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Reconfigurable Adaptive Channel Sensing

Manuj Mukherjee† Aslan Tchamkerten∗ Chadi Jabbour∗

Abstract

Channel sensing consists of probing the channel from time to time to check whether or not it is active—say,

because of an incoming message. When communication is sparse with information being sent once in a long

while, channel sensing becomes a significant source of energy consumption. How to reliably detect messages while

minimizing the receiver energy consumption? This paper addresses this problem through a reconfigurable scheme,

referred to as AdaSense, which exploits the dependency between the receiver noise figure (i.e., the receiver added

noise) and the receiver power consumption; a higher power typically translates into less noisy channel observations.

AdaSense begins in a low power low reliability mode and makes a first tentative decision based on a few channel

observations. If a message is declared, it switches to a high power high reliability mode to confirm the decision,

else it sleeps for the entire duration of the second phase. Compared to prominent detection schemes such as the

BMAC protocol, AdaSense provides relative energy gains that grow unbounded in the small probability of false-

alarm regime, as communication gets sparser. In the non-asymptotic regime energy gains are 30% to 75% for

communication scenarios typically found in the context of wake-up receivers.

Index Terms

Channel sensing, low-energy communication, machine-to-machine communications, energy efficient devices,

wake-up receiver

I. INTRODUCTION

To minimize energy consumption modern receivers are typically duty cycled [1]–[7], i.e., they listen

only at predetermined time periods. To alert the receiver of an incoming message, the transmitter sends a

preamble either at the beginning of a listening period (e.g., [1]–[3], [8]), or immediately in which case the

preamble is long enough to cover at least one listening period (e.g., [6], [9]). In both cases the receiver
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performs a binary hypothesis test during the listening periods to decide whether or not a preamble is

present.

How to minimize the energy consumption of a sensing scheme for a given reliability level specified

in terms of the probabilities of false-alarm and miss-detection? In this paper we address this question

through a simple sensing scheme referred to as AdaSense (for adaptive sensing). In a nutshell, AdaSense

reconfigures its noise level in an adaptive manner so that to strike a balance between reliability and energy

consumption. In more details, a significant portion of the noise in a machine-to-machine communication

channel is due to the receiver noise,1 which is typically a non-increasing function of the power consumption

at the receiver (see, e.g., [10, Chapter 12]); higher reliability requires greater power consumption. AdaSense

exploits this dependency to adaptively choose the noise level of the observed samples so that to minimize

the overall energy consumed in channel sensing.

AdaSense has two phases. In the first phase, AdaSense observes a small batch of samples at low

power and makes a tentative decision on whether or not a preamble is present. If no preamble is detected

AdaSense stops, declares that there is no preamble, and moves to the next listening phase. If a preamble

is declared, AdaSense enters a second confirmation phase, and observes a fresh batch of samples at a

higher power. At the end of this second phase, AdaSense decides whether or not the preamble is present.

AdaSense was inspired by the adaptive detection schemes proposed in [11]–[14] which aim at minimizing

the number of samples needed to efficiently detect a message. While the number of samples can be taken

as a proxy for energy consumption, the present paper goes further by considering the actual energy spent in

the observation of a sample through its dependency with the receiver noise figure. In particular, leveraging

upon this dependency AdaSense adaptively varies the power consumption, in addition to the number of

samples.

We compared AdaSense against two well-known schemes, the “single-phase” scheme and the clear

channel assessment algorithm of the Berkeley Media Access Control (BMAC) protocol, henceforth referred

to as the BMAC scheme [6]. The single-phase scheme refers to the standard binary hypothesis test where

an optimal decision is taken based on the observations at constant power of a fixed number of n samples,

where n denotes the length of the preamble. If a preamble is declared, the receiver stops and otherwise

it waits for the next listening period. The BMAC scheme instead is sequential. The receiver observes

samples at a constant power and declares that the preamble is present only if all n sample values exceed

1See Section III-C for details.
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a given threshold. As soon as one sample value is below the threshold, it stops, declares that no preamble

is present, and waits for the next listening period.

The rest of the paper is organized as follows. In Section II, we give a precise description of the channel

sensing problem. In Section III, we describe AdaSense and compare it with the single-phase scheme and

the BMAC scheme. We first make analytical comparisons in the small probability of false-alarm regime

when communication gets sparser, then make comparisons in non-asymptotic regimes through numerical

performance evaluations. In Section IV, we discuss a practical implementation of AdaSense. Finally, in

Section V we draw a few concluding remarks.

II. CHANNEL SENSING: RELIABILITY AND ENERGY CONSUMPTION

Channel sensing at the physical layer amounts to a binary hypothesis test. Consider N samples Y1, Y2, . . . ,

YN that represent the outputs of a coherent receiver that observes a modulated binary message M ∈ {0, 1},

repeated N times, and corrupted by additive noise. Hence,

Yi =M ·
√
P + Zi, 1 ≤ i ≤ N, (1)

where Zi ∼ N (0, σ2
i ) denotes the noise of the i-th sample, and where P denotes the received power.

