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Abstract—This paper proposes beamforming designs for net-
zero energy multi-input multi-output (MIMO) dual-functional
radar-communication (DFRC) systems that are powered through
energy harvesting (EH) resources and aim to operate au-
tonomously without access to the power grid. We propose a
weighted optimization problem to jointly maximize the radar
mutual information and minimum quality of service (QoS)
requested by communication users subject to energy balancing
constraints. The proposed problem is not convex, hence it is
tough to solve. We exploit semidefinite relaxation (SDR) and
first-order Taylor expansion techniques to relax its non-convexity
issues. We then propose an iterative algorithm to obtain the
beamforming matrices for the reference scenario when full
channel state information (CSI) and energy arrival information
(EAI) are available. For the single-target scenario, we show
that the proposed optimization contains rank-one solutions. For
the multiple targets scenario, by adding auxiliary optimization
variables, we show that rank-one matrices can be achieved
from the optimal solutions of the proposed optimization. We
then propose a robust optimization for the case where only
imperfect CSI and EAI are assumed to be known. Finally,
numerical simulations show that the proposed DFRC designs are
convergent and obtain a graceful trade-off between the radar and
communication performances.

Index Terms—Energy harvesting, dual-functional radar-
communication systems, mutual information, and semidefinite
relaxation.

I. INTRODUCTION

To enhance spectrum, energy, and hardware efficiency in
radar and communication systems, recently, there has been a
growing interest in exploiting multiple-input multiple-output
(MIMO) dual-functional radar-communication (DFRC) sys-
tems where a single access point (AP) accommodates both
radar and communication tasks simultaneously [1]–[13]. De-
spite the above benefits, the current state-of-the-art DFRC
systems have several key challenges that need to be addressed.
First, the joint beamforming design that can sense targets
and deliver communication messages is non-trivial. Second,
wireless transmitters including multiple antennas and their
radio frequency (RF) chains require a considerable amount
of energy [14], [15], which makes the development of energy-
efficient designs necessary.

In terms of DFRC signaling design, three major categories
of approaches can be defined in the literature. Firstly, radar-
centric designs employ typical radar waveforms and encode
data signals through index modulation techniques [1]. For
example, in [2], by exploiting the inherent spatial and spectral
randomness of the carrier agile phased array radar (CAESAR),

The authors are with the Department of Electronic and Electrical En-
gineering, University College London, London WC1E 7JE, U.K. (e-mails:
i.valiulahi@ucl.ac.uk; c.masouros@ucl.ac.uk)

the authors studied a DFRC-AP that conveys digital messages
in the form of index modulation. Secondly, communication-
centric designs where existing communication signals such
as orthogonal frequency division multiplexing (OFDM) [3]
or standards relevant wireless local area network (WLAN)
signals [4] were used as reference signals to detect targets.
Thirdly, and most relevant to our paper, involve designing
waveforms from the start in order to simultaneously convey
communication messages and detect radar targets [5]–[8]. In
[5], the authors obtained a power-efficient DFRC system by
exploiting the constructive multi users interference. For a
certain level of signal-to-noise-plus-interference ratio (SINR)
of communication users, a co-design of radar waveform and
communication transmit weights that minimizes Cramér-Rao
Bound (CRB) of radar was proposed in [6]. Reference [7]
aimed to maximize the radar performance while guaranteeing
the SINR at each communication user. In [8], the authors
proposed a non-convex optimization that minimizes the CRB
subject to the SINR and antenna selection constraints. In [16],
a novel bandwidth allocation strategy is proposed in order to
optimize the weighted average range resolution for sensing,
and guarantee the sum-rate among communication users.

To address the second issue of energy efficiency, a pro-
liferation of studies in the communication-only literature has
focused on hardware informed design through few-RF chain
implementations [17], few-bit DAC solutions [18], antenna
selection [19] among other methodologies. Most recently, net-
zero operation has been brought to the forefront of research
in order to design systems that operate by balancing the
energy consumed with the energy harvested and the energy
stored. Towards net-zero energy APs, one can deploy energy
harvesting (EH) devices such as wind turbines and solar panels
at the AP to reduce the energy consumption costs, and there
are a number of studies in the communication-only literature
towards this end [20]–[25]. References [20], [21], and [22]
studied multiple access, broadcast, and relay channels for EH
APs, respectively. A transmission time minimization for an
EH AP with a finite battery capacity was investigated in [23].
For OFDM signaling, in [24], power allocation policies were
proposed using the binary user scheduling method. The authors
of [25] studied joint power scheduling and antenna selection
using zero-forcing (ZF) transmission method for the multi-
antenna EH APs. However, all the mentioned works consid-
ered energy balancing constraints for the communication-only
APs and there is still a lack of studying zero-net energy DFRC-
APs. Accordingly, the main goal of this paper is to study the
signaling and energy balancing design for a net-zero energy
DFRC-AP, that is equipped with an EH device with a limited
battery capacity that can collect energy from the environment.
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Fig. 1: A net-zero energy DFRC system.

Moving from the communication-only studies to the DFRC
design requires integrating radar performance metrics into the
communication system design. The MIMO radar literature is
abundant with several performance metrics such as CRB [26],
SINR [27], [28], and minimum mean-square error (MMSE)
[29], [30]. However, the information-theoretic performance
metrics have shown a significant superiority [31]–[34]. For in-
stance in [31], the authors proved that maximizing the mutual
information between the target ensemble and reflected signal
from the targets can improve the radar performance in terms of
target estimation, classification, and identification. The authors
in [32] showed that for the linear-Gaussian channel, mutual
information maximization and MMSE minimization have the
same optimal MIMO waveforms. Moreover, for the uncorre-
lated targets in the MIMO radar, the authors in [33] proved that
maximization of mutual information can obtain the Chernoff
bound. Also, from the communication perspective, providing
the minimum quality of service (QoS) requested by the users
is a promising communication performance metric, which has
been widely used in different communication system problems
[35].

Existing works in the DFRC literature mainly optimize
the radar and communication performance metrics separately
and there is still a lack of joint radar and communication
performance metrics optimization [1]–[8]. Building on the
mentioned benefits of mutual information maximization as the
radar performance metric, in this paper, we propose a novel
optimization that jointly maximizes both the radar mutual
information and minimum communication QoS. We assume
that the consumed energy can be provided by the EH sources,
which is the first time studied in the DFRC literature. Hence,
the proposed optimization problem is required to satisfy two
inherent energy conditions, casualty and battery overflow
constraints [20]–[25]. The first ensures that no more energy
than the that available at any given time can be consumed
[24], [25] and the second one considers the energy storage
capacity to avoid the EH battery to overflow [24], [25]. The
main contributions of this work are summarized as follows.

