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Information Fusion for Rural Land-Use
Classification With High-Resolution

Satellite Imagery
Wanxiao Sun, Volker Heidt, Peng Gong, and Gang Xu

Abstract—We propose an information fusion method for the ex-
traction of land-use information based on both the panchromatic
and multispectral Indian Remote Sensing Satellite 1C (IRS-1C)
satellite imagery. It integrates spectral, spatial and structural
information existing in the image. A thematic map was first pro-
duced with a maximum-likelihood classification (MLC) applied
to the multispectral imagery. Probabilistic relaxation (PR) was
then performed on the thematic map to refine the classification
with neighborhood information. Furthermore, we incorporated
edges extracted from the higher resolution panchromatic imagery
in the classification. An edge map was generated using operations
such as edge detection, edge thresholding and edge thinning.
Finally, a modified region-growing approach was used to improve
image classification. The procedure proved to be more effective in
land-use classification than conventional methods based only on
multispectral data. The improved land-use map is characterized
with sharp interregional boundaries, reduced number of mixed
pixels and more homogeneous regions. The overall kappa statistics
increased considerably from 0.52 before the fusion to 0.75 after.

Index Terms—Edge extraction, high-resolution satellite
imagery, image classification, information fusion, land-use clas-
sification, multispectral classification, probabilistic relaxation,
region-growing algorithm.

I. INTRODUCTION

CONVENTIONAL multispectral classification methods
make use of spectral response of ground objects. The

spectral response of ground objects within one pixel is a set of
radiance measurements obtained in the various wavelength

bands. This set of radiance measurements is referred to as
a spectral vector in the measurement space. Because spectral
responses measured by remote sensors over various features
of ground objects often permit an assessment of the type and
condition of the features, these responses are also referred to
as spectral signatures. Usually, the spectral signatures of each
class type are modeled to have multivariate normal distribution,
and the parameters of such spectral signatures are estimated
from training samples. Based on the spectral signatures, the
spectral vector of a pixel is used to classify the pixel by using
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a classifier. This per-pixel classification approach often results
in “salt-and-pepper” effects and weakly defined interregion
boundaries on the final map [1]. Four major thrusts for en-
hancing the quality of thematic maps can be identified. The
first group consists of making better use of spectral information
based on an alternative spectral representation [2]. In this
approach, spectral classes are represented by their spectral
shapes; the spectral shape is a vector of binary features that
describes the relative values between spectral bands. Wharton
developed a prototype expert system to classify multispectral
data on the basis of spectral knowledge [3].

The second group may be characterized as the increased use
of spatial information, also known as contextual information.
Five strategies can be identified in contextual classification:

1) methods based on the classification of homogeneous
objects [4]–[10];

2) techniques based on probabilistic relaxation, which allow
the spatial properties of a region to be used in the classifi-
cation process in a logically consistent manner [11]–[16];

3) methods derived using compound decision theory and se-
quential compound decision theory [17]–[23];

4) frequency-based contextual classification [24]–[26]
(these methods involve a data reduction algorithm
to convert multispectral data into a single image fol-
lowed by applying a frequency-matching algorithm in
classification);

5) methods based on stochastic modeling of the distribution
of classes in the scene [27], [28].

The third group is information fusion and integration with
ancillary data layers. Broadly, two types of data are used in
information fusion techniques: additional images (i.e., multi-
temporal and multisensor image data, [29]) and ground data or
ancillary information [9], [30]–[33]. Conceptually, three cate-
gories of data fusion were summarized [34], i.e., data level, fea-
ture level, and decision level fusion. The fourth group involves
the use of knowledge-based classification techniques. Nagao
and Matsuyama [35], [36] used a knowledge base to charac-
terize contextual and geometric constraints for the task of region
labeling in multispectral imagery. This has been adapted and
applied in land-use mapping with satellite imagery [37]–[40].
Other researchers have evaluated Markov-random-field-based
approaches for image texture extraction in multispectral image
segmentation [41].

In this study, we extracted edges from the panchromatic
(PAN) image, since the PAN image has a higher spatial resolu-
tion than that of the multispectral image. Several edge detectors
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have been proposed [42]–[46]. Usually, edge detectors use first-
or second-order derivatives. A texture boundary locator (TBL)
calculates the texture gradient of an image, which is the local
rate of change of a texture attribute [47]. Edge enhancement
produces a grayscale image that carries information about
the edge magnitude. A threshold operation can be used to
detect edges and present them in a binary image. Globally,
histogram-based adaptive thresholding is commonly used
[48]–[50]. The resultant thick binary image must be thinned
to produce sharp edges. A number of edge detection and edge
thinning strategies exists [51]–[55]. A comprehensive review
of existing thinning algorithms can be found in [56].