The two possible values of M are interpreted as the hypothesis H0 = {M = 0}, corresponding to no

preamble, and H1 = {M = 1}, corresponding to a preamble being present. These hypothesis are supposed

to have a known prior which reflects the level of communication sparsity

p1 = Pr(H1) = 1− Pr(H0).

Based on Y1, Y2, . . . , YN the receiver provides a message estimate M̂ ∈ {0, 1}. The reliability of the

estimator is quantified in terms of the probabilities of false-alarm and miss-detection

PFA = Pr(M̂ = 1|H0)

PMiss = Pr(M̂ = 0|H1). (2)

In addition to reliability, we are interested in the average energy E spent by the receiver in observing

Y1, . . . , YN . The parameters of the receiver circuit that have a significant impact on the energy consumption,

include the central frequency, the receiver architecture, the noise figure, etc. Nevertheless, for a given

application with a fixed central frequency, received power, and data rate, the receiver energy consumption
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is primarily determined by the receiver noise figure. This is quantified as follows. First note that the noise

variance σ2
i may be decomposed as

σ2
i = σ2

t + σ2
r,i

where σ2
t denotes the contribution due to thermal noise and where σ2

r,i denotes the contribution of the

receiver. In many practical setups (see Section III-C), the contribution of the thermal noise σ2
t is negligible

with respect to the receiver noise and is ignored. Therefore, we assume that

σ2
i = σ2

r,i.

The receiver noise variance σ2
r,i is typically a function of the receiver power consumption Pr,i; the lower

σ2
r,i the larger Pr,i. This function depends on the receiver circuit itself, and particularly on the low noise

amplifier used in the receiver circuit (see, e.g., [10, Chapter 12]). We model this dependency by letting

σ2
r,i = f(Pr,i)

where f(·) denotes a non-negative and non-increasing function, which we shall refer to as the noise profile

of the receiver—in practice this function can be determined by means of electrical simulations on the low

noise amplifier.2 Throughout the paper we assume that

σ2
r,i = kP−γr,i

for some known k > 0 and γ ≥ 1—the case γ < 1 is arguably less natural and shall be omitted.

Our results (next section) immediately extend to the case where σ2
t is no longer negligible, but yield

slightly more cumbersome results—this is briefly alluded to in Section V.

Without loss of generality, the number of observed samples N is at most equal to n, the length of

the preamble. Moreover, N is allowed to causally depend on past observed samples. For instance, after

observing a few samples Yi that clearly indicate the presence of the message, the receiver may stop and

output M̂ = 1. The power Pr,i at which symbol Yi is observed may depend on past observed samples

2We emphasize the distinction between P , the power of the received signal, and Pr the power consumed by the receiver to observe the
signal.
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Fig. 1: AdaSense

Y1, Y2, . . . , Yi−1.3 The average energy consumption till a decision is made is then given by

E = E

(
N∑
i=1

Pr,i

)
(3)

where E denotes expectation over the channel noise and over the two hypothesis H1 and H0, assumed to

have prior p1 and 1− p1, respectively. Here we assume that each symbol has unit duration, without loss

of generality.4

III. RESULTS

We first describe AdaSense in Section III-A, a scheme which aims at minimizing E for fixed PFA

and PMiss. We then compare AdaSense against two well-known detection schemes, namely the single-phase

scheme and the BMAC scheme. In Section III-B, we provide analytical comparisons in the regime of

small probability of false-alarm and sparse communication, which is relevant for IoT type of applications.

In Section III-C, we numericaly compare these schemes for a variety of non-asymptotic parameters.

A. Description of AdaSense

AdaSense is a two-phase scheme as illustrated in Fig. 1. It starts by observing a first batch of samples and

makes a tentative decision. If H0 is declared AdaSense stops, and if H1 is declared AdaSense performs

a second “highly reliable” confirmation test based on a second batch of samples. If hypothesis H1 is

confirmed, AdaSense outputs H1, else it outputs H0. Details follow.

Let `1 and `2 be two nonnegative integers such that `1 + `2 ≤ n, and let Pr,1, Pr,1 be nonnegative

constants. The receiver starts by observing `1 samples Y1, Y2, · · · , Y`1 at a constant power per sample Pr,1.

3In probability language, N is a stopping time defined on the natural filtration induced by the process Y1, Y2, . . . and process Pr,1, Pr,2, . . .
is predictable with respect to this filtration.

