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Existential Uncertainty of Spatial Objects Segmented From
Satellite Sensor Imagery

Arko Lucieer and Alfred Stein

Abstract—This research addresses existential uncertainty of spatial ob-
jects derived from satellite sensor imagery. An image segmentation tech-
nique is applied at various values of splitting and merging thresholds. We
test the hypothesis that objects occurring at many segmentation steps have
less existential uncertainty than those occurring at only a few steps.

Index Terms—Existential uncertainty, satellite sensor imagery, segmen-
tation, spatial objects, visualization.

I. INTRODUCTION

Object-oriented approaches to satellite sensor image processing be-
come increasingly popular with the growing amount of high-resolution
satellite imagery. Segmentation techniques can help to extract spatial
objects from an image scene. Uncertainty will be present in any seg-
mented image and can have a significant effect on further image pro-
cessing steps. Therefore, existential uncertainty is of a major impor-
tance for spatial objects, expressing the uncertainty that an object, as
identified by a segmentation procedure, exists [1].

Image segmentation is primarily used to subdivide an image into
different segments. These segments may or may not correspond to
objects as observed in the terrain. Image segmentation is in a sense
related to spectral classification, which puts pixels into classes de-
fined either a priori or during classification. Segmentation differs
from classification, however, as spatial contiguity is an explicit goal
of segmentation, whereas it is only implicit in classification. Spectral
classification of satellite sensor images applied on a pixel basis ig-
nores potentially useful spatial information between pixels. Whereas
image classification has become a routinely applied method, image
segmentation never became very popular in earth observation appli-
cations. The main reason is that the spatial resolution of satellite
sensor imagery is a prime limiting factor for segmentation [2]. In-
creasing availability of high-resolution satellite sensor imagery, such
as acquired by the IKONOS satellite, however, requires additional
attention to uncertainty in segmentation procedures.

Quantification of existential uncertainty is essential to evaluate seg-
mentation quality. Recently, probabilistic and fuzzy techniques have
been used to quantify and model uncertainty in classification proce-
dures [2], [3]. This has mainly been applied on a pixel basis, and no
attention has been given to uncertainty related to image objects.

An essential step in image segmentation is its validation. The ex-
istence of objects, however, depends on the context of a study: for ex-
ample, topographical objects may differ from geological objects or land
cover objects. In this study, we take the approach that an object with a
high existential certainty corresponds to an object as represented on a
topographic map.

Besides quantification, visualization is important to communicate
uncertainty [4], [5]. Visualization allows the user to explore uncertainty
in spatial data [6], e.g., by animation or by linked views, and to review
effects of changing parameters during segmentation.
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The objective of this research is to quantify and visualize existen-
tial uncertainty of spatial objects derived from high-resolution satellite
sensor imagery with a split-and-merge image segmentation algorithm.
The study is applied on an IKONOS image of an agricultural area near
Enschede, The Netherlands. A topographic map is used to validate seg-
mentation results.

II. M ETHODS

A. Image Segmentation Using a Split-and-Merge Algorithm

Commonly, three approaches are distinguished toward segmen-
tation: edge-based segmentation, region-based segmentation, and
split-and-merge segmentation [7]. Split-and-merge segmentation,
as applied in this study, consists of a region-splitting phase and an
agglomerative clustering phase. In the splitting phase, the imageB

is initially considered as a square block of pixel values with mean
vectorMB and covariance matrixSB . The dimension is determined
by the number of bands in the image; in case of IKONOS this equals
four. This block is split into four square subblocks (B1, B2, B3, and
B4), characterized by vectors of mean pixel valuesMB ,MB ,MB ,
andMB and covariance matricesSB , SB , SB , andSB in the
subblocks. To define homogeneity, we consider a threshold�ms for
the mean and thresholds�ss for the covariance matrix. These values
are chosen in advance and kept constant during segmentation. An
image blockB is homogeneous if

jMB �MB j < �ms; for i = 1; 2; 3; 4 (1)

and

jSB � SB j < �ss; for i = 1; 2; 3; 4 (2)

and heterogeneous if one of these equations does not apply. Hetero-
geneous subblocks are split recursively until homogeneity occurs or
until a minimum block size of one pixel is reached. The resulting data
structure is a regular quadtree. In the clustering phase, adjacent block
segments are merged if the combined segment is homogeneous. The
homogeneity rules (1) and (2) are applied in a similar way. Thresh-
olds for mean and covariance matrix are denoted by�mm and �sm,
respectively [8].