• To obtain a reference performance benchmark, we first
assume that full channel state information (CSI) and

energy arrival information (EAI) are available at the
DFRC-AP. Since the proposed optimization problem is
not convex, we exploit semidefinite relaxation (SDR) and
first-order Taylor expansion techniques to relax the non-
convexity of the proposed problem.

• We then propose an iterative algorithm to tighten the
approximation bound of Taylor expansions. Our contri-
bution further involves a proof of the convergence of the
proposed algorithm.

• In this paper, we consider two different target mod-
els, single-target and multiple targets scenarios. For the
single-target case, we show that the proposed optimiza-
tion can obtain rank-one solutions. For the multiple tar-
gets scenario, we add auxiliary variables to the proposed
optimization and show that one can always obtain rank-
one beamforming matrices from the optimal solutions of
the proposed optimization.

• To provide a practical resource allocation, we study a
robust optimization for the case where only imperfect
CSI and EAI are known at the DFRC-AP.

• We perform numerical simulations to evaluate the perfor-
mance of the proposed DFRC designs. They demonstrate
that through the proposed weighted optimization problem,
one can obtain a graceful trade-off between the radar
and communication performances. They show that the
proposed DFRC designs quickly converge. Also, they
illustrate that the performance of the robust designs (RD)s
is comparable to the full CSI and EAI scenario and
depends on the accuracy of prior knowledge regarding
CSI and EAI.

The paper is organized as follows: The system model and
problem formulation are presented in Section II. Section III
is devoted to the full CSI and EAI designs. The robust
optimization is given in Section IV. Numerical experiments
are presented in Section V. Section VI concludes the paper.

Throughout the paper, scalars, vectors, and matrices are
denoted by lowercase, lowercase boldface, and uppercase
boldface letters, respectively. The operators (·)T , (·)H , and
E{·} represent the transpose, hermitian of a matrix, and the
expectation of a random process, respectively. We use IN to
show the identity matrix with the size N × N . The absolute
value and norm two are denoted by | · | and ∥ · ∥, respectively.
The determinate of a matrix is shown by det(·). We use the
symbol ⊗ to denote the Kronecker product.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an EH MIMO DFRC system, as shown in
Fig. 1, with a DFRC-AP with Nt and Nr transmitting and
receiving antennas, respectively, M users with a single antenna
each, and K targets. Without loss of generality, we assume
that Nt = Nr and M + K ≤ Nt. The AP is equipped with
an EH device that has a battery with the maximum capacity
Emax. The harvested energy can be stored in the battery or
consumed for transmission. The EH DFRC-AP accommodates
both radar and communication tasks simultaneously. Indeed,
it communicates with the M users and senses K targets with
a single transmission. Suppose that during the transmission
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Fig. 2: An illustration of the events over the transmission interval, [0, T ).

interval, [0, T ), energies arrive Le times, following a Poisson
process with rate λe. The energy arrival values also follow
a uniform distribution with parameters emin and emax, i.e.,
E[i] ∽ U(emin, emax) for i ∈ {1, · · · , Le}. We also assume
that the stored energy in the battery at the beginning of the
operation is E[0]. Following [24], [25], we employ a full-
duplex battery that can be charged or discharged at the same
time. For the communication channel, we consider a block
fading model where the channel states are constant during each
block and change over the consecutive blocks independently.
Moreover, we assume that channel states change Lc times
during the transmission interval, following a Poisson process
with rate λc. For notional convenience, let us assume that
all the communication users have the same coherence time,
though our model can be readily generalized to the case where
the users have different coherence times at the cost of more
variables. Similar to the communication channel, for the radar
two-way channel, we assume that the channel states change
Lr times with a Poisson process with rate λr. This can be
translated to moving targets or changes in the environment. It
is also assumed that all the targets have the same coherence
time for the sake of notation simplicity. Fig. 2 illustrates an
example of these changes.

To represent energy arrivals, communication, and radar
changes in our proposed DFRC designs, we assume that the
time indices of all three changes are comparable. We define
any change of communication, radar channel states, or energy
arrivals as an event. Then, the time interval between two
consecutive events is defined as an epoch. The number of
events during the transmission time is obtained as LE =
Le + Lc + Lr. Consequently, the epoch length can be given
by ℓi = ti − ti−1, ∀i ∈ {1, 2, · · · , LE + 1} in which ti is
the associated time with the i-th epoch. It is worth noting that
ℓ1 = t1, where t1 is the corresponding time with the first
event, as t0 = 0. Moreover, ℓLE+1 = T − tLE

in which tLE

and TLE+1 is the corresponding time with the last event.

Let us consider Xi ∈ CNt×S as a narrowband DFRC
signal at the i−th epoch, where S ≥ Nt is the radar

pulse/communication frame’s length, which can be given by

Xi = WiSi, (1)

where Wi = [w1,i, · · · ,wM,i] is the DFRC beamforming
matrix required to be designed in which wj,i is the j−th
beamforming vector at the i−th epoch and Si ∈ CM×S is
the data stream at the i−th epoch. We assume that the data
streams are independent of each other, thus

1

S
SiS

H
i ≈ INt , (2)

which asymptotically holds when signaling follows a Gaussian
distribution and S is sufficiently large.

A. Radar System Model

The reflected signal, Y r
i ∈ CNr×S , from the targets at the

i-th epoch can be written as

Y r
i = GiXi +Ωi, (3)

where Gi ∈ CNr×Nt is the target response matrix and Ωi ∈
CNr×S is the additive white Gaussian noise (AWGN) matrix
with variance σ2

r for each entry at the i-th epoch. Assuming a
colocated MIMO radar, the target response matrix at the i-th
epoch can be given by [26]

Gi =

K∑
k=1

αk,ia(θk,i)b
H(θk,i), (4)

where αk,i is the complex coefficient that incorporates the
two-way channel amplitude and the radar cross-section for
the k-th target at the i-th epoch and θk,i represents both
the angle of departure (AoD) and angle of arrival (AoA) of
the k-th target at the i-th epoch because the transmitter and
receiver antennas are approximately located at the same point.
Moreover, a(θ) = [1, ej

2π
λ d sin(θ), · · · , ej 2π

λ d(Nt−1) sin(θ)]T ,
and b(θ) = [1, ej

2π
λ d sin(θ), · · · , ej 2π

λ d(Nr−1) sin(θ)]T , are the
steering vectors associated with the transmit and receiver
antennas, respectively, where λ and d are the wavelength of
the signal and antenna spacing, respectively. Without loss of
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generality, in this paper, we assume that d = λ
2 . Consequently,

the covariance of the radar channel at the i−th epoch can be
written as

Ri =

K∑
k=1

σ2
i,k

(
b(θk,i)⊗ a(θk,i)

