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Abstract—Open Radio Access Network (Open RAN) has
gained tremendous attention from industry and academia with
decentralized baseband functions across multiple processing units
located at different places. However, the ever-expanding scope
of RANs, along with fluctuations in resource utilization across
different locations and timeframes, necessitates the implementa-
tion of robust function management policies to minimize network
energy consumption. Most recently developed strategies neglected
the activation time and the required energy for the server
activation process, while this process could offset the potential
energy savings gained from server hibernation. Furthermore,
user plane functions, which can be deployed on edge computing
servers to provide low-latency services, have not been sufficiently
considered. In this paper, a multi-agent deep reinforcement
learning (DRL) based function deployment algorithm, coupled
with a heuristic method, has been developed to minimize energy
consumption while fulfilling multiple requests and adhering to
latency and resource constraints. In an 8-MEC network, the DRL-
based solution approaches the performance of the benchmark
while offering up to 51% energy savings compared to existing
approaches. In a larger network of 14-MEC, it maintains a
38% energy-saving advantage and ensures real-time response
capabilities. Furthermore, this paper prototypes an Open RAN
testbed to verify the feasibility of the proposed solution.

Index Terms—Open RAN, resource optimization, baseband
function deployment, energy-efficient, MADDPG

I. INTRODUCTION

T
HE dawn of fifth-generation (5G) mobile networks has

ushered in a new era of connectivity, demanding a

more agile radio access network (RAN) to deliver exceptional

services for a myriad of use cases, such as ultra-reliable low

latency communication (uRLLC), enhanced mobile broadband

(eMBB), and massive machine type communications (mMTC)

[1]–[3]. Open RAN, an innovative industry-wide initiative,

seeks to revolutionize the landscape in RAN by disaggregating

RAN components into radio unit (RU), distributed unit (DU),

and centralized unit (CU), with different split options [4]. With

5G RAN functional splits, connections between RUs and user

plane functions (UPFs) are divided into fronthaul, midhaul,

and backhaul segments. Open interfaces and standards defined

in Open RAN and multi-access edge computing (MEC) facil-

ities further facilitate the flexible deployment of these RAN
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functions close to users in achieving service customization

and low latency applications. [5], [6]. However, inevitable

imbalances and variations in resource usage, driven by both

spatial and temporal dimensions [7], [8], and the growth of

network scales and requests, may lead to service failure and

significant energy waste in maintaining unnecessary servers.

To harness the immense potential brought by Open RAN and

MEC, an effective baseband function deployment strategy is

required to integrate distributed DUs, CUs and UPFs into

suitable MECs.

Numerous research has been dedicated to develop baseband

function management strategies to handle server activation

status and resource allocation with minimize power consump-

tion. The baseband function management algorithms have

been developed for different RAN architectures, including C-

RAN [9]–[12] and Open RAN [13]–[18]. These algorithms

can be further classified based on the employed techniques

into optimization-based [9], [10], [13], heuristic-based [15],

[16], [18], [19] or DRL-based strategy [11], [13], [15], [17]

respectively.

In the context of centralized-RAN (C-RAN), Tinini et al.

pointed out that the baseband function deployment manage-

ment is a multi-dimensional bin-packing problem in essence

and utilized MILP to study the most power-efficient BBU

placement to accommodate network node demands [9]. Simi-

larly, Mijumbi et al. formulated a multi-objective optimization

problem that considers practical constraints, such as latency

and server capacity [10]. However, the intractable complexity

of MILP prohibited practical deployments. As an alternative,

Gao et al. proposed a DRL-based solution with offline execu-

tions that reduces reasoning delay, and minimizes bandwidth

usage, transport latency, and the number of activated MECs

hosting BBU functions [13]. Despite approaching the perfor-

mance of MILP in a small-scale network, the action space

of their solution expands exponentially with the growth of

network size, leading to prohibitive complexity and training

costs in large-scale networks. In contrast, to maintain scalabil-

ity while reducing the number of required BBUs, Sigwele et al.

proposed simulated annealing and genetic algorithms under the

constraints of service coverage and quality of service (QoS)

[12]. Although this research has highly reduced the power

cost in C-RANs, heterogeneous requests and more complex

components in Open RAN exacerbate the complexity of the

multi-dimensional bin packing problem, necessitating other

strategies to manage DU, CU and UPF deployment.

Given the evolving complexities in Open RAN, Xiao et

al. designed a DRL-based baseband function placement and
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routing strategy, by modifying the DRL action from BBU se-

lection to DU and CU placement [14]. However, this approach

does not address the issue of action space explosion, and each

inference step can only handle a single request, thereby not

addressing resource competition between requests. In contrast,

Zorello et al. and Xiao et al. proposed MILPs and heuristics,

which can determine the service function chains (SFCs) for

all requests while minimizing network power consumption

under latency and network resource constraints [15], [16].

Nevertheless, those studies ignored the activation time of

the hibernating servers, therefore, focused on peak power

rather than the actual energy consumption when evaluating

the algorithm performance. Additionally, few researchers have

taken UPF into account alongside DU and CU as part of the

baseband function chain [13], [14], [20], whereas UPFs on

MEC servers play a critical role in enabling users to access

data networks for uRLLC services [21], [22].

In summary, there are three crucial concerns that need to

be addressed when designing effective policies for managing

baseband functions. Firstly, previous algorithms for baseband

function placement did not consider the inclusion of UPF

alongside DU and CU. With edge computing, computational

resources can be allocated closer to the user end, allowing

for UPF placement on MEC to provide low-latency services.

Secondly, current studies have failed to consider activation

time which has resulted in inaccurate results and offsetting

gains from hibernating servers. Lastly, it remains unclear how

DRL-based solutions will handle the possible action space

explosion in large networks. To overcome these obstacles, the

main contributions of this paper are summarized below:

• We develop a robust multi-agent DRL-based algorithm,

by incorporating resource limitations for DU, CU and

UPF placement, multi-latency limitations from both fron-

thaul and end-to-end perspectives, as well as the activa-

tion time of servers on MECs.

• To address the action space explosion, we employ a

multi-agent approach, assigning MECs on the network to

multiple DRL agents for server activation strategy, further

integrated with the application of heuristic to perform

function placement and routing provisioning.

• Based on OpenDaylight [23], OpenStack [24] and Open

Source Management and orchestration (OSM) [25], a pro-

grammable Open RAN testbed is developed to validate

the importance of activation energy costs and the feasi-

bility of our proposed algorithm in practical networks.