The objective of this study is to improve the classification
accuracy of the thematic map by fusing the spectral, spatial,
and structural information existing in images. For this purpose,
a combined ISODATA and maximum-likelihood classification
(MLC) algorithm from conventional multispectral classifica-
tion, probabilistic relaxation from contextual classification,
edge extraction, and region growing were selected and tested.

II. STUDY SITE, DATA, SEGMENTATION, AND

CLASSIFICATION SCHEME

The study site is the county of Landau of the State Rhein-
land-Pfalz, Germany (Fig. 1). It is located in southwestern Ger-
many, and lies between the Palatinate Forest “Haardt” and Rhine
lowlands. This area comprises mainly an agricultural environ-
ment with a medium-sized city of Landau, a few small urban
areas, and some forested areas with an area of 529 km.

An Indian Remote Sensing Satellite 1C (IRS-1C) image ac-
quired on 29 July 1997 was used in the study. A 1/9 subscene
of PAN image and its corresponding Linear Imaging and Self
Scanning Sensor III (LISS-III) image were selected. The PAN
subscene contains 51435082 pixels, while the LISS-III sub-
scene contains 12711255 pixels. The PAN data have a ground
resolution of 5.8 m, while the LISS-III data have a spatial reso-
lution of 23.5 m in the green, red, and near-infrared bands.

To make it easier to compare satellite imagery with other in-
formation such as digital orthophotos and topographic maps,
we transformed the original imagery to Gauss-Krueger coor-
dinate system. As the IRS-1C PAN data has a higher resolu-
tion, it was first rectified using 28 ground control points (GCPs)
measured with differential global positioning system (DGPS).
The average rms error was 1.14 pixels corresponding to approx-
imately 6.6 m on the ground. Using the rectified panchromatic
image as the reference, the multispectral image was rectified
through “image-to-image” registration. The total rms error was
0.33 pixels. These two rectifications were achieved by using a
first-order polynomial and nearest neighbor resampling method.

In this study, we were only interested in the rural area, since
the urban area can be better derived from another data source:
Amtliches Topographisch Kartographisches Information-
ssystem (ATKIS). ATKIS data contain land-use information
at a scale of 1 : 25 000. We selected all polygons belonging
to the category “urban and build up” from the ATKIS data
and masked out these areas from the image. The remaining
nonurban area was used in this study.

A hierarchical land-use classification system was developed.
It contains three levels of land-use types: five classes at the first

Fig. 1. IRS-1C multispectral imagery acquired on 29 July 1997, Landau,
Germany, band combination 3,2,1.

TABLE I
LAND-USE CLASSIFICATION SYSTEM

level, seven classes at the second level and twelve classes at the
third level (Table I).

III. M ETHODS

A. Use of Spatial Information

The probabilistic relaxation algorithm we adapted for gen-
erating PR map consists of four basic steps [46], [57]. First,
probability calculation was made using the MLC algorithm.
Assume that a digital image with a size of pixels is to
be classified into classes . The class
membership probabilities of pixel are defined as vector
[ ], and satisfy the condition

(1)
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Second, calculating compatibility coefficients of
classes from the MLC results by using

(2)

where is the frequency of occurrence of class
and as neighbors at pixel and . For each pair of neigh-
boring pixels and and each pair of classes and, there
is a compatibility measure . The compatibility coef-
ficients are then projected to the range1, 1 with 1 repre-
senting a strong incompatibility, 0, neutral compatibility, to 1,
strong compatibility [44].

Third, deriving neighborhood function. It is defined as

(3)

where is the number of neighbors considered for pixel,
is the weight factor of neighbors, andis the number of

iterations.
The new probability for pixel with class label at the

th iteration is modified by multiplying the class probabil-
ities by the neighborhood function. These new values are then
normalized to one. Such a modification is an iterative process.
Theoretically, it will not stop until no changes in class proba-
bilities occur for all pixels. This can, however, lead up a huge
number of iterations, or simply not converging. In practice, it is
observed that the classification results will be improved in the
first few iterations [16], [58].

B. Structural Analysis Featured by Edge Extraction Techniques

1) Edge Enhancement:The Sobel edge detector [43], the
Prewitt edge detector [43], and the TBL edge detector were
tested for the IRS-1C PAN image. We found that the TBL de-
tector provides good results and is relatively robust to noise.
Therefore, we used the TBL detector in the extraction of edge
elements. The TBL algorithm takes into account the fact that
on either side of two adjacent regions with gradual transition of
the image intensities. The textural attribute is derived from the
mean and standard deviation of each window of
the image, where is obtained as a function of image features
to be detected. In order to compute a texture gradient image, a

window is centered at each pixel, where
is a function of the size of the region of interest and/or the range
of the scene objects from the sensor. The window geometry for
an arbitrary location in an image is shown in Fig. 2. The pixels
at the centers of the four sides and the corners of the window are
labeled sequentially as shown in the figure. The texture gradient
at a pixel is obtained as

(4)

2) Edge Thresholding:In this study, histogram-based
thresholding was used to produce a binary image, in that all
edge elements have value one. The threshold is not an absolute
one, but an upper percentage from the cumulative distribution
function of the texture gradient image.

