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Information Fusion for Rural Land-Use
Classification With High-Resolution
Satellite Imagery

Wanxiao Sun, Volker Heidt, Peng Gong, and Gang Xu

Abstract—We propose an information fusion method for the ex- a classifier. This per-pixel classification approach often results
traction of land-use information based on both the panchromatic jn “salt-and-pepper” effects and weakly defined interregion
and multispectral Indian Remote Sensing Satellite 1C (IRS-1C) poundaries on the final map [1]. Four major thrusts for en-

satellite imagery. It integrates spectral, spatial and structural . . h . .
information existing in the image. A thematic map was first pro- hancing the quality of thematic maps can be identified. The

duced with a maximum-likelihood classification (MLC) applied firstgroup consists of making better use of spectral information
to the multispectral imagery. Probabilistic relaxation (PR) was based on an alternative spectral representation [2]. In this
then performed on the thematic map to refine the classification approach, spectral classes are represented by their spectral
with neighborhood information. Furthermore, we incorporated shapes; the spectral shape is a vector of binary features that
edges extracted from the higher resolution panchromatic imagery yegcries the relative values between spectral bands. Wharton

in the classification. An edge map was generated using operationsd | d lassi i |
such as edge detection, edge thresholding and edge thinning. eveloped a prototype expert system to classify multispectra

Finally, a modified region-growing approach was used to improve data on the basis of spectral knowledge [3].
image classification. The procedure proved to be more effective in ~ The second group may be characterized as the increased use
land-use classification than conventional methods based only on of spatial information, also known as contextual information.

multispectral data. The improved land-use map is characterized e sirategies can be identified in contextual classification:
with sharp interregional boundaries, reduced number of mixed

pixels and more homogeneous regions. The overall kappa statistics 1) methods based on the classification of homogeneous

increased considerably from 0.52 before the fusion to 0.75 after. objects [4]-[10];

Index Terms—Edge extraction, high-resolution satellite 2) technigues based on probabilistic relaxation, which allow
imagery, image classification, information fusion, land-use clas- the spatial properties of a region to be used in the classifi-
sification, multispectral classification, probabilistic relaxation, cation process in a logically consistent manner [11]-[16];

region-growing algorithm. 3) methods derived using compound decision theory and se-

quential compound decision theory [17]—[23];
|. INTRODUCTION 4) frequency-based contextual classification [24]-[26]

ONVENTIONAL multispectral classification methods (these method_s involve a d_a ta red_uctlon_ algorithm

make use of spectral response of ground objects. The to convert mult!spectral data into a s!ngle image fql-
spectral response of ground objects within one pixel is a set of Ic:weqf.by .app.lylng a frequency-matching algorithm in
n radiance measurements obtained in the various Wavelengths classification); . . o
bands. This set of radiance measurements is referred to as ) methods bf”‘sed on stochastic modeling of the distribution
a spectral vector in the measurement space. Because spectr. of C_Iasses n t_hE’T scene [_27]’ [23]- _ _ .
responses measured by remote sensors over various featurfi‘e third group is information fusion and integration W'th,
of ground objects often permit an assessment of the type eﬁ'ﬂf'”ary_ data If':lyers. B“?ad'V' two _tYpeS Pf data are used n
condition of the features, these responses are also referred1fgrmation fusion techniques: additional images (i.e., multi-
as spectral signatures. Usually, the spectral signatures of efftiPoral and multisensor image data, [29]) and ground data or
class type are modeled to have multivariate normal distributigiillary information [9], [30]-[33]. Conceptually, three cate-
and the parameters of such spectral signatures are estim&@¢€s of data fusion were summarized [34], i.e., data level, fea-
from training samples. Based on the spectral signatures, tHee level, and decision level fusion. The fourth group involves

spectral vector of a pixel is used to classify the pixel by usirf&e use of knowledge-based classification techniques. Nagao
and Matsuyama [35], [36] used a knowledge base to charac-
, _ _ terize contextual and geometric constraints for the task of region
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have been proposed [42]-[46]. Usually, edge detectors use first-
or second-order derivatives. A texture boundary locator (TBL)
calculates the texture gradient of an image, which is the local
rate of change of a texture attribute [47]. Edge enhancement
produces a grayscale image that carries information about
the edge magnitude. A threshold operation can be used to
detect edges and present them in a binary image. Globally,
histogram-based adaptive thresholding is commonly used
[48]-[50]. The resultant thick binary image must be thinned
to produce sharp edges. A number of edge detection and edge
thinning strategies exists [51]-[55]. A comprehensive review
of existing thinning algorithms can be found in [56].