To the authors’ knowledge, this is the first time that multiple

UPFs and the energy consumption of MEC activation have

been taken into account in baseband function placement, with

feasibility verification conducted on an Open RAN testbed.

The proposed algorithm is evaluated through simulations on

8-MEC and 14-MEC RAN networks. All on standby mode

(ASM), which keeps servers awake, exhibits the highest en-

ergy consumption after 100s and 120s of idle time in both

RAN networks. The results confirm the benefits of putting

servers into hibernation and underscore the importance of

designing effective baseband function deployment strategies.

Moreover, in the 8-MEC RAN with 150s of network vacancy,

the developed multi-agent DRL-based solution approaches

the optimal MILP result, attaining remarkable energy savings

exceeding 12%, 33%, 51%, and 71% when compared to power

minimized deployment (PMD) [15], random allocation, greedy

heuristic procedure (GHP) [26], and ASM, respectively. This

performance remains consistent even in larger networks and

maintains an 8% and 38% energy-saving advantage compared

to PMD and GHP, respectively. In the end, the validity of

the simulation outcomes and algorithm feasibility are verified

through a series of measurements on MEC activation energy

costs at three different hibernation levels, transmission delay

between MECs, and MEC load power consumption.

The remainder of this paper is organized as follows. Section

II introduces the concept of baseband function deployments in

NG RAN. Section III and IV detail a MILP formulation and a

multi-agent DRL-based algorithm. The simulation results are

given in Section V. Section VI details the implementation of

our testbed at Bristol and reports the feasibility evaluation.

Finally, Section VII concludes the paper.

II. BASEBAND FUNCTION DEPLOYMENT SCENARIO IN

OPEN RAN

In 4G networks, C-RAN architecture achieves significant

advantages in improved resource utilization, energy efficiency,

and network management by centralizing baseband processing

into BBU. This centralized solution allows for better coordina-

tion among cells, dynamic allocation of resources, and reduced

operational and capital expenditures due to consolidating

equipment and infrastructure [27], [28]. However, the advent

of 5G networks, characterized by increased speed, reduced

latency, and extensive device connectivity requirements, poses

challenges for the C-RAN architecture. One such challenge is

the potential latency issues that may arise due to the distance

between the BBU and the remote radio unit. Moreover, while

the centralized approach benefits resource sharing, it lacks the

agility to address the diverse demands of 5G networks, in

which use cases such as eMBB, mMTC, and uRLLC coexist.

Additionally, the absence of open interfaces in traditional C-

RAN architecture might restrict network deployment flexibility

and hinders vendor interoperability [29], [30].

In response, capitalizing on emerging edge computing and

network function virtualization technologies, 3GPP and other

standardization bodies proposed a novel concept, Open RAN,

which includes DU, CU, and UPF that can be virtualized

and tailored in distributed MEC servers to cater to heteroge-

neous requests [31]. Additionally, predefined open interfaces

enable communication and collaboration between devices and

systems from different manufacturers and operators, further

enhancing service flexibility [29]. The inherent modularity and

open interface of Open RAN allow for rapid adaptation to

dynamic 5G network demands and also facilitate seamless

integration with a range of devices and technologies, providing

operators with a streamlined transition from existing network

frameworks [32]. Moreover, Open RAN empowers network

operators with centralized and synchronized resource manage-

ment capabilities, thereby reducing operation and management

costs and improving service quality.
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Fig. 1. Baseband function deployment scenario in Open RAN

A possible baseband function deployment scenario in Open

RAN is shown in Figure 1. The DU demands significant

resources to satisfy precise timing synchronization as specified

in the Open RAN S-plane by IEEE 1588, as well as processing

objectives such as the low-density parity check decoding de-

fined in 3GPP 5G New Radio [33]. Consequently, many MEC

servers may lack spare computing resources to host CU and

UPF services influenced by deployment scenarios and can only

cater to DU functions. Considering the computing resource

differences, MECs are classified into three categories where

MEC1 only provides DU service, MEC2 offers DU, CU, and

UPF services, and MEC3 possesses the same functionalities

as MEC2 but with more computing resources.

Within Open RAN, requests from several RUs in a cell

will be grouped and then served by SFCs comprising DU,

CU, and UPF to access corresponding Date Network (DN)

services. DUs, CUs, and UPFs from different cells can be

placed on separate or identical MECs. The requests without

latency constraints will directly go to the data center. While

considering three issues in previous studies, this baseband

function placement process presents twofold challenges. The

first challenge lies in allocating diverse baseband functions to

different server types, ensuring service availability for multiple

requests in dynamic networks while respecting computational,

bandwidth, and latency constraints. The second challenge

involves strategically activating the most suitable servers and

locating baseband functions to minimize server energy con-

sumption and maximize server resource utilization.

The following sections introduce a MILP-based solution

and a multi-agent DRL-based algorithm to address these

challenges by optimizing MEC activation, baseband function

deployment, and routing provisioning for numerous requests.

III. MILP FORMULATION FOR BASEBAND FUNCTION

DEPLOYMENTS

Based on the application scenario of baseband function

deployment, a MILP-based solution is formulated to jointly

optimize the MEC activation, DU/CU/UPF deployment and

routing provisioning. The MILP-based solution provides an

TABLE I
NOTATIONS USED THROUGHOUT THE PAPER.

Notation Description

Index u Activated MEC server
s and d Source and destination of a set of requests
i and j Origination and termination of a virtual link
m and n Endpoints of a physical link
f Network function

Given c
f
s Computing requirement for f from s
N MEC set
E Link set
G = (N,E) Network graph representation
Bw Bandwidth of physical link
Eu Activation energy of u
Ew Unified switching energy cost

G
f
u Baseband function f capacity of u

T s Data size of traffic from s
Mu Traffic capacity of MEC u
dmn Distance between m and n
lsq Acceptable fronthaul distance of s

lsp Acceptable end-to-end distance of s

χ An arbitrarily large number
ǫ An arbitrarily small number
ρk(f, g) Function ordering indicator. It is 1 (resp. -1)

if f appears before (resp. after) g

Variable βu Equals 1 if u is activated
vuij Virtual link arriving in u

Λsd Possible traffic flow from s to d
Vij Total aggregated traffic from i to j
lij Total distance of an established virtual link

from i to j

λsd
ij The component of s-d node pair traffic of-

fered from i to j

Bsd
ij Equals 1 if λsd

ij > 0; Equals to 0 if λsd
ij = 0

P
ij
mn The traffic that a virtual link from i to j

passes through in link m-n (integer)

A
ij
mn Equals to 1 if P

ij
mn > 0; Equals 0 if P

ij
mn =

0
ysd
fu

Equals 1 if function f handles traffic sd on
node u

Y sd
fu

Equals 1 if sd meets its assigned f either
before or on node u

Ssd Number of nodes switching when traffic
goes from s to d

bsd Equals 1 if there is traffic from s to d

optimal solution and acts as a benchmark for the DRL-based

solution. It is resolved using IBM ILOG CPLEX solver. Im-

portant notations used throughout this paper are summarized

in Table I.