)(
b(θk,i)⊗ a(θk,i)

)H
, (5)

where σ2
i,k = E{αk,iα

H
k,i} is the expected strength of the k-th

target at the i-th epoch.
For the radar performance, we use the mutual information

between the received echo signal and the radar channel at the
i−th epoch, I(Y r

i ;Gi), which can be defined as [36]

I(Y r
i ;Gi) = H(Y r

i )−H(Y r
i |Gi)

= log det(INt
+ σ−2

r RiXiX
H
i ), (6)

where H(Y ) =
∫
P (Y ) log(P (Y ))dY is the differ-

ential entropy of Y in which P (Y ) is the probabil-
ity density function (PDF) of Y . Moreover, H(Y |G) =∫
P (Y |G) logP (Y |G)dY shows the conditional differential

entropy of Y constrained on G where P (Y |G) is the condi-
tional PDF of Y conditioned on G. Note that for obtaining
equation (6), det(I + AB) = det(I + BA) is used. It is
worth mentioning that the justification for using the mutual
information as the MIMO radar performance metric has been
extensively studied in [31]–[34] and references therein.

B. Communication System Model

From the communication perspective, we consider two
cases, single-target and multiple targets scenarios in the fol-
lowing subsections.

C. Single-Target Scenario

The received signal Y c
i ∈ CM×S for the single-target case

at the i-th epoch can be given by

Y c
i = HH

i Xi +Ni, (7)

where Ni ∈ CM×S denotes the AWGN matrix at the i-
th epoch with variance σ2

c for each entry. Moreover, Hi =
[h1,i, · · · ,hM,i] ∈ CNt×M is the communication channel
matrix where hj,i ∈ CNt ,∀j ∈ {1, · · · ,M} is the commu-
nication channel for the j−the user at the i-th epoch. Then,
the SINR at the i-epoch for the m−the user can be given by

γm,i =
|hH

m,iwm,i|2∑
j ̸=m |hH

m,iwj,i|2 + σ2
c

, (8)

where the term
∑

j ̸=m |hH
m,iwj,i|2 represents the interference

term from other users at the m−the user.

D. Multiple Targets Scenario

For the multiple targets scenario, we add K beamform-
ing vectors to Wi = [w1,i, · · · ,wK+M,i], where the first
M vectors are communication beamformers and the last K
vectors are the auxiliary beamformers to enable the extra radar

probing signals the i-th epoch. Consequently, the SINR can be
reformulated as

γm,i =
|hH

m,iwm,i|2∑M+K
j ̸=m |hH

m,iwj,i|2 + σ2
c

. (9)

Note that in Section III, we clarify the difference between the
single-target and multiple targets scenarios in our proposed
DFRC designs and why we added auxiliary beamformers for
the multiple targets scenario.

E. Energy Modeling and Balancing

From the energy arrival point of view, the DFRC designs
require to satisfy two conditions, the casualty and battery
overflow constraints [20]–[25]. The causality constraint states
that the harvested energy must not be consumed before being
collected, which can be guaranteed with the following linear
constraints

k∑
i=1

(
M∑
j=1

∥wj,i∥22

)
ℓi ≤

k∑
i=1

Ein[i], k ∈ {1, · · · , LE},

(10)

where Ein represents the energy level at each epoch, with
Ein[1] = E[0] and Ein[i] = E[j] if the event is the energy
arrival in which E[j] is the j−th energy arrival, otherwise,
Ein[i] = 0, as shown this in Fig. 2. If the difference of
energy arrival rates (EAR)s and consumed energy is less than
the battery capacity, the excessive energy must be utilized for
the communication or radar tasks to avoid an overflow at the
battery. This can be ensured by the following linear constraints
as [23]
k∑

i=1

Ein[i]−
k∑

i=1

(
M∑
j=1

∥wj,i∥22

)
ℓi ≤ Emax, k ∈ {1, · · · , LE}.

(11)

F. Problem Formulation

Our aim is, using the above modeling, to design a signaling
methodology for the DFRC-AP that enables net-zero energy
operation. Accordingly, we formulate the below optimization
problems where we aim to jointly maximize the radar mutual
information and minimum QoS of the communication users
subject to the energy constraints over the whole operation
time. Exploiting the fact that XiX

H
i =

∑M
j=1 wj,iw

H
j,i and

discretizing the transmission time to LE epochs, we propose
the following optimization problem

max
wj,i
∀j,i

,R
(1− η)

LE∑
i=1

log det

[
INt

+ σ−2
r Ri

( M∑
j=1

wj,iw
H
j,i

)]
+ ηR

s.t. (10) and (11),

log

(
1 +

|hH
m,iwm,i|2∑M

j ̸=m |hH
m,iwj,i|2 + σ2

c

)
≥ R, ∀m, i,

(12a)

where the objective value jointly maximizes the radar mutual
information and minimum QoS of the communication users
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with the regularization parameter, η > 0. Note that η is not an
optimization variable but it can be pre-determined to strike a
balance between the radar and communication performances.
Constraint (12a) ensures fairness among the communication
users by applying a minimum rate threshold R. By maximizing
R in the objective value, the proposed optimization maximizes
this communication QoS threshold over the whole transmis-
sion interval. Solving (12) is non-trivial because the product
structure of variables and co-channel interference among the
radar targets and communication users, which makes the
problem non-convex. To tackle these issues, let us first define

Wj,i = wj,iw
H
j,i, Qj,i = hj,ih

H
j,i, (13)

then, we can write

∥wj,i∥22 = tr(wj,iw
H
j,i)

= tr(Wj,i),

|hH
j,iwj,i|2 = tr(hH

j,iwj,ih
H
j,iwj,i)

= tr(hj,ih
H
j,iwj,iw

H
j,i)

= tr(Qj,iWj,i),
M∑
j=1

wj,iwj,i =

M∑
j=1

Wj,i. (14)

Then, problem (12) can be recast as

max
wj,i
∀j,i

,R
(1− η)

LE∑
i=1

log det

[
INt

+ σ−2
r Ri

( M∑
j=1

Wj,i

)]
+ ηR

s.t.
k∑

i=1

(
M∑
j=1

tr(Wj,i)

)
ℓi ≤

k∑
i=1

Ein[i],

k ∈ {1, · · · , LE}, (15a)
k∑

i=1

Ein[i]−
k∑

i=1

(
M∑
j=1

tr(Wj,i)

)
ℓi ≤ Emax,

k ∈ {1, · · · , LE}, (15b)

log

(
1 +

tr(Qm,iWm,i)∑M
j ̸=m tr(Qm,iWj,i) + σ2

c

)
≥ R, ∀m, i,

(15c)
Wj,i ⪰ 0, rank(Wj,i) = 1, ∀j ∈ {1, · · · ,M}, i.