Fig. 2. Window geometry for the TBL algorithm (Bhanuet al.1997 [47]).

Fig. 3. The 3� 3 neighborhood of the pixelP (i; j) (Chen–Hsu [54]).

3) Edge Thinning:The fast parallel thinning algorithm by
Chen and Hsu [54] was used here, because this algorithm pre-
serves the merits of the original such as the edge noise immu-
nity and good effect in thinning crossing lines, and overcomes
the weaknesses such as the serious shrinking and line connec-
tivity problems. A 3 3 window is used (Fig. 3). The new value
of pixel at the th iteration depends on its own value as
well as those of its eight neighboring pixels at the th
iteration, so that all image elements can be processed simulta-
neously. This process is divided into two subcycles. The first
cycle will be executed at odd iterations while the second cycle
will be executed at even iterations. A detailed explanation of the
implementation of these two subcycles is given in [54].

C. Fusion of Thematic Map and Edge Map Using A
Region-Growing Algorithm

The purpose of the fusion operation (FU) is to construct
homogeneous regions over the noisy thematic map. This
operation adds detailed and reliable edge information to the
noisy land-use classification map to generate sharp interregion
boundaries and reduce mixed pixels between them. Haralick
and Shapiro [59] describe three common region-growing
schemes: single-linkage region growing, hybrid-linkage region
growing, centroid-linkage region growing. Pitas [60] described
an efficient region-growing algorithm. This approach starts
from some seed pixels representing distinct image regions and
grows them, until they cover the entire image.

A modified version of Pitas’ region-growing algorithm was
proposed here. The image data used in the region-growing op-
eration include the thematic map obtained from the MLC, the
PR map from the probabilistic relaxation and the edge map from
edge extraction. Region-growing takes three steps.

1) Automatic searching of seed pixels from the entire image.
A seed pixel is the first nonedge pixel that follows directly
a contour pixel.
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2) Region-growing starting with a seed pixel.This results in
connected homogeneous regions. Two rules are needed,
i.e., a rule describing a growth mechanism and a rule
checking the homogeneity of the regions after each
growth. The growth mechanism is: at each stage and for
each region , , it will be checked
if there are unclassified pixels in a four-neighborhood
of each edge pixel and in the eight-neighborhood of
each nonedge pixel. Before assigning such a pixelto a
region , it will be checked if the region homogeneity
is still valid. Two conditions are used in checking the
homogeneity of the regions: 1) an edge on the edge map
is reached; and 2) a class change on the PR map occurred.
In other words, the algorithm makes “seed” regions grow
until reaching a closed edge on the edge map or a class
change on the PR map.

3) Assigning the winning class to all pixels of each con-
nected homogeneous region.The majority class of the
connected region is first computed. Class labels of each
pixel in connected regions are the classes resulted from
the MLC. This class is defined as the winning class, and
then assigned to all pixels in the homogeneous region.
These three steps are repeated until all pixels in the image
have a class label. This operation results in an improved
thematic map.

A software package consisting of four groups of algorithms
using C was developed. The package comprises the MLC algo-
rithm, PR algorithm, edge extraction techniques (the TBL edge
detector, the histogram edge thresholding algorithm, and a fast
parallel thinning algorithm), and a region-growing information
fusion algorithm.

IV. RESULT AND DISCUSSION

A. Multispectral Classification

A hybrid method combining ISODATA and the MLC algo-
rithm was first performed on the three bands of the LISS-III
rural imagery. For the implementation of MLC, a signature file
containing the means and variance–covariance matrices of 36
spectral classes was generated from both the ISODATA clus-
tering procedure and training samples.

Fifty spectral classes were first created from the ISODATA
clustering algorithm. The 50 classes in the thematic layer were
then assigned the actual class names by comparing the original
image data with the individual classes. As a result, 14 specr-
tral classes corresponding to clearly identified conifer, decid-
uous, barley, cloud and shadows were obtained. Twenty-two ad-
ditional spectral signatures were generated using training sam-
ples. A total number of 400 training sample areas were selected
with knowledge gained from fieldwork, topographic maps, dig-
ital orthophotos, original PAN and LISS-III data, merged PAN
and LISS-III data, as well as the ATKIS data. It should be noted
that the fieldwork was done in 1998, one year later than the ac-
quisition of the satellite data. For some crop types that might
change from year to year, training sample selection was con-
ducted using an agricultural database of the town of Suedliche
Weinstrasse. This database records the actual crop types of fields
for 1997.