A. MILP formulation

This formulation aims to minimize the energy consumption

in the network while satisfying all traffic requirements and

resource limitations. Each optimization process handles multi-

ple sets of requests from various MECs on the network, and

each set of requests from an MEC is composed of individual

requests received from RU with the same latency requirement.

DU, CU and UPF are constrained by the computing resources

in units of cores. Consistent with [15], [16], the energy

consumption of each server is assumed to increase linearly

according to the size and amounts of the requests. The energy

consumption over the network is therefore simplified to be

determined by the activated MECs, function deployments, and

routing paths, and the objective function for energy consump-



tion after making these decisions can be written as:

min
∑

u,s,d

(βuEu + SsdEw) (1)

In this equation, Eu and βu represent the activation energy

cost of MEC u and its activation decision. In addition, Ssd

is the switching times of requests sd and Eu is the unified

switching energy cost. Overall, the objective function can be

interpreted as achieving optimal energy cost through two joint

policies of placement and routing to minimize the number of

activating MEC1/2/3s and switching times.

The objective function is subject to constraints related to

traffic demand, resource limitations, and latency requirements.

Beginning with routing constraints for the virtual layer, Equa-

tion 2 and 3 represent the flow conservation constraints to

handle traffic T s oriented from node s, where λsd
ij stands for

the traffic from the sd pair on link ij and Λsd denotes possible

traffic flow from s to d.

∑

j

λsd
ij −

∑

j

λsd
ji =







Λsd i = s
−Λsd i = d
0 i 6= s, d

(2)

∑

d

Λsd = T s ∀s (3)

Equations 4 and 5 impose total flow constraints on a virtual

link in which Vij demonstrates the traffic on link ij from all

sd pairs.

λsd
ij ≤ Λsd ∀s, d, i, j (4)

∑

sd

λsd
ij = Vij ∀ij (5)

The indicator Bsd
ij for virtual links with traffic sd can be

acquired by

Bsd
ij = ⌈

λsd
ij

χ
⌉ ∀s, d, i, j (6)

where χ is an arbitrarily large number. Bsd
ij equals 1 when

λsd
ij > 0, and Bsd

ij equals 0 when λsd
ij = 0. Equations 7 and

8 illustrate the virtual links arriving at a destination node d
from any node s, accounting for their quantity. vuij denotes

the virtual link arriving in u.

∑

s

Bsd
ij = vuij ∀s 6= u (7)

∑

ij

vuij ≤ Mu ∀u; (8)

Moving on to the physical layer routing constraints, Equa-

tion 9, similar to Equation 2, expresses the flow conservation

constraint of physical layer routing, wherein P ij
nm represents

the traffic that a virtual link from i to j passes through in link

m-n.

∑

n

P ij
mn −

∑

n

P ij
nm =







Vij m = i
−Vij m = j
0 m 6= i, j

∀i, j,m (9)

Equation 10 limits the bandwidth used not to exceed the

capacity Bw of physical links.
∑

ij

P ij
mn ≤ Bw ∀mn (10)

Equation 11 indicates the physical link mn passing through

the virtual link ij and Equation 12 prevents traffic from being

partitioned. Aij
mn equals to 1 when P ij

mn > 0, and it equals 0

when P ij
mn = 0.

Aij
mn = ⌈

P ij
mn

χ
⌉ ∀i, j,m, n (11)

Aij
mn +Aij

ml ≤ 1 ∀i, j,m n 6= l (12)

Concerning latency requirements, the fronthaul and end-to-

end latency constraints can be written as follows

∑

mn

Aij
mndmn = lij ∀i, j (13)

∑

ij

Bsd
ij lij ≤ lsq ∀j = u, DU ∈ u (14)

∑

ij

Bsd
ij lij ≤ lsp ∀s, d = u, UPF ∈ u (15)

where lij denotes the total distance of an established virtual

link from i to j, and lsq , lsp represent the acceptable fronthaul

and end-to-end distance of s, respectively. In addition, the

carrying capability limitations of DU, CU and UPF are listed

as
∑

s

cfsy
sd
fu ≤ Gf

u ∀u, f = DU/CU (16)

∑

s

cfs b
sd ≤ Gf

d , f = UPF (17)

bsd equals 1 if there is traffic from s to d, ysdfu equals 1 if

function f handles traffic sd on node u and Gf
u denotes the

baseband function f capacity of u. Among them, bsd can be

calculated by

bsd = ⌈
Λsd

χ
⌉ ∀s, d (18)

Equation 19 counts the number of virtual links of the sd pair

and finds the number of switches that occurred from the s to

d of this pair.
∑

ij

Bsd
ij − 1 = Ssd ∀s, d (19)

Regarding activation constraints, Equations 20, 21, and 22

affirm that all baseband functions find accommodation upon

reaching the destination. Y sd
fu equals 1 if sd meets its assigned

f either before or on node u; otherwise, it equals 0.

Y sd
fs = 0 ∀s, d, f (20)

Y sd
fd = 1 ∀s, d, f (21)

(Bsd
ij − 1) + Y sd

fj − Y sd
f,i ≤ ysdfj ∀s, d, i, j, f (22)

However, a notable limitation of these equations is their

inability to assign functions to the originating node, which



contradicts our requirements. In response, this formulation

adopts auxiliary nodes connecting to every node as a virtual

concept. It only helps the algorithm to calculate and place

baseband functions on original nodes and will not be placed in

real networks. A negligible latency from each auxiliary node to

its adjacent original node and a huge energy cost is configured

in the optimization process, allowing the auxiliary node to

activate the original one and preventing itself from being

activated. Equation 23 accounts for the order of the baseband

functions within the same chain. If a function g appears before

f on the same SFC, then ρk(f, g) = −ρk(g, f) = −1.

Y sd
fj − Y sd

gi ≥ ρk(f, g) ∀s, d, i, j, f ; (23)

Equation 24 βu is determined by ysdfu, which performs as

indicator and equals 1 if function f handles traffic sd on node

u.

ysdfu = βu ∀s, d, u, f (24)

In summary, the constraints outlined in this section effec-

tively address the traffic requirements, resource limitations,

and latency requirements, encompassing a range of critical

factors such as flow conservation, routing, latency, resource

allocation, and activation.