(15d)

The above optimization is a non-deterministic polynomial-
time (NP)-hard problem because of the fractional structure of
constraints (15c) and non-convex rank constraints in (15d).

The following sections are dedicated to addressing this,
where we first consider the single-target scenario and then
study the multiple targets scenario when full CSI and EAI
are assumed to be known at the DFRC-AP. It is worth high-
lighting the value of this scenario. The performance obtained
for the full CSI and EAI scenario can be considered as a
reference upper-bound performance because this obtains the
best performance for any feasible DFRC designs. Therefore,
our proposed robust DFRC designs can be compared with this
scenario. Moreover, these assumptions help to find out optimal

solution structures and gives insights into the optimal system
design, which can be used for developing our robust DFRC
designs in Section IV. This has been widely used in the EH
communication literature in [20]–[25] and references therein.

III. NET-ZERO ENERGY DFRC-AP DESIGN UNDER FULL
CSI AND EAI

In this section, we assume that full CSI and EAI are
available at the AP to obtain the reference performance. As
mentioned, there is no efficient solution for solving problem
(15) as it contains the non-convex constraints. However, in the
following, we tackle non-convex issues one by one. To relax
the non-convexity of (15c), let us rewrite this constraint as

log2

( M∑
j=1

tr(Qm,iWj,i) + σ2
c

)

− log2

( M∑
j ̸=m

tr(Qm,iWj,i) + σ2
c

)
≥ R,∀ m, i, (16)

which is still non-convex as it is the summation of convex
and concave functions. Here, we adapt the successive convex
approximation approach to achieve a locally convex form for
this constraint. It is worth noting that each convex function,
f(t), at the local point, t̃, can be linearly lower bounded by
[37]

f(t) ≥ f(t̃) +∇tf(t̃)
T (t− t̃). (17)

As a result, the second term of the left-hand side of (16) at
the local points, W̃j,i,∀j, i, can be bounded by

− log2

( M∑
j ̸=m

tr(Qm,iWj,i) + σ2
c

)

≥ − log2

( M∑
j ̸=m

tr(Qm,iW̃j,i) + σ2
c

)

−
M∑

j ̸=m

tr

(
Qm,i(Wj,i − W̃j,i)

(
∑

r ̸=m tr(Qm,iW̃r,i) + σ2
c ) ln 2

)
. (18)
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By dropping the rank-one constraints in (15) and using the
derived bound in (18), problem (15) can be recast as

max
wj,i
∀j,i

,R
(1− η)

LE∑
i=1

log det

[
INt + σ−2

r Ri

( M∑
j=1

Wj,i

)]
+ ηR

s.t.
k∑

i=1

(
M∑
j=1

tr(Wj,i)

)
ℓi ≤

k∑
i=1

Ein[i],

k ∈ {1, · · · , LE}, (19a)
k∑

i=1

Ein[i]−
k∑

i=1

(
M∑
j=1

tr(Wj,i)

)
ℓi ≤ Emax,

k ∈ {1, · · · , LE}, (19b)

log2

( M∑
j=1

tr(Qm,iWj,i) + σ2
c

)

− log2

( M∑
j ̸=m

tr(Qm,iW̃j,i) + σ2
c

)

−
M∑

j ̸=m

tr

(
Qm,i(Wj,i − W̃j,i)

(
∑

r ̸=m tr(Qm,iW̃r,i) + σ2
c ) ln 2

)
≥ R,

∀m, i, (19c)
Wj,i ⪰ 0, ∀j ∈ {1, · · · ,M}, i. (19d)

which is convex, hence, it can be efficiently solved using
interior-point methods exploited by the numerical convex
solvers such as CVX [38]. It is worth clarifying that the
feasible set of (19) is a subset of the feasible set of (12) using
the derived bound in (18). Therefore, the objective value of
problem (12) severs as an upper bound for the objective value
of (19).

Now, we deal with the rank-one constraints dropped from
the original problem. In the following theorem, we show that
the rank of the optimal solutions of problem (19) is upper
bounded by the number of targets.

Theorem 1: Let Ŵj,i,∀j, i be the optimal solutions of
problem (19), for the single-target scenario, then

rank(Ŵj,i) = 1, ∀j ∈ {1, · · · ,M}. (20)

Also, for the multiple targets scenario,

rank(Ŵj,i) ≤ K, ∀j ∈ {1, · · · ,M}. (21)

Proof: See Appendix A.
Let us first consider the single-target scenario in the follow-

ing subsection.

A. Single-Target Scenario

Using Theorem 1, one can understand that though the
rank-one constraints are dropped, rank-one solutions are al-
ways obtained for the single-target case from problem (19).
However, there is no guarantee to achieve rank-one solutions
for the multiple targets case. In the next subsection, we
propose a novel technique that adds auxiliary variables to the

Algorithm 1: The block coordinate descent technique
for the optimization problem in (19).

1: Let us initialize W̃j,i,∀j, i by solving problem (19)
with additional constraints ∥Wj,i∥⋆ ≤ 1,∀j, i, and set
t = 1, and ϵ≪ 1 as the iteration step and tolerance
of error, respectively.

2: Repeat
3: For given W̃ t

j,i, solve (19), store the solution Ŵj,i

in W̃ t+1
j,i ,∀j, i, and set t = t+ 1.

5: Until ∥W̃ t
j,i−W̃ t−1

j,i ∥
∥W̃ t−1

j,i ∥ ≤ ϵ, ∀j, i,
Result: The beamforming matrices

W ⋆
j,i = W̃ t

j,i, ∀j, i.

optimization problem for achieving rank-one solutions for the
beamforming matrices in the multiple targets case.

Note that the lower bound in (18) is derived at local points,
W̃j,i,∀j, i, which means that the optimal solutions of problem
(19) might not be tight. To tighten the beamforming solutions,
we propose an iterative algorithm based on the block co-
ordinate decent technique. We first solve problem (19) with
extra constraints ∥Wj,i∥⋆ ≤ 1,∀j, i, in which ∥ · ∥⋆ is the
nuclear norm in order to obtain an initial point for the algo-
rithm. Note that the nuclear norm is the closest convex norm
to rank constraints [39]. Indeed, we relax rank(Wj,i) = 1
with its closest convex relaxation, i.e., ∥Wj,i∥⋆ ≤ 1. Then,
we solve problem (19) and use its optimal solutions for the
next iteration and repeat this iteratively. The algorithm can

be terminated when
∥W̃ t

j,i−W̃ t−1
j,i ∥2

∥W̃ t−1
j,i ∥2

≤ ϵ, ∀j, i, where ϵ is the
tolerance error and t is the iteration step. We summarize
the process in Algorithm 1. In the following theorem, we
mathematically prove the convergence of Algorithm 1.