4For an arbitrary symbol duration Ts, just multiply E by Ts in equation (3).
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It then performs a standard log-likelihood ratio (LLR) test to discriminate between the hypothesis H0 and

H1 (see Case III.B.2 of [15]), i.e., the receiver checks whether

T1 ,

√
P

σ2
r,1

`1∑
i=1

Yi −
`1P

2σ2
r,1

≤ η1,

for some given threshold η1, and where σ2
r,1 = f(Pr,1) . If this inequality is satisfied, the receiver stops

and declares M̂ = 0. Otherwise, it enters a second confirmation phase, observes the next `2 samples

Y`1+1, . . . , Y`1+`2 at a constant power per sample Pr,2, typically greater than Pr,1, and performs a second

LLR test on this second batch of samples, i.e., it checks whether

T2 ,

√
P

σ2
r,2

`1+`2∑
i=`1+1

Yi −
`2P

2σ2
r,2

> η2

or some given threshold η2, and where σ2
r,2 = f(Pr,2). If this second inequality is satisfied, the receiver

declares M̂ = 1, and otherwise M̂ = 0.

For this scheme, PFA, PMiss and E are explicitly given by (see Appendix A)5

PFA = Q

(
σr,1η1√
`1P

+
1

2

√
`1P

σ2
r,1

)
Q

(
σr,2η2√
`2P

+
1

2

√
`2P

σ2
r,2

)
, (4)

PMiss = Q

(
−σr,1η1√

`1P
+

1

2

√
`1P

σ2
r,1

)
+

(
1−Q

(
−σr,1η1√

`1P
+

1

2

√
`1P

σ2
r,1

))
Q

(
−σr,2η2√

`2P
+

1

2

√
`2P

σ2
r,2

)
, (5)

and

E = `1Pr,1 + pc`2Pr,2, (6)

where pc denotes the probability of having a second phase and is given by

pc
def
= (1− p1)Q

(
σr,1η1√
`1P

+
1

2

√
`1P

σ2
r,1

)
+ p1

(
1−Q

(
−σr,1η1√

`1P
+

1

2

√
`1P

σ2
r,1

))
.

Given PFA ≤ α, PMiss ≤ β, the received power P , the preamble length n and the sparsity level p1, the

5Q refers to the standard Q-function defined as Q(x) = 1√
2π

∫∞
x
e−

u2

2 du.
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set of parameters {`1, Pr,1, η1, `2, Pr,2, η2} are chosen so that to minimize the average energy:

{`∗1, P ∗r,1, η∗1, `∗2, P ∗r,2, η∗2} = argmin
{`1,Pr,1,η1,`2,Pr,2,η2}:

`1+`2≤n
PFA≤α
PMiss≤β

E. (7)

The above optimization problem admits no analytical solution but can easily be numerically evaluated

as described in Section III-C. It should also be noted that this optimization needs to be carried only once

per target values α, β, n, p1 and P . Depending on (n, α, β) there might be no solution6 in which case we

set E = ∞. However, if only (α, β) are fixed and n can be optimized over then the above optimization

problem always admits a feasible solution (see, e.g., [15, Example II.D.1]).

B. Performance: Small probability of False-Alarm and Sparse Communication regime

The next result explicits a tradeoff between E and PFA at fixed PMiss for AdaSense, when PFA tends to

zero (the proof is deferred to Appendix B):7

Theorem 1 (AdaSense, asymptotics). Suppose f(Pr) = kP−γr for some fixed γ ≥ 1 and k > 0. For any

fixed p1, P > 0, 0 < β ≤ 1 and 0 < ε < 1 AdaSense achieves PMiss ≤ β and

E ≤ 2kp1
P (1− ε− o(1))

ln

(
1

PFA

)
(8)

where o(1) → 0 as PFA → 0. Moreover, this tradeoff between PMiss, PFA, and E is achievable with

n = O(ln(1/PFA)).

The important thing to notice here is that the sparser the communication, that is the smaller p1, the

lower E. To put this result into perspective we now consider two other widely known detection schemes,

namely the basic “single-phase” scheme and the BMAC scheme.

The single-phase scheme is described in Fig. 2. The receiver performs an (optimal) LLR test on a

fixed number of n samples Y1, . . . , Yn, each observed at a constant receiver power Pr. The test consists

in declaring M̂ = 1 whenever T ,
√
P
σ2
r

∑n
i=1 Yi −

nP
2σ2
r

is above a given threshold η that depends on

the probability of false-alarm, and M̂ = 0 otherwise. The following theorem, which is essentially a

6That is no {`1, Pr,1, η1, `2, Pr,2, η2} such that `1 + `2 ≤ n, PFA ≤ α, and PMiss ≤ β
7We make use of the Big O notation for limiting function behavior.
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Fig. 2: Single-phase scheme

direct consequence of Stein’s Lemma [16, Theorem 11.8.3] (see Appendix B for the proof), states the

performance of the single-phase scheme in the small probability of false-alarm regime:

Theorem 2 (Single-phase, asymptotics). Suppose σ2
r = f(Pr) = kP−γr for some fixed γ ≥ 1 and k > 0.