B. Quantifying Existential Object Uncertainty

The final result of a segmentation procedure depends upon the
thresholds�ms, �ss, �mm, and�sm. For various thresholds, objects of
different size emerge. Small� values lead to small objects, whereas
large values result in large objects. Some objects are insensitive to
threshold values, whereas some objects disappear beyond a particular
threshold and others expand in size. We hypothesize that objects
emerging in a uniform shape irrespective of threshold values corre-
spond to real-world objects as represented on a topographic map.
Objects disappearing at a specific threshold have a high degree of
existential uncertainty and are called “unstable objects.” Objects that
remain the same at different segmentation levels are “stable” objects
and have a low degree of existential uncertainty.

To quantify existential uncertainty in a segmentation procedure,
ranges for the splitting thresholds�ms and�ss and merging thresholds
�mm and �sm are chosen. These ranges are divided inton steps. At
each step, object boundaries, in the form of segment edge pixels, are
determined. At stepk, these boundary pixels are assigned the value
one and nonboundary pixels the value zero and are represented on
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a segment–boundary imageIk. This results in a boundary stability
image (BSI), defined as

BSI =

n

k=0

Ik

n
: (3)

A BSI has values between 0.0 and 1.0, the value 0.0 emerging in the
absence of a boundary at each step, the value 1.0 in the presence of
a boundary at each step, and intermediate values in between. Segment
boundaries with largeBSI values are boundaries with a high existential
certainty, and smallBSI values represent boundaries with high existen-
tial uncertainty.

C. Visualization of the Existential Uncertainty of Objects

Correct interpretation of uncertainty information depends largely on
communication from system to user. Several visualization techniques
can be used to depict existential uncertainty of segmented image ob-
jects. For visualizing uncertainty of object boundaries, a continuous
gray scale or a color scale can be used. According to Blenkinsopet al.
[5], grayscale images are most effective in communicating uncertainty.
In addition, dynamic linking and geographic brushing functionalities
can help to increase perception of uncertainty. Uncertainty values are
obtained from the image by dynamically linking the uncertainty image
and the original image with a data window. The data window displays
the coordinates, reflection value, and uncertainty value of a pixel at the
cursor location. Relations between original reflection values and re-
lated segments can be explored in this way.

D. Segmentation Validation

Segmentation validation is necessary to assess segmentation accu-
racy. To quantitatively assess a segmentation result, we identifym ob-
jects from a reference dataset and calculate the percentage of overlap of
the largest segments inside these objects. The image is oversegmented
if overlap is less than 100% and undersegmented if overlap is more
than 100%. To quantify the fit of each of the reference objects with the
largest segments overlapping these objects, we use the area fit index
(AFI)

AFI =
Areference object � Alargest segment

Areference object

(4)

whereA is the area in pixels. For a perfect fit, the overlap is 100% and
AFI = 0:0. A reference object is oversegmented if the overlap is less
than 100% andAFI > 0:0. A reference object is undersegmented if
the overlap is 100% andAFI < 0:0. In some situations, overlap can
be less than 100% andAFI < 0:0; then the object is oversegmented,
but the largest segment is larger than the reference object.

Another technique for segmentation validation is to quantitatively
compare segment boundaries with boundaries on a reference map. Fol-
lowing Delveset al. [9], let p be a boundary pixel of a region in the
reference map andD(p) be the shortest (Euclidian) distance, measured
in pixels, betweenp and any boundary pixel in the segmented image.
Then

D(b) =
boundary pixels

D(p)