Fig. 4. Resultant maps from (a) MLC and ISODATA classification, (b) proba-
bilistic relaxation after ten iterations, and (c) fusion of MLC map, PR map, and
edge map.

This classification results in a thematic map with 36 spec-
tral classes. These spectral classes were then grouped into 14
land-use classes according to the actual classes they represent.
A subset of the MLC result is shown in Fig. 4(a). In addition to
the 12 classes listed in our land-use classification system, cloud
and shadows were also included. Classification accuracy and
kappa statistics for each class were calculated for the MLC, PR,
and region-growing fusion operation. The overall classification
accuracies and kappa statistics are listed in Table II. A total of
350 test sample points were randomly selected. The number of
sample points for each class is stratified to the distribution of
classes. During test sample collection, it was obvious to see, at
the center of sample areas, that the pixels are accurately clas-
sified with any of the three methods (MLC, PR, and FU). At
the inner edges, however, the pixels are often incorrectly clas-
sified by MLC, and correctly identified by PR and FU. At the
outer edges, the pixels are sometimes only correctly classified
by FU.

It can be seen that cloud, wheat, sugar beet, water, barley, and
mixed forest have been well classified by the MLC. Their classi-
fication accuracies are greater than 60%. This is because those
classes have better spectral separability. Heavy confusion oc-
curred between vineyard and grassland because of their similar
spectral responses in this season. A unique feature of the land-
scape of this area is the extensive fields of vineyards. Owing
to different vine types, exposition, soil condition, and growing
status, eight different spectral signatures of vine were first gen-
erated by using training samples. After MLC, these spectral sig-
natures were then merged into one land-use type. Similar to
vine, six spectral classes of grassland were also first trained for
classification, and then merged into one land-use type. After
comparing the mean plots, histograms, and statistics of signa-
tures from vine and grassland, it was found that the two spectral
classes overlapped to some extent. As a result, these two classes
cannot be identified clearly, and they are mixed together. Other
confusion occurred between sugar beet and grassland and grass-
land and forest.
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TABLE II
CLASSIFICATION ACCURACY AND KAPPA STATISTICS COMPARISONAMONG MLC, PR,AND FU APPROACHES

B. Probabilistic Relaxation

Probabilistic relaxation was performed on the rural thematic
map. This operation generated the PR map. Experimental
results show that after initial probabilistic relaxation, cloud,
shadows, and highway tended to be overclassified. To overcome
this problem, a modification of compatibility coefficients was
done. Compatibility coefficients between cloud and shadows,
and highway and each of the 36 signatures were set to zero or
very small. This means if the class of a pixel belongs to any of
the classes of cloud, shadows or highway, the class probabilities
of that pixel would be influenced to a much less extent by the
neighboring pixels during the relaxation process.

After visual comparison it was found that the best result was
achieved after ten iterations. In cases where a pixel possessed
a high probability, there was no change in class reassignment
after the relaxation. Otherwise, if a pixel had low probabilities,
the class of the central pixel would be replaced by the class
of neighboring pixels. The probabilistic relaxation process was
computationally intensive. For example, for an image size of
1.6 MB with 36 classes, each iteration took approximately one
hour on a Sun Solaris UltraSparc-2 workstation.

A subset of the class map after probabilistic relaxation is
shown in Fig. 4(b). A comparison of the PR map with the MLC
map suggests that the probabilistic relaxation operation has re-
sulted in a significant reduction of the “salt-and-pepper” effect
in the MLC map. Furthermore, the number of mixed pixels has
reduced. Consequently, regions in the image have become more
homogeneous, while line elements are maintained.

Table II gives us a quantitative measurement after PR. The
overall classification accuracy increased from 56% to 62%, and
overall kappa statistic increased from 0.52 to 0.59. Of those

classes, forest (i.e., conifer, mixed forest, and deciduous) gained
most improvement, from 0.46 to 0.71, 0.60 to 0.84, and 0.52 to
0.71, respectively. This is because lots of isolated pixels con-
tained in these classes were removed, and regions in the image
have become more homogeneous. The classification accuracy
of grassland increased from 42% to 58%, whereas the clas-
sification accuracy of vine stayed unchanged (53%) with the
kappa decreased a bit. The reason is that generating homoge-
neous patterns is an important characteristic of PR. In this case,
the vine polygons are more homogeneous than grassland poly-
gons before PR operation. The kappa of barley also slightly de-
creased. Classification accuracies of cloud and shadows stayed
unchanged. However, the class of “corn” was reduced to zero.
This is because there are very few corn fields in the study area
leading to a negative compatibility coefficient between corn and
other classes.

C. One-Pixel Width Edge Map Generation

1) Generation of the Edge Map:The following combina-
tions of parameters ; ; ,
and 35% were tested. As can be seen from the combination in
Fig. 5(a), thick edges are the main problem with this edge de-
tector.