For fixed p1, P, Pr > 0 and 0 < β ≤ 1 the single-phase scheme achieves PMiss ≤ β and

E =
2k

PP γ−1
r (1± o(1))

ln

(
1

PFA

)
with a preamble length n = O(ln(1/PFA)), and where o(1) vanishes as PFA → 0.

By contrast with AdaSense, here E does not decrease as communication gets sparser (i.e., as p1

decreases).

An alternative scheme is the well-known BMAC scheme of [6] and described in Fig. 3. Similarly to the

single-phase scheme, the receiver operates at a constant power. But instead of performing a hypothesis

test based on all samples Y1, . . . , Yn, the receiver performs a binary hypothesis test sequentially and

independently on the Yi’s and declares M̂ = 0 as soon as it finds a sample Yi ≤ η, where η depends on

the probability of false-alarm. If all n samples exceed η, the receiver declares M̂ = 1.

The following theorem characterizes the performance of the BMAC scheme in the low probability of

false-alarm regime (the proof is deferred to Appendix B):

Theorem 3 (BMAC, asymptotics). Suppose σ2
r = f(Pr) = kP−γr for some fixed γ ≥ 1 and k > 0. For

any fixed p1, P > 0, n ≥ 1 and 0 < β ≤ 1 the BMAC scheme achieves PMiss ≤ β and

E ≥ (1− p1)
(
2k

nP
ln

(
1

PFA

))1/γ

(1− o(1))

where o(1)→ 0 as PFA → 0.

Similarly to the single-phase scheme, the energy spent by the BMAC scheme does not decrease as

communication gets sparser. But note that the above lower bound has the preamble length n in the
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Fig. 3: BMAC scheme

denominator. It turns out that this is inherent to the BMAC scheme and is not due to a loose lower

bound—see proof of Theorem 3. A larger value of n allows to lower the receiver power for a given level

of false-alarm. However, if we impose BMAC to operate with the same preamble length as for AdaSense

and BMAC and require n = O(ln(1/PFA)), AdaSense remains the most energy efficient in the sparse

regime p1 → 0, at a fixed but small probability of false-alarm. In the next section, we will also see that

for a wide range of parameter values AdaSense performs the best in terms of energy consumption.

C. Performance: Nonasymptotic Parameters regime

In this section we compare the performances of AdaSense, BMAC, and the single-phase scheme with

parameters found in the context of wake-up receivers. Regarding preamble length we consider n = 30

and n = 50 which are consistent with the value in [17]. We then fix a target PFA equal to 10−3 or 10−5,

as in [17], [18], and plot E as a function of PMiss.

The probability p1 varies with applications. For example, temperature sensors deployed in some cities

are monitored every few minutes [19], which, considering a standard bit rate of 100kbps and n = 50,

corresponds to p1 = 10−6. For other applications, for example fire alarms, p1 can be much lower (see

e.g., [20]).

A 2017 survey [21] recommends a worst-case received power of -83dBm, which corresponds to a line-

of-sight communication over 1200m using an antenna transmitting at 10mW. Accordingly, we carry out the

comparisons for a couple of values of received power P = 10−11 W, i.e., P = −80 dBm and P = 10−9
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Fig. 4: E versus PMiss for the three different schemes with p1 = 10−10 and under different regimes of P ,
n, and PFA. Energy savings compare AdaSense with the BMAC scheme—which is always more efficient
than the single phase scheme for the considered parameters.
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W, i.e., P = −60dBm. The noise profile, i.e., the function that relates the power consumption to the

receiver noise variance, is unique to each receiver, and is determined by electrical simulations performed

on the low noise amplifier to be used at the input stage of the receiver. For demonstration purposes, we

use the noise profile determined in [21, Section V.B] by stating the tradeoff between sensitivity and power

consumption. Sensitivity is the defined as the received power needed to detect a single bit with a bit error

rate of 10−3 [22]. It is a textbook result that an SNR of 15dB is needed to detect a single bit with a

bit error rate of 10−3 (see [15, Example II.B.2]), and hence, receiver noise power is simply sensitivity

lowered by 15dB. The sensitivity versus power consumption tradeoff mentioned in the survey can then

be rephrased as follows: 1µW of power consumption leads to a receiver noise of −55dBm, and the noise

power is decreased by 20dB by increasing the power consumption ten times. This tradeoff corresponds

to the noise profile f(·) given by

σ2
r = f(Pr) =

10−20.5

P 2
r

,

where Pr is in Watts. The contribution of the thermal noise to the overall noise power is negligible, since

the least value of σ2
r used in our comparisons is −92.15 dBm, whereas standard values of thermal noise