Theorem 2: Algorithm 1 is convergent.
Proof : See Appendix B for the proof.

Here, we obtain the overall computational complexity of
problem (19) as the major task of Algorithm 1. It is worth
mentioning that the interior point method with the Newton
step are typically used to implement convex problems in CVX
[37], [40], which requires the computational complexity in the
order of O

(
(E+F )1.6E2

)
, in which E and F are the numbers

of variables and constraints in the optimization problem.
Problem (19) contains MN2

t + 1 variables and 4LE + 2M
constraints, then, the overall computational complexity of
problem (19) can be approximated by O((MN2

t )
3.6+(4LE+

2M)1.6(MNt)
2). Thus, Problem (19) can be implemented

in practice with moderate numbers of antennas, epochs, and
communication users. Now, we consider the multiple targets
scenario in the following subsection.

B. Multiple Targets Scenario

For the multiple targets scenario, from (9) and defining
Rx,i =

∑M+K
j=1 Wj,i, the radar mutual information can be

reformulated as I(Y r
i ;Gi) = log det(INt

+σ−2
r RiXiX

H
i ) =
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log det

[
INt

+ σ−2
r RiRx,i

]
. Consequently, problem (19) for

the multiple targets scenario can be recast as

max
Rx,i,wm,i

∀m,i,R

(1− η)

LE∑
i=1

log det

[
INt

+ σ−2
r RiRx,i

]
+ ηR

s.t.
k∑

i=1

tr(Rx,i)ℓi ≤
k∑

i=1

Ein[i],

k ∈ {1, · · · , LE}, (22a)
k∑

i=1

Ein[i]−
k∑

i=1

tr(Rx,i)ℓi ≥ Emax,

k ∈ {1, · · · , LE}, (22b)

log2

(M+K∑
j=1

tr(Qm,iWj,i) + σ2
c

)

− log2

(M+K∑
j ̸=m

tr(Qm,iW̃j,i) + σ2
c

)

−
M+K∑
j ̸=m

tr

(
Qm,i(Wj,i − W̃j,i)

(
∑

r ̸=m tr(Qm,iW̃r,i) + σ2
c ) ln 2

)
≥ R,

∀m, i, (22c)

Rx,i ⪰
M∑

m=1

Wm,i,Wj,i ⪰ 0,

∀j ∈ {1, · · · ,M +K}, i, (22d)

where is convex and can be efficiently solved using CVX.
The solutions of the above problem are tight if rank(Wj,i) =
1,∀j ∈ {1, · · · ,M}, i. However, the beamforming matrices
are not necessarily rank-one. Thus, we provide the following
theorem to show that one can always find tight solutions from
the optimal solutions of problem (22).

Theorem 3: There exists global optimal solutions for prob-
lem (22) as

w̄j,i = (hH
j,iŴj,ihj,i)

−1/2Ŵj,ihj,i, W̄j,i = w̄j,iw̄
H
j,i,

∀j ∈ {1, · · · ,M}, R̄x,i = R̂x,i, ∀i, (23)

where Ŵj,i,∀j ∈ {1, · · · ,M} and R̂x,i are the optimal
solutions of problem (22).

Proof: See Appendix 3.
Building on the approach explained in Subsection III-A

for the single-target scenario, we tighten the solutions of
optimization problem (22). To avoid excessive clutter, we
do not write the algorithm for the multiple targets scenario
and use the process of Algorithm 1 with a little change.
More precisely, for the first step of Algorithm 1, constraints
∥Wj,i∥⋆ ≤ 1,∀j ∈ {1, · · · ,M}, i, must be changed to
∥Wj,i∥⋆ ≤ K,∀j ∈ {1, · · · ,M}, i, to align with the K
targets. The convergence also can be straightforwardly proved
using Theorem 2.

Now, we derive the total computational complexity of
problem (22 for the multiple targets scenario. Building on
the complexity of solving convex problem, the total compu-
tational complexity of problem (22) can be approximated by

O(((M +K)N2
t )

3.6 + (4LE + 2M +K)1.6(MNt)
2), which

shows that problem (22) is implementable in practice. In the
next section, we consider the case when only imperfect CSI
and EAI are available at the AP.

IV. ROBUST NET-ZERO ENERGY DFRC-AP DESIGN

In the previous sections, by assuming full CSI and EAI
at the AP, we have obtained reference designs for both
the single-target and multiple targets scenarios. However, in
practice, only imperfect information about the CSI and EAI
are available because the AP is not aware of the future events
(changes in the channel states and energy arrivals). Thus, in
this section, we propose a RD optimization for the case where
only imperfect CSI and EAI are assumed to be known at the
DFRC-AP.

Let us first determine the average number of events and
their length during the transmission interval using the prior
statistical knowledge about the events. Exploiting the fact
that the combination of three independent Poisson processes
with rates λ1, λ2, and λ3 is still a Poisson process with rate
λ1 + λ2 + λ3, the number of events during the transmission
interval can be modeled as a a Poisson process with rate
λe+λc+λr. Consequently, the average number of events and
their length can be obtained as L̄E = T (λe+λc+λr), ℓ̄ =

T
L̄E
,

respectively.

Regarding the optimization problem in (12), the optimal
DFRC design depends on the covariance of the two-way
radar channel, communication channel, and energy arrivals
information. Thus, we assume that radar and communication
channels are available at the AP with certain errors as

Ġi = Gi + Vi,

ḣm,i = hm,i + qm,i, ∀i,m. (24)

in which ∥qm,i∥2 ≤ δc,∀m, i and ∥Vi∥2 ≤ δr where δc and
δr are known. Note that for notation simplicity, we assume
that all the users have the same errors over all the epochs.
This has been assumed for the radar channels. The bound
on communication channel states can be calculated through
a long-term measurement in practice and the radar channel
bound can be translated to prior information regarding the
velocity of the targets under study.