2) Generation of Pixel-Width Edge Map:The thinning op-
eration generated many closed boundaries and resulted in a one-
pixel-width edge map. Results suggested that the combination
of , and is the best [Fig. 5(b)]. As
can be seen from the figure, there are a lot of isolated points
and short lines that do not form connected boundaries. Some fil-
ters such as the median and Lee–Sigma filter were tested. These
unwanted details have been reduced significantly by using a
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(a)

(b)

(c)

Fig. 5. Resultant maps from (a) TBL algorithm:B = 1,N = 3, T = 15%,
(b) Chen–Hsu algorithm:B = 1,N = 3, T = 15%, and (c) edge map after
using Lee–Sigma filter.

Lee–Sigma filter [Fig. 5(c)]. Lee–Sigma filter uses the average
of all pixel values within the moving window that fall within the
designated range of standard deviations. Field visits indicated
that even field paths were detected.

D. Fusion of Thematic Map and Edge Map Using
Region-Growing Algorithm

Three information sources were used in the fusion: 1) the
MLC map, 2) the PR map, and 3) the edge map. Part of the
final thematic map is shown in Fig. 4(c). The fusion of the the-
matic map and the edge map provides a series of closed bound-
aries more or less corresponding to individual fields and con-
taining a unique class. As can be seen from the figure, important
boundaries that have not been detected during the edge-detec-
tion process are obtained from the probabilistic relaxation map
in a coarse manner.

The overall kappa statistics of the fusion operation increased
significantly, from 0.52 to 0.75 (Table II). When calculating the
absolute improvement of each land-use class comparing to that
of MLC, we found that corn, conifer, wheat, mixed forest, decid-
uous, oat, sugar beet, and shadows contributed most to the im-
provement. Owing to the detected edges, land-use type “corn,”
which was reduced to zero after the probabilistic relaxation, is
rectified. The clearly identified edges of oat result in a large

improvement in classification accuracy. Wheat and sugar beet
have relatively large and homogeneous fields. Their edges are
the most clearly detected, and form lots of closed boundaries.
The spectral variance at different locations between forest and
cropland helps increasing the classification accuracy very much.

It is worthwhile to note that the kappa statistics for vine in-
creased from 0.3 to 0.52, and grassland from 0.27 to 0.45. The
accuracies of vine and grassland with similar spectral responses
have also been improved to some extent.

V. CONCLUSION

A series of procedures were taken to improve land-use classi-
fication in the rural areas by making fuller use of the spatial and
structural information of IRS-1C PAN imagery and the spectral
information in the multispectral data. Each procedure can be im-
plemented simply, and the integration is effective in preserving
thin and edge details, which a simple filter cannot achieve. In
an earlier stage of our project, we tested the majority filter after
performing MLC, and the majority filter resulted in more homo-
geneous patterns by reducing “salt-and-pepper” noise. But the
mixed-pixel problem in the interregion areas and blurred inter-
class boundaries still exist, and cannot be solved. The combi-
nation of data fusion, edge detection, and probability relaxation
algorithms as a whole is worth documenting. In any image clas-
sification tasks, it is easy to get some results but harder to im-
prove the accuracy. The results of this research have general im-
plications. The combined use of multiresolution data by taking
advantage of the strengths of each type of data can be extended
to classification of PAN and multispectral images from Landsat
ETM+, SPOT, IKONOS, and Quickbird.

The main results obtained in this study are summarized
below.

1) The PR operation has resulted in a considerable reduction
of the “salt-and-pepper” noise in the MLC map. Conse-
quently, regions in the image have become more homo-
geneous, while line elements are maintained. However,
this algorithm does not work well for classes with iso-
lated coverage and small size.

2) The texture boundary locator algorithm is relatively ro-
bust to noise. The TBL and a fast thinning algorithm have
not only produced very fine edges from the IRS-1C PAN
image, but also succeeded in closing most of the edges to
form field boundaries.We found that the resulting edges
lent robustness to the classification system against the
mixed-pixel problem by capturing detailed spatial infor-
mation that is not available from the multispectral data.

3) A modified region-growing algorithm was used to fuse
classification information previously obtained from the
MLC, the PR, and the edge map. The fusion operation
resulted in more homogeneous regions over the noisy the-
matic map.

4) The postprocessing image fusion strategy has proven to
be particularly effective for generating sharp interclass
boundaries and reducing mixed pixels between interfield
boundaries. Important edges that had not been detected
during edge extraction were compensated from the PR
map in a coarse manner. The fusion of the thematic map
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and the edge map provides a series of closed boundaries
closely corresponding to individual fields with unique
classes.

ACKNOWLEDGMENT

The authors are very thankful to the Ministry of Environment,
the State of Rheinland-Pfalze, Germany and the German Sci-
ence Foundations for their financial support on satellite imagery
and this research, availability to project relevant data, and mea-
surement of GPS base station in the field.