B. Complexity Analysis of the MILP

Regarding the complexity of the problem, the DU/CU/UPF

placement and routing are demonstrated to be a non-

deterministic polynomial-time hardness (NP-hard) problem

through a reduction from the bin-packing problem, as estab-

lished by Xiao et al. in [15]. They proved this property for

optimizing DU/CU deployment with bandwidth, latency and

computing resource constraints. In this paper, the problem

is further complicated by the introduction of multiple UPFs,

traffic decrease on the SFC and some other hard limitations.

Because of the transitivity of NP-Hardness, P in our paper

is also NP-hard. In addition, Equations 14 and 15 contain

products of variables, introducing non-linearity into the prob-

lem and making the network more complex. To linearize

the problem, referring to [34], we replace the product of

two variables with a single new variable, subject to specific

constraints. For instance, considering Bsd
ij as a binary variable

and lij as a continuous variable bounded by 0 ≤ lij ≤ χ, a

continuous variable z is introduced to represent the product,

i.e., z = Bsd
ij lij . However, merely introducing z is insufficient

and additional constraints 25, 26, 27 and 28 are also added to

ensure that z captures the value of Bsd
ij lij .

z ≤ χBsd
ij (25)

z ≤ lij (26)

z ≥ lij − χ(1−Bsd
ij ) (27)

z ≥ 0 (28)

Given the constraints imposed by Equations 4, 5, 11, 12,

among others, the time complexity of the MILP is O(N4).
However, due to the NP-hard nature of the problem, its

computational complexity may be significantly higher than this

figure and the actual solving time may be influenced by the

solving policies of the CPLEX solver.

IV. MULTI-AGENT DRL-BASED BASEBAND FUNCTION

DEPLOYMENTS

While MILP can achieve optimal results for baseband func-

tion deployment in Open RAN, it has significant drawbacks.

The inherent complexity of MILP leads to extensive compu-

tation times, making it unsuitable for real-time applications.

Additionally, its deterministic nature lacks the flexibility to

adapt to dynamic and uncertain network environments. Further-

more, flow conservation constraints in this formulation are not

capable of accommodating applications that involve decreasing

traffic along SFCs. In response, a multi-agent DRL algorithm

is developed to provide a baseband function deployment solu-

tion for real-time network management with dynamic traffic

patterns. Unlike traditional clustering, classification, or regres-

sion models, the problem necessitates real-time feedback from

the environment upon each action. This distinct requirement

underscores the aptness of the agent-environment interaction

paradigm inherent in DRL. Moreover, in comparison to other

learning algorithms such as evolutionary and degrading meth-

ods, DRL capitalizes on experience replay, enabling agents to

leverage past experiences for improved learning stability.

In order to tackle the complexity of the SFC deployment

problem and reduce the action space of intelligent agents,

a novel two-step strategy is devised, which synergistically

combines a DRL algorithm and a restricted function deploy-

ment heuristic (RFDH). As shown in Figure 2, DRL agents

collaborate, each making decisions on activating MECs while

being aware of the choices of others, aiming to select the server

combination with the lowest energy consumption for baseband

placement. Distinctive from the common multi-agent DRL

solutions, the collective decisions of all agents are then fed as

inputs to a heuristic algorithm, RFDH, for further computation

and bandwidth resource management. Leveraging the local

optimization capabilities of heuristics and the adaptive learn-

ing capacity of DRL in dynamic environments, this strategy

ensures superior optimization performance while maintaining

adaptability to dynamic network environments. The following

subsections introduce the multi-agent DRL-based algorithm

and the RFDH algorithm.

A. Multi-agent deep deterministic policy gradient based MEC

activation strategy

Building upon our innovative two-step strategy, we first

model the network responses of function management to

Agent

Environment

State S: Action A :

Reward R

New activated MECs

Pre-activated MECs

Deep reinforcement learning (DRL)

Restricted function

 deployment heuristic(RFDH)
(Request information

Pre-activated MECs)

Routing path selection

Request information

DU/CU/UPF deployment

(Activated MECs)

Fig. 2. Overall DRL-based solution of baseband function deployment (DRL:
MEC activation strategy; RFDH: DU, CU, UPF deployment and routing
strategy).



Algorithm 1 Multi-agent Deep Deterministic Policy Gradient

(MADDPG) Algorithm

1: Initialize replay memory B
2: Initialize the actor, target actor, critic and target critic with

parameter θ1∼L, θ
∗

1∼L, ω1∼L, ω
∗

1∼L

3: for n in batch do
4: Initialise the network resource state
5: Get state sn,1∼L

6: Estimate an,1∼L by π(sn,1∼L; θn,1∼L)
7: Execute an,1∼L, get reward rn,1∼L by RFDH and next state

sn+1

8: Store (sn,1∼L, an,1∼L, rn,1∼L, sn+1,1∼L) in B
9: Get minibatch from B

10: for m in minibatch do
11: Estimate am+1,1∼L by π(sm+1; θ

∗

m,1∼L)
12: Estimate Q(sm,1∼L, am,1∼L | ω1∼L)
13: Estimate Q(sm+1,1∼L, am+1,1∼L | ω∗

1∼L)
14: Use common reward for critics, rt = rt,1∼L

15: Perform gradient descent for critic based on TD algo-
rithm

16: Get dω,θ,t =
∂Q(sm,π(sm;θ);ω)

∂θ
|θ=θm,1∼L,ω=ωm,1∼L

17: Perform gradient ascent for actor based on policy gradient
algorithm:
θm+1,1∼L = θm,1∼L + µdθm,1∼L,ωm,1∼L

18: Update target network parameter based on
θ∗1∼L = τ ∗ θ1∼L + (1− τ ) ∗ θ∗1∼L

ω∗

1∼L = τ ∗ ω1∼L + (1− τ ) ∗ ω∗

1∼L

19: end for
20: end for

requests as a Markov Decision Process (MDP) [35]. In the

defined MDP, the discounted reward Rt for a batch of tasks

Y can be given as:

Rt =

Y
∑

y=0

γyrt+y (29)

Here, γ is the discount factor representing the importance

of subsequent processing task rewards in Y and indirectly

expresses the degree of correlation between each step. y is a

natural number, and rt+y is the reward of a specific task, t+y.