power lie below −113.83 dBm.8

In Fig. 4, we compare the exact energy consumption of the single-phase receive, the BMAC receiver,

and AdaSense (6)—after the optimization (7)—as a function of the probability of miss-detection. The

exact performance of these schemes are deferred to Appendix A, see Propositions 4-6. Each plot is for a

specific set of parameters n ∈ {30, 50}, P ∈ {−60 dBm,−80 dBm}, and PFA ∈ {10−3, 10−5}, and holds

for any p1 < 10−4—in this range of p1 plots remain unchanged. For AdaSense, the numerical optimization

of (7) was obtained through the MATLAB fmincon optimizer run on an simple desktop (Intel® CoreTM

i5-7200U CPU @ 2.50GHz × 4 with 16 GB of memory). The maximum wall-clock time needed to run

the optimization was about 40 seconds per set of target parameters.

As we see in Fig. 4, AdaSense is always the most energy-efficient scheme, followed by the BMAC

scheme and the single-phase scheme. Savings vary from 30% to 75%, depending on the regimes of P ,

n, PFA, and PMiss. We also note that higher values of P , n, PFA, and PMiss result in higher savings, and

can go up to 76% (see Fig. 4b). On the other hand, the least amount of energy savings we record is 29%

when P = −80dBm, n = 30, PFA = 10−5 and PMiss = 10−10 (see Fig. 4g).

8The thermal noise power is calculated using the formula σ2
t = kbTB in Watts [10, Chapter 11], where kb is the Boltzman constant,

T is the temperature, and B is the bandwidth. We have used T = 300K (see for example [22]) and B = 1MHz, which is the maximum
bandwidth allocated to low power devices in the IEEE 802.15.4 standard for low-rate communication [23].
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Fig. 5: AdaSense implementation

IV. IMPLEMENTATION

In this section we briefly outline a possible implementation of AdaSense, see Fig. 5. The first few stages

are standard for coherent receivers, which include a low noise amplifier (LNA) and a down-mixer followed

by a rectifier or envelope detector and the integrator, which convert the incoming BPSK modulated signal

to the required weighted sum
√
P

σ2
r,1

∑`1
i=1 Yi (see Section III) [24, Chapter 2]. This is then compared against

the threshold η1 +
`1P
2σ2
r,1

(see Section III) using a comparator. The heart of the architecture then lies in

switching the mode of the receiver or turning it off, which is taken care of by the digital controller block.

The overhead of AdaSense with respect to a classical non-adaptive receiver is the transition between the

first and the second phase. This requires modification of the noise figure (from σ2
r,1 to σ2

r,2), the integration

constant which controls the weighted sum, and the threshold. There are several efficient approaches to

reconfigure the receiver noise figure. Firstly, note that the Friis formula (see [25]) says that the components

at the beginning of the receiver chain (i.e., the radio frequency (RF) components) are the major sources

of the receiver noise. The low noise amplifier (LNA) occurring at the start of the receiver chain is

therefore the most suitable site to perform the noise figure reconfiguration. The simplest approach to

perform this reconfiguration is to adjust the LNA’s bias current. A higher bias current leads to a higher

transconductance of the LNA, and hence, a better noise figure [10], but at the cost of higher power

consumption. Besides the bias current readjustment method, there exists other methods to reconfigure

the noise figure of the LNA as well (see [26]–[28]). The choice of the exact reconfiguration method will

depend on the application and the receiver architecture. It is worth mentioning that the narrow bandwidth of

the modulated signals relaxes the speed constraints on the reconfiguration and makes it easy to implement.

To modify the integration constant we need to modify passive elements (capacitors or resistors). This is
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achieved by implementing two different values of the considered elements (resistance or capacitance) and

connecting or disconnecting them using switches depending on the phase. The comparison threshold is

obtained through resistive bridge dividers. To generate different comparison voltages, it suffices to add

an additional resistance in the resistive ladder, which allows us to generate two comparison voltages.

Depending on the phase, the comparator is connected to one or the other using switches.

V. CONCLUDING REMARKS

In this paper we proposed a new channel sensing scheme which is particularly energy efficient in the

sparse communication regime. The main difference with existing schemes is that AdaSense adaptively

chooses the number of observed samples as well as the power at which these samples are observed. Notice

that the results immediately extend to the case where the thermal noise is no longer negligible—just add

the thermal noise variance σ2
t to the receiver noise σ2

r = f(Pr) throughout.

It should perhaps be emphasized that AdaSense operates only according to two power levels. In fact,

one could envision a more gradual procedure where, after each observation the receiver either stops or

observes the next sample at a potentially lower noise level. Preliminary calculations reveal that the energy

gains provided by such a general scheme would not be substantial compared to AdaSense. Moreover,

potential energy gains would probably be offset by an increased complexity at the hardware level. Indeed,

as suggested in Section IV, the implementation overhead of AdaSense with respect to a non-adaptive

receiver appears to be negligible. This suggests that duty cycled receivers, including the duty-cycled

wake-up receivers [8], [9], [17], [29], could benefit from AdaSense.