Let us consider the worst-case scenario where the minimum
mutual information and QoS provided by the minimum energy
arrival values. To do so, let us first write a lower bound on
the radar mutual information using the technique proposed in
[41] and prior information regarding the radar channel in (24)
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as

log det

[
INt

+ σ−2
r Ġi

M∑
j=1

Wj,i

]

= log det

[
INt

+ σ−2
r

(
GiG

H
i −GH

i Vi − V H
i Gi

+ V H
i Vi

) M∑
j=1

Wj,i

]

≥ log det

[
INt

+ σ−2
r

(
GiG

H
i

(−2δr∥Gi∥2 + δ2r)I

) M∑
j=1

Wj,i

]
. (25)

Similarly, the lower bound on the communication rate can
be given by

min
∥qm,i∥2≤δc

log

(
1 +

|ḣH
m,iwm,i|2∑M

j ̸=m |ḣH
m,iwj,i|2 + σ2

c

)

= min
∥qm,i∥2≤δc

log

(
1 +

|(hH
m,i + qH

m,i)wm,i|2∑M
j ̸=m |(hH

m,i + qH
m,i)wj,i|2 + σ2

c

)

≤ log

(
1 +

min∥qm,i∥2≤δc |(hH
m,i + qH

m,i)wm,i|2∑M
j ̸=m max∥qm,i∥2≤δc |(hH

m,i + qH
m,i)wj,i|2 + σ2

c

)

≤ log

(
1 +

tr(Q̇m,iWm,i)∑M
j ̸=m tr(Q̆m,iWj,i) + σ2

c

)
, (26)

where Q̇m,i = hm,ih
H
m,i + (δ2c − 2δc∥hm,i∥2)I and Q̆m,i =

hm,ih
H
m,i + (δ2c + 2δc∥hm,i∥2)I .

Here, we deal with the energy arrival values. As mentioned,
in this paper, we assume that the energy arrival values fol-
low a uniform distribution, i.e., E[i] ∽ U(emin, emax) for
i ∈ {1, · · · , Le}. Note that the bound on energy arrival values
can be determined using some prior information about the
environment where the DFRC-AP is employed. For example,
for the solar panels, since the panel sizes are known and pre-
cise knowledge about the environment temperature is available
from meteorological stations, the output of the solar panels can
be estimated with a good confidence interval at the DFRC-AP.
Thus, to ensure that the RDs work for all the energy arrival
values, we assume the worst-case scenario in which E[i] =
emin,∀i. Then, by defining Ği = GiG

H
i (−2δr∥Gi∥2 + δ2r)I ,

the original problem in (15) for the robust optimization can

be recast as

max
wj,i
∀j,i

,R
(1− η)

L̄E∑
i=1

log det

[
INt

+ σ−2
r Ği

( M∑
j=1

Wj,i

)]
+ ηR

s.t.
k∑

i=1

(
M∑
j=1

tr(Wj,i)

)
ℓ̄ ≤

k∑
i=1

Ein[i],

k ∈ {1, · · · , L̄E}, (27a)
k∑

i=1

Ein[i]−
k∑

i=1

(
M∑
j=1

tr(Wj,i)

)
ℓ̄ ≤ Emax,

k ∈ {1, · · · , L̄E}, (27b)

log

(
1 +

tr(Q̇m,iWm,i)∑M
j ̸=m tr(Q̆m,iWj,i) + σ2

c

)
≥ R, ∀m, i,

(27c)
Wj,i ⪰ 0, rank(Wj,i) = 1,∀j, i. (27d)

where Ein[1] = E[0] and Ein[i] = emin if the event is the
energy arrival, otherwise, Ein[i] = 0. The problem is convex
and can be solved using CVX. Regarding the definition of Ği

and the fact that rank(AB) ≤ min {rank(A), rank(B)}, Ği

is an K−rank matrix. Thus, the result of Theorem 1 is valid
for the robust scenario. Consequently, the process explained in
Section III can be repeated to obtain the single- and multiple-
target beamforming matrices for the robust scenario.

Using the complexity of solving convex problems, the over-
all computational complexity of problem (27) for the single-
target scenario can be approximately given by O((MN2

t )
3.6+

(4L̄E+2M)1.6(MNt)
2) by dropping the rank-one constraints.

Moreover, for the multiple targets scenario, the overall com-
putational complexity can be written as O(((M+K)N2

t )
3.6+

(4L̄E+2M+K)1.6(MNt)
2). These derivations show that the

proposed RDs can be employed in practice.

V. SIMULATION RESULTS

In this section, Monte Carlo simulations are done to in-
vestigate the performance of the proposed DFRC designs.
We consider a MIMO AP with Nt = Nr = 10. We
assume that the power of AWGN for both communication and
radar channels is normalized to 1. The spectral bandwidth is
assumed to be 1 mega Hertz (MHz), then the communication
rate is in megabits per second per Hertz (Mbits/s/Hz). For
the communication channel, a Rayleigh channel model with
complex normal variables (mean and variance µh = 10−5

and σh = 10−10, respectively) is used. The results of this
paper can be extended to the geometric channel model for
the upcoming millimeter wave signaling. The radar channel is
randomly generated, following the process proposed in [42].
We set ϵ = 10−4 in Algorithm 1. For ease of illustration, in this
section, we define the normalized radar mutual information as

1
(LE+1)K log det(INt

+ σ−2
r RiXiX

H
i ).

A. Beampatterns
We commence our evaluations by plotting the DFRC beam-

patterns, aH(·)
[∑M+K

j=1 Wj

]
a(·), in dBi for different values
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Fig. 3: Beampatterns for K =M = 2 and Emax = 20 J. Fig. 3(a) shows the beampatterns for the full CSI and EAI scenario
for different values of η. Fig. 3(b) compares the beampatterns of the RDs with the full CSI and EAI scenario for η = 0.5. The
targets are shown by the blue arrows in both figures.
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Fig. 4: The normalized radar mutual information plus mini-
mum communication QoS normalized by the bandwidth of the
system for T = 5 s and η = 0.5 to evaluate the convergence
behavior of the proposed DFRC designs.

of η. To avoid excessive clutter, we only focus on the case
where no events happen. Indeed, the required energy for the
DFRC-AP comes from the stored energy at the battery, which
is 100 joule (J), i.e., Ein[1] = 100 J. We assume that T = 1
second (s), K = M = 2, and Emax = 20 J. The targets are
located at θ1 = π

3 and θ2 = π
8 .

Fig. 3(a) demonstrates that all three beamformers correctly
focus on the main lobes where the targets exist and have
random fluctuations in side lobe regions for providing the
communication QoS. Moreover, when η → 0 and η → 1,
the transmit power toward the radar targets increases and
decreases, respectively. This is consistent with the fact that
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Fig. 5: The normalized radar mutual information versus the
minimum communication QoS for the different values of η,
T = 5 s, M = K = 2, λc = λr = λe = 1, Emax = 20 for
full CSI ane EAI and robust scenarios.

growing η increases the priority of the communication perfor-
mance.

In Fig. 3(b), we compare the beampatterns of RDs with the
full CSI and EAI scenario with η = 0.5. From this figure,
it is observed that increasing the channel noises reduces the
allocated power to the main lobes where the targets exist.
Moreover, when δr = δc = 0.1, the beampattern does
not correctly focus on the locations of targets because the
channel errors are large. All three beampatterns show random
fluctuations in side lobes because of the communication QoSs.
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Fig. 6: A comparison between the robust and full CSI and EAI scenarios in terms of the normalized radar mutual information
and minimum communication QoS in Figs. 6(a) and 6(b), respectively
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Fig. 7: The radar mutual information and minimum communication QoS versus the battery size for the different values EARs
in Figs. 7(a) and 7(b), respectively.

