lower overall delay than all other methods.

The main performance improvement of the risk-sensitive

approach can be seen in Fig. 7. This figure demonstrates the

deadline violations in different ABSs and MEC. Although

the Q-Learning and Energy-centric methods outperform the

heuristics, they can not guarantee that the number of deadline

violations will be lower than a threshold. In contrast, this

figure demonstrates that our risk-sensitive solution establishes

risk-free offline learning for a multi-objective optimization

problem.

F. Upper Bound Comparison

We chose Gurobi Solver to find the upper bounds for the

maximization problems [26]. Owing to the fact that these

problems are NP-hard, a MILP solver may provide a solution

for small space problems [27]. Therefore, we had to limit the

simulation time to four seconds (T = 4s), and we ran the

solver for 48 hours for each case to find the optimum solution.

Furthermore, in order to increase the number of tasks in this

shorter time duration, we chose interarrival time as 0.125s

for all task types. Finally, we reduce the deadlines for fire

detection (0.2s) and pesticide detection tasks (0.6s) to make

the problem harder than the standard configuration.
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Fig. 7: Number of deadline violations.

TABLE V: Upper Bound Comparison (P1: Eq. 15, P2: Eq.

16, M: MILP Solver, R: Risk-Sensitive ML, Q: Q-Learning

ML)

Problem Method W min
j′∈J

ΥR
j′

δ
∑

j∈J
t∈T

vjt

P1 M 1 98.2% 1.89s 72
P1 Q 1 98.2% 4.01s 89
P1 M 0.5 97.0% 0.92s 14
P1 Q 0.5 97.7% 0.68s 42
P1 M 0 96.3% 0.84s 9
P1 Q 0 97.0% 0.44s 26
P2 M 1 97.3% 0.88s 15
P2 M 0.5 96.7% 0.89s 15
P2 M 0 96.3% 0.85s 15
P2 R N 96.5% 0.45s 13

The top part of Table V shows the upper bounds of P1

(Eq.15) with different weight factors (W ). The first row

(W = 1) represents the maximum hovering time for P1. Our

proposed ML solution for P1 can reach that level (second

row) if we only add the hovering time maximization in the

reward function. On the other hand, in a balanced solution

(W = 0.5), it is seen that the ML solution tends to favor

hovering time. Although we can get higher hovering time by

ML, the MILP solution outperforms this method in terms of

mean delay and deadline violation minimization. Lastly, if

we remove the hovering time KPI from the multi-objective

function (W = 0), the MILP solver reduces the mean delay

and the number of violations significantly.

The bottom section of Table V shows the upper bounds

of P2 (Eq.16). First, we find a feasible solution with a

significantly higher deadline violation threshold (V = 15)

than the solution of MILP P1 2. It is undoubtedly seen that

the risk-sensitive ML surpasses the MILP solution regarding

minimizing the number of deadline violations. Moreover, the

ML solutions are far better for reducing the mean delay.

In addition, its hovering time maximization performance is

almost the same as the MILP solution.

G. Processing Time and Deadline Alterations

It has been claimed that training an ML solution with offline

data provides an efficient and reliable solution for a wireless

network problem [28], [29]. Therefore, we trained our ML

solutions with preliminary data and then solve those finding

solutions within a simulation platform. In this subsection, we

provide a kind of stress test for our ML solutions. We generate

a one-hundred offline dataset that has different processing time

and deadline for pesticide detection (PD) task (Fig 8). The

results shows that the risk-sensitive solution adapts better than

Q-Learning in most KPIs for the changes of these parameters.

VI. CONCLUSION

This study focused on a smart agriculture scenario that

uses ABSs to augment the computational resources of IoT

2P2 has an additional constraint for limiting the number of deadline
violations. Adding an extra constraint usually increases the solution space of
a MILP solution. Therefore it may need more time to find a feasible solution.
It has to be reminded that we limit the MILP solutions by 48 hours.
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Fig. 8: Impact of pesticide detection task parameter varia-

tions. (a), (b), (c): Increasing processing time. (d): Increasing

deadline.

devices that need to process deadline-critical image processing

tasks. We defined a problem definition that made sure that

the tasks are completed before their deadlines and improved

the hovering time of these ABSs. We addressed this using a

CMDP, and then proposed a risk-sensitive approach for this

CMDP that constrained the number of deadline violations.

The results show that a risk-sensitive approach is feasible

for guaranteeing a constraint-based KPI while providing an

energy-efficient solution for the ABSs. As future work, we are

planning to provide a solution for more extensive state-space

problems.
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