REFERENCES

[1] B. Solaiman, R. K. Koffi, M. Mouchot, and A. Hillion, “An information
fusion method for multispectral image classification postprocessing,”
IEEE Trans. Geosci. Remote Sensing, vol. 36, pp. 395–406, Mar. 1998.

[2] M. J. Carlotto, “Spectral shape classification of Landsat Thematic
Mapper imagery,”Photogram. Eng. Remote Sens., vol. 64, no. 9, pp.
905–913, 1998.

[3] S. W. Wharton, “A spectral-knowledge-based approach for urban land-
cover discrimination,”IEEE Trans. Geosci. Remote Sensing, vol. 25, pp.
272–282, May 1987.

[4] P. Gong and P. J. Howarth, “The use of structural information for im-
proving land-cover classification accuracies at the rural-urban fringe,”
Photogram. Eng. Remote Sens., vol. 56, no. 1, pp. 67–73, 1990.

[5] R. L. Kettig and D. A. Landgrebe, “Classification of multispectral image
data by extraction and classification of homogeneous objects,”IEEE
Trans. Geosci. Electron., vol. GE-14, pp. 19–26, Jan. 1976.

[6] D. A. Landgrebe, “The development of a spectral-spatial classifier for
earth observational data,”Pattern Recognit., vol. 12, pp. 165–175, 1980.

[7] R. O. Duda and P. E. Hart,Pattern Classification and Scene Anal-
ysis. New York: Wiley, 1973.

[8] F. E. Townsand, “The enhancement of computer classifications by log-
ical smoothing,”Photogram. Eng. Remote Sens., vol. 52, pp. 213–221,
1986.

[9] R. Schowengerdt,Techniques for Image Processing and Classification
in Remote Sensing. New York: Academic, 1983.

[10] H. Bischof, W. Schneider, and A. J. Pinz, “Multispectral classification
of Landsat-images using neural networks,”IEEE Trans. Geosci. Remote
Sensing, vol. 30, no. May, pp. 482–493, 1992.

[11] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, “Scene labeling by
relaxation operations,”IEEE Trans. Syst. Man Cybernet., vol. 6, pp.
420–433, June 1976.

[12] S. Peleg, “A new probabilistic relaxation scheme,”IEEE Trans. Pattern
Anal. Machine Intell., vol. PAMI-2, pp. 362–369, 1980.

[13] J. O. Eklundh, H. Yamamoto, and R. Rosenfeld, “A relaxation method
for multispectral pixel classification,”IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. PAMI-2, pp. 72–75, 1980.

[14] O. D. Faugeras and M. M. Berthod, “Improving consistency and re-
ducing ambiguity in stochastic labeling: An optimization approach,”
IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-3, pp. 412–424,
1981.

[15] J. A. Richards, D. A. Landgrebe, and P. H. Swain, “Pixal labeling by
supervised probabilistic relaxation,”IEEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-3, pp. 188–191, 1981.

[16] P. Gong and P. J. Howarth, “Performance analyzes of probabilistic re-
laxation methods for land-cover classification,”Remote. Sens. Environ.,
vol. 30, pp. 33–42, 1989.

[17] G. C. Toussaint, “The use of context in pattern recognition,”Pattern
Recognit., vol. 10, pp. 189–204, 1978.

[18] P. H. Swain, S. B. Vardeman, and J. C. Tilton, “Contextual classifica-
tion of multispectral image data,”Pattern Recognit., vol. 13, no. 6, pp.
429–441, 1981.

[19] J. C. Tilton, S. B. Vardeman, and P. H. Swain, “Estimation of context
for statistical classification of multispectral image data,”IEEE Trans.
Geosci. Remote Sensing, vol. 20, pp. 445–452, July 1982.

[20] J. Haslett, “Maximum likelihood discriminant analysis on the plane
using a Markovian model of spatial context,”Pattern Recognit., vol.
18, pp. 287–296, 1985.

[21] R. M. Haralick and H. Joo, “A context classifier,”IEEE Trans. Geosci.
Remote Sensing, vol. 24, pp. 997–1007, Nov. 1986.

[22] H. M Kalayeh and D. A. Landgrebe, “Stochastic model utilizing spectral
and spatial characteristics,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. PAMI-9, pp. 457–461, 1987.

[23] N. Khazenie and M. M. Crawford, “Spatial-temporal autocorrelated
model for contextual classification,”IEEE Trans. Geosci. Remote
Sensing, vol. 28, pp. 529–539, July 1990.

[24] P. Gong and P. J. Howarth, “Frequency-based contextual classification
and grey-level vector reduction for land-use identification,”Photogram.
Eng. Remote Sens., vol. 58, no. 4, pp. 423–437, 1992.