B. Convergence Behavior

In this subsection, we show that the proposed algorithm for
our DFRC designs is convergent for both the full information
and robust scenarios. For this simulation, we assume T = 5 s
and λc = λr = λe = 1. Also, E[i] ∽ U(35, 45)J , Emax = 20
J, and M = K = 2. Moreover, we use η = 0.5 to have a fair
balance between the communication and radar performance
metrics. For the robust DFRC design, we assume that the
power of communication and radar channel errors are equal
to 0.01 and 0.1, i.e., δc = δr = 0.01 and δc = δr = 0.1.

We plot the normalized mutual information plus the mini-
mum communication QoS. Note that the minimum communi-
cation QoS is normalized by the bandwidth of the system for

this simulation. Fig. 4 shows that both DFRC designs converge
quickly with almost 7 iterations. Moreover, the performance
obtained by the robust scenarios is upper bounded by the full
CSI and EAI scenario and the performance reduces when the
channel errors increase. Results of this figure and Theorem 2
show that the proposed DFRC designs are convergent.

C. The Radar Mutual Information Versus the Minimum Com-
munication QoS for Different Values of η

As mentioned, the regularization parameter η offers a
graceful trade-off between the communication and radar per-
formance metrics. Thus, in this subsection, we evaluate the
radar mutual information versus the communication QoS for
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different values of η in order to investigate the inherent trade-
off of DFRC systems under both full information and robust
scenarios. We set parameters as T = 5s , M = K = 2, λc =
λr = λe = 1, and Emax = 20 J. Note that the EAR follows
a uniform process for each point of simulations, for example,
for the energy arrival 100 J/s, we have E[i] ∽ U(95, 105)J .

Intuitively, increasing the EARs when other variables are
fixed results in better performance in terms of radar and
communication metrics as there is more energy to allocate.
From Fig. 5, it can be observed that the performance of all
the DFRC designs increases by growing the EARs. Moreover,
by growing η, the minimum communication QoS increases
and the normalized radar mutual information decreases for all
the DFRC designs, and vice versa. This is consistent with the
results of Fig. 3. Similar to Fig. 4, the performance of the full
CSI and EAI scenario serves as an upper bound for the RDs.
Also, both the normalized radar mutual information and the
minimum QoS decreases when the channel errors grow.

D. Robust Scenario

In this subsection, we compare the performance of our
proposed robust DFRC designs with the case where full
CSI and EAI are available. Note that the full CSI and EAI
scenario serves as a performance benchmark as explained in
Section III. For this simulation, we assume that T = 5 s,
M = K = 2, Emax = 20, and λc = λr = λe = 1. The robust
optimization in (27) is applied to the setup of Fig. 6 yielding
the average radar mutual information and minimum QoS of
communication users versus the EARs. Similar to the previous
simulation, the EAR follows a uniform process for each point
of simulations. In order to consider imperfect communication
and radar channels, two cases are studied where the errors are
uniformly and randomly generated in a sphere centered at zero
with radii δc = δr = 0.1 and δc = δr = 0.01 for the radar
error matrices and communication error vectors.

It is observed from this figure that when the power of errors
is small, δc = δr = 0.01, the performance of the robust DFRC
design is comparable with the full CSI and EAI scenario. In
addition, the normalized radar mutual information and the
minimum QoS of communication users decrease when the
power of errors increases. The reduction of the minimum QoS
is more than the radar mutual information which is because of
the fact that the imperfect CSI for each user directly affects
their beamforming matrices, however, for the radar targets,
imperfect CSI affects the covariance of the beamforming
matrices as can be seen in (26) and (25), respectively. This
figure highlights the practical and potential benefits of our
proposed robust DFRC designs because perfect CSI and EAI
scenario obtains the best performance of any feasible DFRC
design.

E. Battery Size Effects

In this subsection, we show how the size of the EH battery
affects the performance of the proposed DFRC designs. For
this optimization, we assume that T = 5 s and λc = λr =
λe = 1. We change the size of the battery for different values
of EARs and plot the normalized radar mutual information

and minimum communication QoS for the full CSI and EAI
scenario.

Intuitively, when a larger battery is deployed, there is more
space to store the harvested energies, hence, the performance is
increased. The EAR is also important because when the size
of the battery is larger than the EAR, the battery overflow
constraints in (11) are inactive, hence, the size of the battery
has no effect on the performance. This can be observed from
the empirical simulations in Fig. 7. More precisely, when the
size of the battery is smaller than the EARs, both the normal-
ized radar mutual information and minimum communication
QoS increase by growing the size of the battery, however,
for the case where the size of the battery is larger than the
EAR, both radar and communication metrics are constant and
the size of the battery has not effect on the performance. In
addition, by increasing the EARs for the fixed battery size,
one can obtain better performance in terms of communication
and radar metrics as there is more energy to consume.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTION

In this paper, we study the design of net-zero energy
DFRC systems. We propose a non-convex problem for jointly
maximizing the radar mutual information and minimum com-
munication QoS subject to the net-zero energy constraints.
We first assume that full CSI and EAI are available at the
DFRC-AC to obtain the best performance achieved by any
feasible beamforming matrices. We obtain the beamforming
matrices for both single-target and multiple targets scenarios
using the SDR and first-order Taylor expansion techniques.
Then, we propose a robust optimization that only requires
imperfect CSI and EAI. This can be used in the practical
applications. The simulation results evaluate the performance
of the proposed DFRC designs. Generalizing our proposed
approaches to the massive MIMO scenario [7], [43]–[45] by
reducing their implementation complexity using the alternating
direction method of multipliers (ADMM), which has been
studied for the communication only problems [46] is an
interesting research direction to communicate and sense large
numbers of users and targets using DFRC systems.
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APPENDIX A
PROOF OF THEOREM 1

Let us first write the Lagrangian function of problem (19)
as below

L(l) = (1− η)

LE∑
i=1

log det

[
INt + σ−2

r Ri

( M∑
j=1

Wj,i

)]

+ ηR+

LE∑
k=1

µk

(
k∑

i=1

( M∑
j=1

tr(Wj,i)

)
ℓi −

k∑
i=1

Ein[i]

)

+

LE∑
k=1

ϕk

(
Emax −

k∑
i=1

Ein[i] +

k∑
i=1

( M∑
j=1

tr(Wj,i)

)
ℓi

)