Based on Equation 29, the action value function is defined to

evaluate action at through the discounted return at state st:

Qπ (st, at) = E [Rt | st, at] (30)

π represents the policy function and corresponds to the prob-

ability density function of the action. Furthermore, another

essential component, the state value function, is defined to

illustrate the expected discounted return for selecting state st:

Vπ (st) = Ea∼π [Qπ (st, a)] (31)

Vπ is employed to assess the quality of the policy function π.

This paper employs the Multi-agent Deep Deterministic

Policy Gradient (MADDPG) to solve the proposed MDP.

MADDPG is a promising DRL algorithm that utilizes pol-

icy gradient to estimate the maximum state value Vπ(st)
[36]. Given that the state value function is equivalent to the

expectation value of Qπ, as depicted in Equation 31, the

fundamental principle of MADDPG involves employing two

neural networks to approximate the policy function π (a | st)
and the action-value function Qπ (st, a) to acquire Vπ(st).
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Fig. 3. Example of MADDPG-based solution for baseband function
deployment in a 14-MEC Network.

The interaction between policy and action-value functions

is enabled by the actor-critic architecture [37]. Within this

structure, the actor neural network employs the policy gradient

algorithm to optimize the policy function, while the critic

network utilizes the Temporal Difference (TD) algorithm [38]

to estimate the corresponding action-value function.

To diminish the action space in the proposed resolution, all

servers are split into L groups, with each group corresponding

to a DRL agent. The State components of each actor and critic

consist of the pre-activation status of N servers and the param-

eters of each request, including fronthaul delay lsq , end-to-end

delay lsp, initial data size Ts, and UPF resource requirement

cs. Based on the state information, the continuous Action of

each agent is discretized, which allows for determining the

activation status of MECs within their designated groups. It is

worth noting that the fully cooperative (FC) scheme is adopted

for model training, wherein L critics share a common reward

to optimize the cooperation between agents and minimize

the activation energy consumption across the entire network.

The reward and RFDH will be discussed in the following

subsection. Overall, the MADDPG algorithm is demonstrated

in the Algorithm 1. τ in the policy gradient algorithm is the

coefficient to update the target network parameter. µ denotes

the learning rate of DRL. θ, θ∗, ω and ω∗ are parameters of

actor, target actor, critic, and target critic, respectively.

The complexity of the DRL-based algorithm is analyzed as

follows. Considering a N node network, the action space of

each actor l is 2Ml , and the state space size is 5 ∗ N . Ml is

the number of MECs in the group L and
∑L

l Ml = N . Based

on the actor-critic architecture, we can acquire that the state

space size of each critic is L ∗ 2Ml + 5 ∗ N . In each critic,

the output with shape 1 ∗ 1 is used as the criterion of the

policy gradient algorithm for the corresponding actor. Taking

a 14-node network shown in Figure 3 as an example, we can

assign nodes 1, 2, 9, 10, 11 to actor agent I, nodes 4, 5, 6,

7, 13 to actor agent II and the rest to actor agent III. The

action and state space of the three actors are 32, 32, 16 and

70, 70, 70, respectively. Since the entire network information

and actions done by three actors are input to three critics as

state information, the state space of each critic is 150. With

the increase in network size N , to realize the scalability, the

DRL-based algorithm can maintain an acceptable action space



size 2Ml with a larger number of agent L.

B. Restricted function deployment heuristic (RFDH)

Restricted by the DRL actions (MEC activation status) in

each DRL step, as shown in Algorithm 2, we propose a

heuristic RFDH to firstly determine the baseband function

deployment and routing paths and secondly calculate the

corresponding reward and feed it back to the DRL agent.

RFDH compiles all activated MECs into a set K. It is

important to note that MECs not belonging to the set K are

prohibited from being activated. Within the heuristic, UPF,

DU, and CU are deployed on the K in sequence, adhering

to latency and network capacity constraints. When distributing

UPF and DU, RFDH sorts the accessible MECs in descending

order based on the number of requests they can serve. This

approach aims to satisfy the most requests with the least

resources. In addition, it sorts the deployment decision priority

of the requests in ascending order according to their selection

space size to accommodate more requests within the network.

For instance, in a network where nodes A and B are pre-

activated and requests from nodes C, D, and E seek UPF

service. Assuming all these requests can access node A, while

only requests from nodes D and E can access node B, traffic

originating from node C will be accorded a greater priority

for servicing by node A, given that it possesses a singular

option. This ensures that limited resources will not be wasted

by inappropriate resource allocations.

Regarding the path provisioning process, the Depth-First

Search (DFS) algorithm [39] is adopted to traverse all available

paths, subject to the end-to-end delay lsp. Within the optional

routing space and subject to bandwidth limitation, routing path

provisioning prioritizes fewer hops to reduce switching energy

consumption. On the planned path, CU is prioritized to be

placed on servers that are already activated and have sufficient

resources.

Based on baseband function deployment decisions from

DRL and RFDH, RFDH then calculates the corresponding

reward for training purposes. The Reward is assigned a value

of -1, acting as a penalty, should any remaining requests

have not been serviced. Otherwise, it equals w2/w1, where

w1 is the energy consumption determined by the DRL-based

algorithm for routing and activating MECs, and w2 is the

energy cost when all the servers are activated. This reward

design is consistent with the objective function in Equation 1,

providing higher rewards for actions that use less energy, thus

minimizing energy consumption while satisfying all requests

over the network.

The complexity of the RFDH is calculated as follows. Under

the assumption of m activated MEC1s and J activated MEC2s

and MEC3s, the complexity of distributing UPF services from

activated MECs in K is O(NJ + JlogJ + NlogN − J2),
where Merge Sort [40] is used as the sorting algorithm. Based

on the distributed MECs, we applied the DFT to find all the

qualified paths with the time complexity of O(N2 + NJ).
After that, the complexity of utilizing (J+m) activated MECs

for DU and CU service can be represented by O(N + (N −
J − m)S1logS1 + (N − J − m)(J + m)S1), where S1 is

Algorithm 2 Restricted Function Deployment Heuristic (RFDH)

1: Store new activated and pre-activated MECs into list K
2: Deploy UPFs on MECs in K based on latency and network

capacity constraints
3: Calculate and store traffic demands and accessible MECs in

dictionary S0

4: Sort MEC2/3 in K in descending order based on the number of
requests they can serve

5: Sort requests in Values in S0 in ascending order based on the
number of MECs they can access