[25] , “Land-use classification of SPOT HRV data using a cover-fre-
quency method,”Int. J. Remote Sens., vol. 13, no. 8, pp. 1459–1471,
1992.

[26] P. Gong, “Reducing boundary effects in a kernel-based classifier,”Int.
J. Remote Sens., vol. 15, no. 5, pp. 1131–1139, 1994.

[27] M. C. Zhang, R. M. Haralick, and J. B. Campbell, “Multispectral image
context classification using stochastic relaxation,”IEEE Trans. Syst.
Man Cybernet., vol. 20, pp. 128–140, Jan. 1990.

[28] Y. Jhung and P. H. Swain, “Bayesian contextual classification based
on modifiedM—Estimates and Markov random fields,”IEEE Trans.
Geosci. Remote Sensing, vol. 34, pp. 67–75, Jan. 1996.

[29] R. M. Haralick and L. G. Shapiro, “Survey: Image segmentation,”Com-
puter. Vis. Graph. Image Process., vol. 29, pp. 100–132, 1985.

[30] C. Tom, L. D. Miller, and J. W. Christenson, “Spatial land use inventory,
modeling, and projection/denver metropolitan area with inputs from
existing maps, airphotos, and Landsat imagery,” National Aeronautics
and Space Administration, Greenbelt, MD, NASA Tech. Memo. 79 710,
1978.

[31] A. H. Strahler, “The use of prior probabilities in maximum likelihood
classification of remotely sensed data,”Remote Sens. Environ., vol. 10,
pp. 135–163, 1980.

[32] J. R. Jensen,Digital Image Processing. Upper Saddle River, NJ: Pren-
tice-Hall, 1986.

[33] L. Masarilla, E. H. Zahzah, and J. Desachy, “Combination of remote
sensing and geocoded data for satellite image interpretation based on
neural networks,” inProc. IGARSS, vol. II, 1993, pp. 725–727.

[34] “Special issue on data fusion,”IEEE Trans. Geosci. Remote Sensing,
vol. 37, pp. 1185–1460, May 1999.

[35] M. Nagao and T. Matsuyama, “Edge preserving smoothing,”Comput.
Vis. Graph. Image Process., vol. 9, pp. 394–407, 1979.

[36] , A Structural Analysis of Complex Aerial Photographs. New
York: Plenum, 1980.

[37] P. Gong and P. J. Howarth, “Land cover to land use conversion: A
knowledge-based approach,” inProc. Technical Papers in Annual Conf.
of American Society of Photogrammetry and Remote Sensing, vol. 4,
Denver, CO, 1990, pp. 447–456.

[38] J. Ton, J. Stricklen, and A. K. Jain, “Knowledge-based segmentation
of Landsat images,”IEEE Trans. Geosci. Remote Sensing, vol. 29, pp.
222–232, Mar. 1991.

[39] T. Kusaka and Y. Kawata, “Hierarchical classification of Landsat TM
image using spectral and spatial information,” inProc. IGARSS, 1991,
pp. 2187–2190.

[40] M. Goldberg, D. G. Goodenough, M. Alvo, and G. M. Karam, “A hi-
erarchical expert system for updating forestry maps with Landsat data,”
Proc. IEEE, vol. 73, pp. 1054–1063, June 1985.

[41] C. A. Therrien, “An estimation-theoretic approach to terrain image
segmentation,”Comput. Graph. Image Process., vol. 22, pp. 313–326,
1983.

[42] D. H. Ballard and C. M. Brown,Computer Vision. Upper Saddle River,
NJ: Prentice-Hall, 1982.

[43] R. C. Gonzalez and P. Wintz,Digital Image Processing. Reading, MA:
Addison-Wesley, 1987.

[44] M. James,Pattern Recognition. Oxford, U.K.: BSP Professional
Books, 1987.

[45] R. Jain, R. Kasturi, and B. G. Schunck,Machine Vision. New York:
McGraw-Hill, 1995.

[46] J. A. Richards,Remote Sensing Digital Image Analysis: An Introduc-
tion. Berlin, Germany: Springer-Verlag, 1994.

[47] B. Bhanu, P. Symosek, and S. Das, “Analysis of terrain using multispec-
tral images,”Pattern Recognit., vol. 30, no. 2, pp. 197–215, 1997.

[48] C. K. Chow and T. Kaneko, “Automatic boundary detection of the left-
ventricle from cineangiograms,”Comput. Biomed., vol. 5, pp. 388–410,
1972.

[49] Y. Nakagawa and A. Rosenfeld, “Some experiments on variable thresh-
olding,” Pattern Recognit., vol. 11, pp. 5191–204, 1979.

[50] S. D. Yanowitz and A. M. Bruckstein, “A new method for image seg-
mentation,”Comput. Vis. Graph. Image Process., vol. 46, pp. 82–95,
1989.