+

LE∑
k=1

M∑
p=1

ψk,p

(
R− log2

( M∑
j=1

tr(Qm,iWj,i) + σ2
c

)

+ log2

( M∑
j ̸=m

tr(Qm,iW̃j,i) + σ2
c

)

+

M∑
j ̸=m

tr

(
Qm,i(Wj,i − W̃j,i)

(
∑

r ̸=m tr(Qm,iW̃r,i) + σ2
c ) ln 2

))

+

LE∑
k=1

M∑
j=1

tr(Γk,jWk,j), (28)

where l includes all the Lagrangian variables (µk, θk, ψk,p,
and Γk,j ,∀k, p, j). Then, using the sufficient and necessary
Karush-Kuhn-Tucker (KKT) optimal conditions, we can take
a derivative with respect to Wm,i as below

∂L

∂Wm,i
= σ−2

r (Ri)
T

(
INt + σ−2

r Ri

( M∑
j=1

Wj,i

))−T

+ µiℓiINt + ϕiℓiINt

− ψm,i
Qm,i∑M

j=1 tr(Qm,iWj,i + σ2
c ) ln 2

+ Γm,i. (29)

Then, for obtaining optimal solutions, the above derivative
must be equal to zero, which results in

(RiŴm,i)
T

=

(
ψm,i

Qm,i

tr(
∑M

j ̸=m Qm,iWj,i +Qm,iŴm,i + σ2
c ) ln 2

− µiℓiINt
− ϕiℓiINt

− Γm,i

)−1

(Ri)
T

− σ−2
r INt

− (Ri

∑
j ̸=m

Wj,i)
T . (30)

Regarding the fact that the problem is convex, the optimal
solutions are obtained at the boundary of the constraints which
means that

tr(Ŵm,i) =

k∑
i=1

1

ℓi
Ein[i]−

k∑
i=1

∑
j ̸=m

tr(Wm,i), (31)

or

tr(Ŵm,i) =

k∑
i=1

1

ℓi
Ein[i]−

k∑
i=1

∑
j ̸=m

tr(Wm,i)−
1

ℓi
Emax.

(32)

Let us define the spectral decomposition of Ri as below

Ri = λri rir
H
i , (33)

where λri and ri are the largest radar eigenvalue, and its
associated unitary vectors at the i−th epoch. From the rank
properties, we can write

rank(RiŴm,i) ≤ rank(Ri) = 1, (34)

which means that equation (30) has Nt−1 degrees of freedom.
On the other hand, tr(Wm,i) =

∑Nt

j=1 λ
m,w
j,i where λmj,i are the

eigenvalue of the beamformer matrix for the m−th user at the
i−th epoch. Then, because the optimal solutions are required
to satisfy equation (30), without violating the optimization
constraints, the optimal beamforming matrices can always
focus on one direction where the target exists and allocate no
energy to other directions. Indeed, λm,w

j,i = 0,∀j > 1,∀i,m,
where j = 1 is associated with the largest eigenvalue of the
radar targets. This process can be repeated for all the users
and epochs.

In the case of multiple targets scenario, the spectral decom-
position of Ri can be given by

Ri =

K∑
j=1

λrj,irj,ir
H
j,i, (35)

where λrj,i, rj,i are the radar eigenvalues and their associated
unitary vectors at the i−th epoch, respectively. Consequently,

rank(RiŴm,i) ≤ rank(Ri) = K, (36)

as K+M ≤ Nt, which suggests that the optimal beamforming
matrices can focus on K directions and allocate no energy
to other direction directions, Nt −K. Thus, the solutions of
problem (19) for the case of multiple targets might have K-
rank solutions. This concludes the proof.

APPENDIX B
PROOF OF THEOREM 2

Let us first define t and Ot as the iteration step and objective
value of problem (19) at the t-th iteration, respectively. Since
problem (19) solves optimally in the third step of Algorithm 1,
Ot3 ≤ Ot3+1. Indeed, the objective value of problem (19) is
increasing and upper bounded by a finite value because of the
limited available energy. Therefore, Algorithm 1 converges.

APPENDIX C
PROOF OF THEOREM 3

Let us first assume that R̂x,i and Ŵj,i,∀j ∈ {1, · · · ,M}, i
as the arbitrary optimal solutions of problem (22). Considering

w̄j,i = (hH
j,iŴj,ihj,i)

−1/2Ŵj,ihj,i,

W̄j,i = w̄j,iw̄
H
j,i, (37)
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as another optimal solutions of problem (22) guarantees that
rank(W̄j,i) = 1,∀j ∈ {1, · · · ,M}, i. Assuming R̄x,i = R̂x,i

ensures that the first term of the objective function of problem
(22) does not change also constraints (22a) and (22b) are
satisfied.

To guarantee that constraints (22c), we write

tr(Qj,iW̄j,i) = hH
j,iW̄j,ihj,i

= hH
j,iw̄j,iw̄

H
j,ihj,i

= hH
j,iŴj,ihj,i, ∀j ∈ {1, · · · ,M}, (38)

then, the first and third terms of constraint (22) can be written
as

log2

(M+K∑
j=1

tr(Qm,iW̄j,i) + σ2
c

)

= log2

( M∑
j=1

tr(Qm,iŴj,i) + σ2
c

)
,

M+K∑
j ̸=m

tr

(
Qm,i(W̄j,i − W̃j,i)

(
∑

r ̸=m tr(Qm,iW̃r,i) + σ2
c ) ln 2

)

=

M+K∑
j ̸=m

tr

(
Qm,i(Ŵj,i − W̃j,i)

(
∑

r ̸=m tr(Qm,iW̃r,i) + σ2
c ) ln 2

)
. (39)

This shows that W̄j,i lies on the feasible set of problem (22).
To ensure that R̄x,i ⪰

∑M
j=1 W̄j,i, for any vector v, we

can write

vH(Ŵj,i − W̄j,i)

= vHŴj,iv − (hH
j,iŴj,ihj,i)

−1|vHŴj,ihj,i|2. (40)

By using the Cauchy-Schwarz inequality, we have

|vHŴj,ihj,i|2 = |vHŵj,iŵ
H
j,iv|2

≤ |vHŵH
j,i|2|hH

j,iŵ
H
j,i|2

= (vHŴj,iv)(h
H
j,iŴj,ihj,i). (41)

Consequently,

vH(Ŵj,i − W̄j,i) ≥ 0,∀j. (42)

Hence, Ŵj,i − W̄j,i ⪰ 0. Finally,

R̄x,i −
M∑
j=1

W̄j,i = R̂x,i −
M∑
j=1

Ŵj,i

+

M∑
j=1

Ŵj,i − W̄j,i ⪰ 0, (43)

which concludes the proof.
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