6: for MEC2/3 u in K, Sorted traffic s in S0[u] do
7: Deploy UPF on u for s if resources are sufficient, otherwise

set DRL reward = -1
8: end for
9: Find feasible paths from origins to destinations based on lsq , store

into dictionary D0

10: Deploy DUs and CUs on activated MECs in K for demands s
11: Calculate and store traffic demands and acceptable MECs and

paths in dictionary S1

12: for rest traffic s in Key list of S1 without DU do
13: Sort paths in S1[s] based on the number of hops
14: for all activated MEC1/2/3 u in K do
15: for paths in S1[s] do
16: Deploy DU on u for s if resources and bandwidth

constraints are met
17: Store the used paths into dictionary D1

18: end for
19: end for
20: end for
21: Deploy CUs on activated MECs in selected paths from D1

22: if left no requests without CU then
23: DRL reward rt = w2/w1, otherwise rt = −1
24: end if

the average length of Values in dictionary S1 in Algorithm

2. Overall, the time complexity of RFDH can be written as

O(NJ −J2+JlogJ+NlogN+N +(N−J−m)S1logS1+
(N − J −m)(J +m)S1).

In summary, multi-agent DRL and RFDH integration offers

a compelling approach for managing network resources and

services, especially in large-scale and dynamic Open RAN en-

vironments. This technique renders the algorithm remarkably

robust and resilient to changes in the network environment,

showcasing its versatility and applicability in contemporary

5G systems.

V. SIMULATION RESULTS

In this section, the setup information of Open RAN com-

ponents and DRL-based algorithms is provided. Restricted by

the scalability of MILP, the energy-saving performance of the

several function deployment algorithms is first compared in

a small network consisting of 8 MECs. Subsequently, their

performance is explored in a larger network with 14 nodes

and 29 links. The time and space complexity are calculated to

demonstrate the training cost of DRL-based algorithms.

A. Simulation Setup

The simulated MEC networks with 8 and 14 servers are

shown in Figures 4(a) and 4(b). All MECs are provisioned

with DU and CU capacities set at 50 cores. Specifically, MEC2

is equipped with UPF resources of 32 cores, while MEC3
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Fig. 4. Simulation networks.

boasts 50 cores for UPF. Each link has a bandwidth of 50

Gbit/s. The operation power consumption for MEC1, MEC2,

and MEC3 are 100W, 170W, and 200W, respectively. The

corresponding activation power and time costs are 500W and

20s for MEC1 (i.e. Eu = 10kJ), 600W and 25s for MEC2 (i.e.

Eu = 15kJ) and 700W and 30s for MEC3 (i.e. Eu = 21kJ).

The switching energy consumption is uniformly set to 0.5

kJ. These parameters refer to the resource information and

the server activation energy consumption detailed in the next

section. For each set of requests from a MEC server, the

data size, DU, and UPF resource requirements are randomly

distributed between 8 Gbit/s to 12 Gbit/s, 8 cores to 12 cores,

and 3 cores to 5 cores, respectively. Following the xhaul

latency requirement proposed by IEEE standards association

[15], [41], the fronthaul delay ranges from 11 km to 21 km,

while the end-to-end delay is set between 28 km and 43 km.

The computing requirement decreasing ratio along the function

chain is configured as 0.2.

B. 8-MEC network

To demonstrate the effectiveness of our designed algorithms,

we first present the location of activated MECs, provisioned

functions, and routing paths for traffic set F in Figure 5(a)

and 5(b). The 8 requests in F consist of fronthaul delay [14,

20, 17, 19, 19, 17, 17, 17] in km, end-to-end delay [28, 38,

40, 29, 41, 32, 34, 42] in km, data size [11, 9, 10, 9, 9, 8, 10,

11] in Gbit/s, and computing resource requirements for DU

and UPF [11, 9, 10, 9, 9, 8, 10, 11] and [5, 5, 5, 5, 4, 3, 5,

4] in cores. Activated MECs and routing paths are marked by

green circles and red arrows.

Moreover, the energy usage for deploying baseband func-

tions for traffic F with different management strategies is

analyzed as the network idle time increases. This can be

observed in Figure 6(a). Blue, orange, purple, red, and green

lines represent the requests for ASM, GHP [26], random

allocation (RA), PMD [15], MILP and DRL, respectively.

Among these, ASM keeps all MECs awake without activation

cost, regardless of the request status. GHP is a priority-based

policy proposed in [26], which selects servers with sufficient

remaining resources in a greedy manner, RA randomly selects

resources, ensuring all requests are fulfilled and PMD is a

power-efficient heuristic that emphasizes deploying baseband

functions on pre-activated servers to reduce activation cost.

[15]. Initially, ASM was the most energy-efficient solution.

However, it becomes the least efficient when the idle time

exceeds 100s. This observation validates the energy-saving

benefits of hibernating MECs during extended idle periods.

The results of MILP are considered a benchmark due to

its characteristics. Among the remaining strategies, the DRL-

based strategy exhibits outstanding energy-saving performance.

To obtain a generalized performance comparison, in Figure

6(b), we summarize the energy consumption of these solutions

for 50 random requests with different latency and computing

requirement settings, observed during a 150s network idle

period. The DRL-based solution can save more than 12%,

33%, 51%, and 71% energy compared to PMD, RA, GHP,

and ASM, respectively. It is worth noting that although RA

achieves better performance than GHP, its results are obtained

under the assumption of satisfying all requests, which cannot

be guaranteed in practical applications.

Figure 7 displays the running time of our proposed solu-

tions for different traffic requirements using a 3.2GHz 6-core

8th-generation Intel Core i7 machine. In the case of full traffic,

MILP takes 544s to obtain the optimal result, thereby violating

the real-time response requirements in 5G services. In contrast,

the DRL-based strategy exhibits a reasoning time of less than

1 second, highlighting its significance in practical applications.

C. 14-MEC network

To further explore the performance of the DRL-based so-

lution in a larger network, we assume Node 2 and Node 9

are pre-activated and simulate the locations of all provisioned

functions and routing paths for another traffic set T with 14

requests in network 4(b). Traffic set T consists of fronthaul

delay [14, 20, 17, 19, 19, 17, 17, 17, 13, 15, 20, 18, 16, 11]

united in km, end-to-end delay [28, 38, 40, 29, 41, 32, 34, 42,

37, 29, 28, 31, 28, 31] united in km, data size [11, 9, 8, 9, 9,

8, 10, 11, 10, 9, 8, 10, 9, 9] united in Gbits/s and computing

resource requirements for DU and UPF [11, 9, 8, 9, 9, 8, 10,

11, 10, 9, 8, 10, 9, 9] and [3, 4, 5, 5, 3, 3, 5, 5, 3, 3, 3, 3,

5, 3] united in cores. These results are illustrated in Figure

3

DU/CU/UPF

1

2 5

6

4

8

7

DU/CU/UPF

(a) MILP for F in 8-MEC network

3

DU/CU/UPF

1

2 5

6

4

8

7

DU

DU/CU/UPF

(b) DRL for F in 8-MEC network

1

6

13

5

3

12

2

7

4

9

11

1410

8

DU/CU/UPF

DU/CU/UPF

DU

DU

DU/CU/UPF

DU/CU/UPF

DU

DU

DU/CU/UPF

(c) DRL for T in 14-MEC network

Fig. 5. Baseband function placement and path provisioning of MILP and
MADDPG for traffic F and T in two networks.