890 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 4, APRIL 2003

[51] H. Blum, “A transformation for extracting new descriptors of
shape,” inProc. Symp. Models for Perception of Speech and Vision
Form. Cambridge, MA: MIT Press, 1964, pp. 362–380.

[52] E. Persoon and K. S. Fu, “Shape description using fourier descriptors,”
IEEE Trans. Syst. Man Cybernet, vol. 7, pp. 170–179, 1977.

[53] N. J Naccache and R. Shinghal, “STPA: A proposed algorithm for thin-
ning binary patterns,”IEEE Trans. Syst. Man Cybernet., vol. SMC-14,
pp. 409–418, 1984.

[54] Y. S. Chen and W. H. Hsu, “A modified fast parallel algorithm for thin-
ning digital patterns,”Pattern Recognit. Lett., vol. 7, no. 2, pp. 99–106,
1988.

[55] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital
patterns,”Commun. ACM, vol. 27, pp. 236–239, 1984.

[56] L. Lam, S. W. Lee, and C. Y. Suen, “Thinning methodologies-A com-
prehensive survey,”IEEE Trans. Pattern Anal. Machine Intell., vol. 14,
pp. 869–885, Sept. 1992.

[57] S. DiZenzo, S. D. DeGloria, R. Bernstein, and H. G. Kolsky, “Gaussian
maximum likelihood and contextual classification algorithms for multi-
crop classification,”IEEE Trans. Geosci. Remote Sensing, vol. 25, pp.
805–814, Nov. 1987.

[58] J. A. Richards, D. A. Landgrebe, and P. H. Swain, “On the accuracy of
pixel relaxation labeling,”IEEE Trans. Syst. Man Cybernet., vol. 11, pp.
303–309, 1981.

[59] R. M. Haralick and L. G. Shapiro,Computer and Robot Vision.
Reading, MA: Addison-Wesley, 1992.

[60] I. Pitas,Digital Image Processing Algorithms. London, U.K.: Pren-
tice-Hall, 1993.

Wanxiao Sunreceived the B.S. degree in computer-assisted cartography from
Nanjing University, Nanjing, China, the M.S. degree in remote sensing and GIS
from the Chinese Academy of Sciences, Nanjing, China, and the Ph.D. degree
in remote sensing and GIS from University of Mainz, Mainz, Germany, in 1999.

She is currently an Assistant Professor with the Department of Geography,
Southern Illinois University, Carbondale. She was a Postdoctoral Researcher in
the Department of Environmental Science, Policy and Management, University
of California, Berkeley, in 2001. Her present research interests focus on image
classification and feature extraction algorithms applied to remotely sensed data,
information fusion of multiresolution data, the integration of remote sensing
and GIS techniques in environmental monitoring, management and planning,
and 3-D visualization and simulation.

Volker Heidt received the Ph.D. degree in ge-
ography, botany, zoologym, and physics at the
University of Giessen, Giessen, Germany, in 1971.

He is currently a Professor in the Department
of Geography, University of Mainz, Mainz, Ger-
many. He is Founder and Head of the Research
Group “Ecology & Planning” in the Department
of Geography, University of Mainz and is Founder
and Vice President of “RegioComun”—Institute
for Strategic Regional Management. His researches
focus on urban ecology and landscape planning. He

is a Principal Investigator (PI) or Co-PI of several related projects. He serves as
a coordinator of the ERASMUS-Intensive Program “Geography of Water,” an
exchange program of several European universities sponsored by the European
Union.

Peng Gongreceived the B.S. and M.S. degrees from
Nanjing University, Nanjing, China, in 1984 and
1986, respectively, and the Ph.D. degree from the
University of Waterloo, Waterloo, ON, Canada, in
1990.

He is currently a Professor in the Department of
Environmental Science, Policy, and Management,
University of California, Berkeley, and Co-Director
of the Center for Assessment and Monitoring of
Forest and Environmental Resources (CAMFER),
University of California, Berkeley. He was with

York University, Toronto, ON, and the University of Calgary, Calgary, AB,
Canada., before joining the University of California, Berkeley, in 1994. His
research interests include photoecometrics, global change monitoring, and the
role of technology on society. He is an author/coauthor of over 200 papers and
five books.

Dr. Gong serves as the Director of the International Institute for Earth System
Science, Nanjing University, Editor-in-Chief ofGeographic Information Sci-
ences, and Editor for theInternational Journal of Remote Sensing.

Gang Xu received the Ph.D. degree from the University of Mainz, Mainz, Ger-
many.

He is currently a Visiting Assistant Professor in the Department of Geog-
raphy, University of Vermont, Burlington. His research interests include eco-
nomic geography, international business, spatial analysis, and tourism manage-
ment. His research has been published in several scholarly journals.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