APPENDIX A

EXACT ANALYSIS

According to the channel model (1), the distribution of the samples Yi under either of the hypothesis

H0 or H1 is i.i.d., and is given by

Yi ∼


N (0, σ2), given H0

N (
√
P , σ2), given H1.

(9)

Therefore, the log-likelihood ratio (LLR) of m i.i.d. samples Y1, Y2, . . . , Ym is given by

T = log

(∏m
i=1

1√
2πσ2

exp{− 1
2σ2 (Yi −

√
P )2}∏m

i=1
1√
2πσ2

exp{− 1
2σ2 (Yi)2}

)
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=

√
P

σ2

m∑
i=1

Yi −
mP

2σ2
. (10)

Hence,

T ∼


N
(
−mP

2σ2 ,
mP
σ2

)
given H0

N
(
mP
2σ2 ,

mP
σ2

)
given H1.

(11)

The next three propositions state the performance of the single-phase scheme, the BMAC scheme, and

AdaSense, in the non-asymptotic regime.

Proposition 4 is textbook material (see, e.g., [15, Example II.D.1]) and follows from (10) and (11):

Proposition 4. Given n, P , σ2
r = f(Pr), the single-phase scheme achieves

PFA = Q

(
σrη√
nP

+
1

2

√
nP

σ2
r

)
,

and PMiss = Q

(
− σrη√

nP
+

1

2

√
nP

σ2
r

)
.

The energy consumed by the receiver is9

E = nPr. (12)

Proposition 5 (BMAC). Given p1, n, P , σ2
r = f(Pr), the BMAC scheme achieves

PFA = P n
e,0,

and PMiss = 1− (1− Pe,1)n,

where Pe,0 = Q( η
σr
), Pe,1 = 1 − Q(η−

√
P

σr
), with η ∈ R. The average energy consumed by the BMAC

scheme is

E = Pr

[
p1PMiss

1− (1− PMiss)1/n
+

(1− p1)(1− PFA)

1− P 1/n
FA

]
= Pr

(1− PFA)

1− P 1/n
FA

+ o(1) (13)

where o(1) tends to zero as p1 → 0.

9Recall that the transmitted symbols have unit duration.
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Note that given p1, n, and P , fixing any two values among PFA, PMiss, and E specifies the third one.

Proof of Proposition 5: We have

PFA = Pr(M̂ = 1|H0)

=
n∏
i=1

Pr(Yi > η|H0) (14)

= Q

(
η

σr

)n
, (15)

where (14) follows from the fact that the BMAC detection rule declares M̂ = 1 if and only if Yi > η for

i ∈ {1, . . . , n} and where (15) follows from (9). Similarly, we have

PMiss = Pr(M̂ = 0|H1)

= 1−
n∏
i=1

Pr(Yi > η|H1) (16)

= 1−Q
(
η −
√
P

σr

)n
. (17)

For the average energy consumption E we have

E =
n∑
i=1

iPrPr(N = i)

=
n∑
i=1

iPr

[
p1Pr(N = i|H1) + (1− p1)Pr(N = i|H0)

]
. (18)

We now calculate Pr(N = i|H0). For i < n, note that N = i if and only if Yj > η for all j < i, and

Yi ≤ η. Thus, by (9), we have

Pr(N = i|H0) = Q

(
η

σr

)i−1(
1−Q

(
η

σr

))
.

On the other hand, N = n occurs if and only if Yj > η for all j < n. Therefore, Pr(N = n|H0) =

Q

(
η
σr

)n−1
. Similarly, we have

Pr(N = i|H1) = Q

(
η −
√
P

σr

)i−1(
1−Q

(
η −
√
P

σr

))
,

for all i < n, and

Pr(N = n|H1) = Q

(
η −
√
P

σr

)n−1
.
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Define p , Q

(
η
σr

)
and q , Q

(
η−
√
P

σr

)
. Then, using (18)

E =
n−1∑
i=1

iPr

[
p1q

i−1(1− q) + (1− p1)pi−1(1− p)
]
+ nPr

[
p1q

n−1 + (1− p1)pn−1
]

= Pr

[
p1

n−1∑
i=0

qi + (1− p1)
n−1∑
i=0

pi
]

= Pr

[
p1
1− qn

1− q
+ (1− p1)

1− pn

1− p

]
= Pr

[
p1

PMiss

1− (1− PMiss)1/n
+ (1− p1)

1− PFA

1− P 1/n
FA

]
, (19)

where (19) follows from the definitions of p and q together with (15) and (17).