0 25 50 75 100 125 150 175 200

time (s, full traffic)

0

25

50

75

100

125

150

175

200
E
n

e
r
g

y
 (

k
J)

All Standby

First Fit

DCUH

DRL

MILP

Random

(a) Traffic F in the 8-MEC network

ASM FF RA DRL DCUH MILP

Management Solutions

0

20

�0

�0

�0

100

120

1�0

1�0

E
n

e
r
g

y
 (

k
J)

(b) 50 random requests with 150s of
network vacancy in the 8-MEC net-
work.

0 25 50 75 100 125 150 175 200

time (s, full traffic)

0

100

200

�00

�00

E
n

e
r
g

y
 (

k
J)

All Standby

First Fit

DRL

DCUH

Random

(c) Traffic T in the 14-MEC network

ASM FF RA DRL DCUH

Management Solutions

0

50

100

150

200

250

�00

E
n

e
r
g

y
 (

k
J)

(d) 50 random requests with 150s of
network vacancy in the 14-MEC net-
work.

Fig. 6. Energy consumption comparison between different joint baseband function deployment algorithms in two networks.

Fig. 7. Running time comparison in the 8-MEC network.

Fig. 8. The convergence property of DRL algorithms in two networks.

5(c), where standby and newly activated MECs are marked by

blue and green circles, respectively. The red arrows indicate

the selected routing paths.

Similar to the 8-MEC network, we also compare the energy

consumption of T under various management policies as

network idle time increases, as demonstrated in Figure 6(c).

Due to the maintenance costs of pre-activated nodes, the

energy costs of all strategies rise as idle time increases. In

contrast, the energy costs of GHP, PMD and DRL would

remain constant, as observed in Figure 6(a).

Figure 6(d) showcases the energy cost of 50 groups of

random requests, each with different parameter configurations,

observed over a 150s network idle period. The DRL-based

solution maintains its advantage over other strategies and

effectively addresses energy consumption challenges in larger

networks. However, it is important to note that as the network

size grows, the relative benefits obtained by DRL gradually

diminish. This trend might be attributed to the escalating

complexity of inter-agent cooperation with the growth in agent

count, which in turn potentially compromises the precision of

the algorithm’s fitting performance. To address the challenges

of larger network scales, a possible solution is to segment these

networks into smaller sub-networks or clusters based on the

geographical distribution of MECs. By independently applying

the DRL algorithm to each segmented cluster, this solution

can both simplify network management and compensate for

the limitation of DRL in managing expansive networks.

D. DRL training cost

In this subsection, we analyze the time complexity, space

complexity, and execution cost of MADDPG in different

network scenarios. Referring to [42], the time complexity

of reinforcement learning is sub-linear in the length of the

state period and can be represented as O(training steps).

To illustrate this, we present the convergence properties of

MADDPG in Figure 8. The yellow and blue lines represent

the convergence performance in the 8-MEC network with 2

agents and the 14-MEC network with 3 agents, respectively.

The faster convergence speed and improved reward of DRL

in the smaller network can be partially attributed to its fewer

agents and reduced network complexity in terms of state and

action spaces.

In the smaller network, two agents share the responsibility

of activation management, with each handling 4 nodes. On

the other hand, in the larger network, three agents divide

the responsibility, with each managing 5, 5, and 4 nodes,

respectively. Furthermore, the space complexity has been

proven to be sub-linear in the size of state space, action

space, and step numbers per episode. It can be expressed

as O(
∑L

l

∑Q

q F lq
s F lq

a F lq
h ), where Q is the set of actors and

critics, Fs denotes the number of states, Fa indicates the

number of outputs, and Fh represents the number of training

steps in each episode. Based on the values above, the space

complexities of MADDPG in the small and large networks

can be calculated as O(2.84E5) and O(1.21E6), respectively.

Therefore, DRL algorithm may incur significant energy con-

sumption during its training phase, potentially offsetting its



energy-saving advantages [43], [44]. However, this can be

viewed as a one-time overhead. Once the model is trained,

it can continuously serve the network, offering sustainable

energy savings. In summary, with acceptable complexity, the

DRL-based solution approaches the effectiveness of MILP and

contributes to energy savings in baseband function deploy-

ments for Open RAN.

VI. FEASIBILITY EVALUATION OVER OPEN RAN TESTBED

Leveraging OpenDaylight, OpenStack, OSM, building upon

the frameworks proposed in [4], [45], an innovative Open RAN

testbed is designed and implemented to validate the energy-

saving performance of our proposed algorithms. The following

subsections provide a comprehensive description of the testbed

orchestration and implementation, grounded in the Open RAN

standards. Furthermore, we explored the activation costs of

a MEC server at three distinct depth hibernation levels, its

loading power footprint, and the transmission delay between

MECs.

A. Testbed Orchestration

The Open RAN testbed deployment and its orchestration are

shown in Figures 9 and 10. There are three MECs distributed

at the University of Bristol (MEC-A, main), MShed Museum

(MEC-B) and We The Curious Museum (MEC-C). Each of

them consists of a server set and several edge monitoring

probes. The RAN Intelligent Controller (RIC) and Service

Management and Orchestration (SMO) are integrated into the

testbed to facilitate the administration and optimization of

network resources and services. RIC (realized based on Juniper

RIC [46]) plays a vital role in enhancing the performance

and functionality of the RAN. It hosts our proposed Python-

based algorithm in the container as xApps and collaborates

with the MEC platform to govern server activation and func-

tion placement decisions. Within RIC, an Intent Engine (IE)

that converts Python script output to OSM standard YAML

file [47] is incorporated to establish closed-loop automation,

encompassing intent capture, intent translation, and virtualized

function activations, which consistently monitor and adjust
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to assure service alignment with end-to-end requirements. In

addition, SMO is integrated with the Virtualized Infrastruc-

ture Management (VIM) controller and the Software-Defined

Network (SDN) controller to execute path provisioning and

baseband function deployment, respectively. These control

components are placed on MEC-A. To get the DRL state

including server activation status and resource information,

we build a REST API to expose the information collected by

Monitoring Prods from the server set to the Central Monitoring

on MEC-A.