N
(5)

where the sum is taken over all boundary pixels in regionb, andN is
the number of boundary pixels in the reference dataset. As such,D(b)
measures the average distance between a segment boundary pixel and
the reference boundary. For a perfect fit,D(b) = 0. If the regionb
equals the whole image, the image segmentation accuracy measure is
obtained, denoted byD(B). The number of boundary pixels in the seg-
mented imageM , however, is not taken into account. For high values

ofM , many boundary pixels in the neighborhood ofp occur, and there-
fore, lowD(B) values are obtained. A boundary image with a highM

value may be extremely oversegmented. To correct forM in the calcu-
lation ofD(B), we propose the following correction factor

D(B)corr =
jN �M j

N
+D(B): (6)

III. STUDY AREA

The study area, characterized by agriculture, is located southwest
of Enschede, The Netherlands. Six land cover types occur in the area:
water, grassland, woodland, bare soil, cereals, and buildup area. Both
homogeneous and heterogeneous parcels occur, with crisp objects
dominating the region. A subset of 512� 512 pixels of an IKONOS
image, covering all major land cover types, acquired on April 3, 2000
is used in this study [Fig. 1(a)].

A vector-based topographic map on scale 1 : 10 000 is used as a ref-
erence dataset for segmentation validation. The vector map is converted
to raster format with a spatial resolution equal to the IKONOS image.
The image is geometrically corrected with ground control points de-
rived from the topographic map. The root-mean-squared error (RMSE)
of geometric correction is 0.349 pixels. A first-degree polynomial func-
tion is used to register the image to the topographic map coordinate
system.

IV. RESULTS

A. Quantification and Visualization of Existential Uncertainty

Fig. 1(b) presents a single segmentation of the image. In this seg-
mentation, the following values are used:�ms = 10:0, �ss = 300:0,
�mm = 20:0, and�sm = 100:0. In the splitting phase, 60 355 ho-
mogeneous blocks are formed. After merging, 18 387 objects remain.
Forested areas and urban regions contain a large number of very small
segments, caused by the large variance in reflection in these areas.
Homogeneous parcels and the water body are correctly segmented,
whereas heterogeneous parcels are oversegmented.

As crisp objects dominate the image scene, we assume that objects
can be represented by their boundaries, and we calculate the boundary
stability imageBSI. The number of segmentation stepsn is 100.
Thresholds for splitting are kept small�ms = 10:0 and�ss = 300:0
and are kept constant for all steps to avoid blocky artifacts in the
segmentation result. Thresholds for merging range from�mm = 12:0
to 42:0 and�sm = 25:0 to 275:0. Fig. 1(c) shows the resultingBSI
in gray scale. Bright values depict high boundary stability, while
low stability is represented by darker values; nonboundary pixels are
black. Boundaries of heterogenous parcels and boundaries of small
objects in urban and forested areas are characterized by low stability
and, therefore, high uncertainty values. Boundaries of the water body,
homogeneous parcels, and roads can be clearly identified in the image
and are depicted by highBSI values.

B. Segmentation Validation

The first step in segmentation validation is a visual comparison of ob-
ject boundaries from a segmentation result with object boundaries from
the topographic reference map. Again, dynamic linking can help to ex-
plore similarities and discrepancies between the two maps. To quan-
titatively assess segmentation results, we have taken seven reference
objects from the topographic raster map. These objects represent the
land cover in the study area (Table I).

To quantify the goodness-of-fit of a segmentation with the reference
objects, we calculate theAFI [see (4)].AFI values for the seven refer-
ence objects for all segmentation steps are presented in Fig. 2. Object
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(a)

(b)

(c)

Fig. 1. IKONOS image of the study area southwest of Enschede, The
Netherlands (acquired April 3, 2000).

1 reachesAFI = 0:0 at segmentation step 50; its overlap is 96% at
this step. Objects 2 and 3 do not reach anAFI of 0.0. Object 2 is over-
segmented for all steps. At segmentation step 76, the largest segment of
object 3 is merged with an agricultural parcel, resulting in a large nega-
tiveAFI value. Object 4 has a negativeAFI value, between�0.36 and
�0.44, for each step. Thus, the largest segment is larger than the refer-
ence object (undersegmented), but does not entirely overlap (maximum
overlap= 82%). Segmentation of object 5 is best at the final segmenta-
tion step (overlap is 90% andAFI = 0:10). The same holds for object

TABLE I
DESCRIPTION OF THEREFERENCEOBJECTSUSED IN VALIDATION

Fig. 2. AFI values for each reference object for each segmentation step.