Proposition 6 (AdaSense). Given p1, n, P , σ2
r = f(Pr), the first and second phase lengths `1, `2 ≥ 0

such that `1 + `2 ≤ n, the powers in the first and second phases Pr,1, Pr,2 ≥ 0, and the thresholds of the

hypothesis tests of the first and second phases η1, η2 ∈ R, AdaSense yields

PFA = Q

(
σr,1η1√
`1P

+
1

2

√
`1P

σ2
r,1

)
Q

(
σr,2η2√
`2P

+
1

2

√
`2P

σ2
r,2

)
,

and

PMiss = Q

(
−σr,1η1√

`1P
+

1

2

√
`1P

σ2
r,1

)
+

(
1−Q

(
−σr,1η1√

`1P
+

1

2

√
`1P

σ2
r,1

))
Q

(
−σr,2η2√

`2P
+

1

2

√
`2P

σ2
r,2

)
,

The average energy consumed is given by

E = `1Pr,1 + pc`2Pr,2, (20)

where

pc = (1− p1)Q
(
σr,1η1√
`1P

+
1

2

√
`1P

σ2
r,1

)
+ p1

(
1−Q

(
−σr,1η1√

`1P
+

1

2

√
`1P

σ2
r,1

))

= Q

(
σr,1η1√
`1P

+
1

2

√
`1P

σ2
r,1

)
+ o(1),

where o(1) tends to zero as p1 tends to zero.

Proof of Proposition 6: We begin by evaluating the LLR for samples in the first and the second

phases. Recall that the first batch of `1 samples are received with noise variance σ2
r,1 = f(Pr,1), while

the second batch of `2 samples are received with noise variance σ2
r,2 = f(Pr,2). Let T1 and T2 denote the
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LLRs of the samples in the first and the second phases, respectively. By (10), we have

T1 =

√
P

σ2
r,1

`1∑
i=1

Yi −
`1P

2σ2
r,1

,

T2 =

√
P

σ2
r,2

`1+`2∑
i=`1+1

Yi −
`2P

2σ2
r,2

. (21)

From (11)

T1 ∼


N
(
− `1P

2σ2
r,1
, `1P
σ2
r,1

)
given H0

N
(

`1P
2σ2
r,1
, `1P
σ2
r,1

)
given H1,

(22)

and

T2 ∼


N
(
− `2P

2σ2
r,2
, `2P
σ2
r,2

)
given H0

N
(

`2P
2σ2
r,2
, `2P
σ2
r,2

)
given H1.

(23)

Note that T1 and T2 are independent since they are functions of different sets of samples.

We now proceed to evaluate PFA and PMiss. Note that M̂ = 1, if and only if T1 > η1 and T2 > η2.

Therefore,

PFA = Pr(T1 > η1|H0)Pr(T2 > η2|H0) (24)

= Q

(
σr,1η1√
`1P

+
1

2

√
`1P

σ2
r,1

)
Q

(
σr,2η2√
`2P

+
1

2

√
`2P

σ2
r,2

)
, (25)

where the second equality follows from (22) and (23). Similarly, we have

PMiss = Pr(T1 ≤ η1|H1) + Pr(T1 > η1|H1)Pr(T2 ≤ η2|H1)

= Q

(
−σr,1η1√

`1P
+

1

2

√
`1P

σ2
r,1

)
+

(
1−Q

(
−σr,1η1√

`1P
+

1

2

√
`1P

σ2
r,1

))
Q

(
−σr,2η2√

`2P
+

1

2

√
`2P

σ2
r,2

)
.

Next, we compute the average energy consumption E. We have

E = `1Pr,1 + pc`2Pr,2

where pc denotes the probability that the scheme continues after the first phase by pc, that is T1 > η1.

From (22), we have

pc = (1− p1)Pr(T1 > η1|H0) + p1Pr(T1 > η1|H1)
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= (1− p1)Q
(
σr,1η1√
`1P

+
1

2

√
`1P

σ2
r,1

)
+ p1

(
1−Q

(
−σr,1η1√

`1P
+

1

2

√
`1P

σ2
r,1

))
. (26)

which concludes the proof.

APPENDIX B

ASYMPTOTICS

Proof of Theorem 2 (Single-phase): From Stein’s Lemma [16, Theorem 11.8.3], if the single-phase

satisfies PMiss ≤ β, for some fixed 0 < β < 1, then10

PFA = exp

(
−P

2

1

σ2
r

n± o(n)
)

= exp

(
− P
2k
P γ
r n± o(n)

)
= exp

(
−PP

γ−1
r

2k
E ± o(E)

)
(27)

where for the first inequality we used the noise profile σ2
r = kP−γr and where the second inequality holds

since E = nPr (see (12)). Therefore,

E =
2k

PP γ−1
r (1± o(1))

ln(1/PFA)

where o(1) vanishes as PFA → 0—notice that as PFA → 0 we necessarily have n and E tend to infinity.