In addition, the MEC architecture depicted in Figure 11

demonstrates the implementation of baseband functions in our

testbed in accordance with the European Telecommunications

Standards Institute (ETSI) and Open RAN standards. The

MEC server set comprises a top-of-rack (TOR) switch and two

commercial-off-the-shelf (COTS) components, providing in-

host switching and external connectivity. In particular, in-host

switching is facilitated by Linux kernel packet switching and

forwarding packages, while external connectivity is achieved

through the network interface controller (NIC), which connects

to the TOR switch via fiber using small form-factor pluggable

transceivers (SFPs). Consequently, the TOR switch can per-

form both TOR and TOR-TOR switching within the rack and

between MECs. It is worth mentioning that all connections to

the TOR switch, indicated by yellow lines, are implemented

using fiber and IEEE 802.1Q protocols [48].

These physical devices are the basis for virtualized MEC

host modules and interfaces. DU, CU control plane (CU-CP),

CU user plane (CU-UP), and UPF are implemented as MEC

applications (MEC apps). In specific, DU and CU functions are

achieved by the open-source srsRAN platform [49], and UPF

is executed by Open 5GS [50]. Furthermore, within a single

COTS component, two NICs are designated for O2, E2 and

A1 interfaces, wherein O2 enables the communication between

different MECs in our testbed, therefore, supports coordination

and collaboration between MEC instances. E2 manages the

transmission between baseband functions. A1 interface allows

the RAN Intelligent Controller (RIC) to manage the hiberna-

tion, activation, or standby states of the MEC apps. In addition,

the kernel forwarding function utilizing non-uniform memory



TOR - TOR

TOR switching

kernel forwarding

MEC service

service registry

Traffi�c
rules

control

DNS
handing

Mp1

MEC platform

manager

Data Plane (Processing Unit)

(Virtualization infrastructure)

Mm7

TOR

Hardware composition

MEC host 1/2

Mp3/Mm5/Mm7 Mp2/eCPRI

!"#$%&'()*+,

Virtualisation 

infrastructure 

manager
Mm7

Mm5

Mp3

Mp2/eCPRI

MEC host 2/2

SFP

COTS 2/2

NIC

802.1Q

DU
(accelerator

required)

MEC app

MEC server set

MEC app

MEC app

CU-CP
CU-UP

UPF, etc.

Mp2

Mp1

Mp2

Mp1

Mp2/eCPRI

Mp3

Mm5

Mm7

Mp2/eCPRI

Mm5

NIC

DDR4 DDR4Mp1

COTS 1/2

Fig. 11. Baseband function deployment based on ETSI and Open RAN
standards in a MEC server set. (Yellow lines denote wired transmission based
on 802.1Q; Gray squares denote the SFP transceiver; Blue cylinders indicate
network switching).

access (NUMA) on the installed DDR4 memory modules can

be considered as O1 interface, which links the MEC platform

with MEC apps. The switches connected by A1, O2 and E2

interfaces on the right side of the MEC host demonstrate that

all external communications between MEC hosts must pass

through the TOR switch.

B. Feasibility verification

To demonstrate the importance of activation cost in de-

termining the effectiveness of baseband function deployment

algorithms, the activation time and corresponding power, CPU

temperature, and system temperature changes of MEC-A

during startup, cold reboot, and warm reboot processes are

explored in this subsection. The examined server has 2 CPUs,

each with 14 cores and 2 threads per core. A startup wakes

up the server from the shutdown state. A cold boot resets

running hardware and reloads the operating system. A warm

boot, on the other hand, regains the initial state of a server

without hampering the power source. As shown in Figure 12,

MEC experiences a manifest power surge for a certain period

before returning to a stable state. Moreover, it is observed

that the more profound the dormancy degree of the server,

the longer and higher the activation time and the activation

power it needs. Activation energies for startup, cold, and

warm reboots are approximately 26.9kJ, 8.1kJ, and 7.1kJ,

respectively. Therefore, maintaining idle servers can save more

energy during heavy network traffic. In addition, these results

reaffirm our assertion that energy, instead of power, should

be the metric of choice when evaluating baseband function

management policy, as it considers the span of activation

time. Additionally, we examined the inference time on the

testbed, which encompasses the state information collection

delay (from Monitoring Probs to Central Monitoring), the

DRL solving time (xApp operation duration), and the policy
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Fig. 12. Power and temperature variation of a server during three types of
server activation.

execution delay (from RIC on MEC-A to MEC-B and MEC-

C). The total inference time is less than 200ms on our testbed.

In summary, the orchestration of the Open RAN testbed

and test result prove the feasibility of management algorithms

in real networks and serve as a base for future studies

in designing more practical baseband function deployment

strategies.

VII. CONCLUSION AND FUTURE WORK

This paper addresses the urgent challenges associated with

effectively managing baseband function deployment within the

burgeoning Open RAN architecture, where a greater distribu-

tion of MECs and time-space usage dynamics pose significant

burdens on network energy-saving efficiency. Conventional

strategies exhibit shortcomings due to the insufficient con-

sideration of activation energy costs while managing server

activation status. In this paper, under the framework of Open

RAN, a robust multi-agent DRL-based algorithm is devised

to minimize energy consumption over the network, subject

to resource and latency constraints of servers and requests.

A state-of-the-art Open RAN testbed is also prototyped to

demonstrate the validity and feasibility of the proposed algo-

rithm. Simulation results illustrate the superior performance of

our DRL-based solution, which approaches the benchmark of

MILP and significantly outperforms GHP and other existing



strategies. By emphasizing the importance of considering

multiple UPFs and the activation time of servers, this work

represents a significant advancement in enhancing energy-

saving efficiency within Open RAN systems.

Regarding future work, there is room to refine the energy

model by accounting for the nonlinear associations between

request size and server power consumption. Furthermore,

enhancing the performance of MADDPG in the face of 5G

network structural dynamics presents another avenue for im-

provement. In light of these challenges, we intend to conduct a

loading stress test on our testbed servers and use the findings

to establish a more precise system model. Concurrently, we

aim to explore the creation of generalized DRL models to

accommodate diverse network structures.
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