Fig. 3. Boundary fitD(B) andD(B) values for the whole image for each
segmentation step.

6, but overlap is 83% andAFI = 0:17. Object 7 is best segmented
whenAFI = 0:08, and overlap is 82% at step 85. After segmentation
step 86, object 7 is undersegmented.

Segmentation validation for the whole image is carried out using a
boundary-matching procedure. We use the measureD(B) [from (5)]
to describe a segment’s fit to a reference object by means of its bound-
aries. Thus, all boundaries from each segmentation step are compared
to the boundaries of objects in the topographic reference map.D(B)
values in Fig. 3 show that the best fit of segment boundaries is obtained
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at the first segmentation step. Most objects, however, are severely over-
segmented in the first step. Therefore, a corrected valueD(B)corr [see
(6)] is applied to correct for the number of boundary pixels in the seg-
mented image. WhereD(B)corr equalsD(B), the number of boundary
pixels is equal in both the segmented image and topographic map, and
the correction factor is 1.0. At this step,D(B) = 1:33. D(B)corr
values show that an optimal segmentation result, for a best boundary fit
and an optimal number of boundary pixels, is obtained at segmentation
step 55; hereD(B)corr = 0:91.

V. DISCUSSION

The split-and-merge algorithm used in this study generally produces
good segmentation results. Glasbey [10] found that boundaries, derived
this way, are rough and retain some of the artifacts of blocks from the
splitting phase. If the thresholds for splitting are kept small, however,
these blocky artifacts are no longer present in the final segmentation
result. Texture measures could be used to improve segmentation in tex-
ture-rich areas such as the forested and urban regions in the IKONOS
image. Long-shaped objects (e.g., objects 2 and 3) give difficulties in
segmentation. This can be explained by the fact that neighbor adja-
cency is calculated in four directions (north, east, south, west), called
a four-adjacency model. The eight-adjacency model takes into account
the diagonal neighbors as well. This adjacency model might be useful
in segmenting long-shaped objects with a diagonal orientation, like ob-
jects 2 and 3. Undersegmentation of small objects, like object 4, can
be explained by the fact that the spatial resolution of the multispectral
IKONOS bands is too coarse for detection of these small objects. Incor-
poration of information from the panchromatic band could be helpful
in this case.

In this study, existential uncertainty of image objects is discussed.
Other types of uncertainty, like extensional uncertainty, can be distin-
guished as well [1], [11]. This type of uncertainty refers to the uncer-
tainty in spatial extent of an object. Extensional uncertainty is impor-
tant for the spatial representation of fuzzy objects. For a crisp object,
existential uncertainty plays the most important role. The context of the
validation map is also an important issue. Topographic objects used as
reference are likely to give other segmentation accuracy values as ob-
jects derived from a soil map, vegetation map, or geological map.

VI. CONCLUSION

In this communication, we propose a method to quantify and vi-
sualize existential uncertainty of spatial objects derived from satellite
sensor imagery with a split-and-merge image segmentation algorithm.
Objects disappearing at a specific segmentation threshold have a high
degree of existential uncertainty and are called “unstable objects.” Ob-
jects that remain the same at different segmentation levels are “stable”
objects and have a low degree of existential uncertainty. Existential
uncertainty is characterized by the boundary stability imageBSI de-
rived from a range of segmentations generated with different threshold
values. Seven reference objects on a topographic map have been se-
lected for segmentation validation. The percentage of overlap and the
area fit indexAFI are measures used to quantify segmentation accuracy
for these objects. To determine segmentation accuracy for the whole

image, segment boundaries are used to calculate the fitD(B) with the
topographic boundaries. We have used a correction factorD(B)corr to
correct for the number of boundary pixels in the segmented image. We
conclude that the boundary stability index (BSI) allows a quantifica-
tion of existential uncertainty and is suitable for its visualization. The
area fit index (AFI) and the corrected boundary fit index (D(B)corr)
are suitable measures for validation of segmentation results.
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