Notice that the proof of Theorem 2 also holds if 0 < γ < 1. The same comment goes for the proof of

Theorem 3 (see below). We nevertheless chose to state these theorems by restricting γ ≥ 1 for the sake

of uniformity with Theorem 1 and since the case γ < 1 is less natural as previously alluded to.

Proof of Theorem 1 (AdaSense): By Proposition 6

E = E1 + E2pc (28)

where

Ei = `iPr,i i = 1, 2

denotes the energy spent during the first and the second phase, and where pc denotes the probability that

AdaSense performs the second phase, i.e., pc = Pr(T1 > η1).

10We write f(n) = g(n)± q(n) if g(n)− q(n) ≤ f(n) ≤ g(n) + q(n).
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Now pick 0 < ε < 1 and let us allocate the energy E of the first and the second phase as

E1 = εE = `1Pr,1

and

E2 =
(1− ε)E

pc
= `2Pr,2 (29)

Furthermore, pick

`i = δin i = 1, 2 (30)

such that δ1 > 0, min{E2/n, ε} ≤ δ2 ≤ 1 − ε, and δ1 + δ2 ≤ 1. As we will see below, the tradeoff

between PFA and E is improved as ε gets smaller, that is when the overwhelming energy is spent during

the second phase.

From Stein’s Lemma [16, Theorem 11.8.3] it follows that for any β > 0, the thresholds η1, η2 may be

set such that PMiss ≤ β and such that

Pr(Ti > ηi|H0) ≤ exp

(
−P

2

1

σ2
r,i

`i + o(`i)

)
i = 1, 2. (31)

Hence, from (24)

PFA ≤ exp

(
−P

2

1

σ2
r,2

`2 + o(`2)

)
= exp

(
− P
2k
P γ
r,2δ2n+ o(n)

)
(32)

where for the second equality we used (30) and the noise profile σ2
r = kP−γr . We now consider the

problem of minimizing the first term in the exponent on the right-hand side of (32) under the constraints

(29)-(30), that is

max
(Pr,2,δ2):

min{E2/n,ε}≤δ2≤1−ε
Pr,2δ2=E2/n

P γ
r,2δ2 (33)

and distinguish the cases γ = 1 and γ > 1.
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γ = 1: In this case (33) is equal to (1− ε)E/npc which together with (32) yields

PFA ≤ exp

(
−(1− ε)P

2kpc
E(1 + o(1))

)
(34)

where o(1) tends to zero as E tends to infinity. Hence,

E ≤ pc
2k(1 + o(1))

P (1− ε)
ln

(
1

PFA

)
(35)

where o(1) tends to zero as PFA tends to zero.

γ > 1: Here we obtain a tradeoff between energy and probability of false-alarm which is at least as good

as for γ = 1. To see this suppose nδ2Pr,2 = E2 and pick δ2 > 0 small enough so that Pr,2 ≥ 1 (this is

possible since by assumption δ2 can be taken as small as min{ε, E2/n} ≤ E2/n). Then P γ
r,2 ≥ Pr,2 and

we deduce that (33) is greater or equal to E2/n. Hence (35) also holds if γ > 1.

We now upper bound pc as

pc = Pr(T1 > η1|H0)(1− p1) + Pr(T1 > η1|H1)p1

≤ Pr(T1 > η1|H0) + p1

≤ p1 + o(1) (36)

where o(1) tends to zero as n tends to infinity (or, equivalently, as PFA tends to zero), and where for the

last inequality we used (31) and the fact that `1 increases with n. The theorem then follows from (35)

and (36).

Proof of Theorem 3: From Proposition 5, if BMAC satisfies PFA = α and PMiss = β, then

α = Q

(
η

σr

)n
(37)

(1− β) = Q

(
η −
√
P

σr

)n
(38)

E ≥ Pr
(1− p1)(1− α)

1− α1/n
. (39)

From (37), the noise profile σ2
r = kP−γr , and the Chernoff approximation on the Q-function Q(x) =

exp(−x2/2(1 + o(1))) as x→∞ we deduce that

Pr =

(√
kQ−1(α1/n)

η

)2/γ

=

(
2k

nη2(1 + o(1))
ln(1/α)

)1/γ

(40)
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where o(1)→ 0 as α→ 0. Hence, from (39)

E ≥ (1− p1)(1− α)
1− α1/n

(
2k

nη2(1 + o(1))
ln(1/α)

)1/γ

(41)

Assuming β < 1/2 we necessarily have η ≤
√
P from (38) and we finally get11

E ≥ (1− p1)
(
2k

nP
ln(1/α)

)1/γ

(1− o(1)). (42)

as α→ 0.
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