The objective of this study is to improve the classification
accuracy of the thematic map by fusing the spectral, spatial,
and structural information existing in images. For this purposgg. 1. |RS-1C multispectral imagery acquired on 29 July 1997, Landau,
a combined ISODATA and maximum-likelihood classificatiorermany, band combination 3,2,1.

(MLC) algorithm from conventional multispectral classifica-

tion, probabilistic relaxation from contextual classification, TABLE |
edge extraction, and region growing were selected and tested. LAND-USE CLASSIFICATION SYSTEM
Level 1 Level 2 Level 3
Il. STUDY SITE, DATA, SEGMENTATION, AND
CLASSIFICATION SCHEME Agriculture Cropland Barley
The study site is the county of Landau of the State Rhein- Corn
land-Pfalz, Germany (Fig. 1). Itis located in southwestern Ger- Oat
many, and lies between the Palatinate Forest “Haardt” and Rhine
lowlands. This area comprises mainly an agricultural environ- Sugar beet
ment with a medium-sized city of Landau, a few small urban '
areas, and some forested areas with an area of 539 km Vine
An Indian Remote Sensing Satellite 1C (IRS-1C) image ac- Wheat
quired on 29 July 1997 was used in the study. A 1/9 subscene
of PAN image and its corresponding Linear Imaging and Self = Grassland Grassland Grassland
Scanning Sensor Il (LISS-IIl) image were selected. The PAN
subscene contains 51435082 pixels, while the LISS-III sub- Forestiand Evergreen Conifer
scene contains 1224 1255 pixels. The PAN data have a ground Deciduous Deciduous

resolution of 5.8 m, while the LISS-1ll data have a spatial reso-

lution of 23.5 m in the green, red, and near-infrared bands. Mixed forest Mixed forest
To make it easier to compare satellite imagery with other in-

formation such as digital orthophotos and topographic maps,

we transformed the original imagery to Gauss-Krueger Coor-  Trnsport Highway Highway

dinate system. As the IRS-1C PAN data has a higher resolu-

tion, it was first rectified using 28 ground control points (GCPs)

measured with differential global positioning system (DGPS).

The average rms error was 1.14 pixels corresponding to appr /el, seven classes at the second level and twelve classes at the

imately 6.6 m on the ground. Using the rectified panchromatigid 1evel (Table ).

image as the reference, the multispectral image was rectified

through “image-to-image” registration. The total rms error was IIl. METHODS

0.33 pixels. These two rectifications were achieved by usingaa Use of Spatial Information

first-order polynomial and nearest neighbor resampling method_l_he probabilistic relaxation algorithm we adapted for gen-

In this study, we were only interested in the rural area, since

the urban area can be better derived from another data sou%gtmg PR map consists of four basic steps [46], [57]. First,

Amtliches Topographisch Kartographisches InformatiorP—rOl:’E’m'“tyhCalcu(ljé.lt'.0 nI was mad.ehusmg thg{MITC lalgonthm.
ssystem (ATKIS). ATKIS data contain land-use informatiohAssque .tf. a(; a Iglga I|mage with a size p'_i_(ﬁs |s| to
at a scale of 1:25 000. We selected all polygons belongip classified intoK classes(wi,ws, ..., wx). The class
to the category “urban and build up” from the ATKIS dat embership probabilities of pixel are defined as vector
and masked out these areas from the image. The remainifg@i)s Li(wa), - -5
nonurban area was used in this study. K

A hierarchical land-use classification system was developed. ZR‘(M) =1, 0< Pi(w) < 1. 1)

=1

Water Water Water

P;(wy)], and satisfy the condition

It contains three levels of land-use types: five classes at the first
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Second, calculating compatibility coefficientg (wy,w;) of K 0 1 2
classes from the MLC results by using ¢
N;j (wrwr) 5 <~ N>
iJ kWl
rij (Wi, wr) = logy K s K 2 7 7 \L 3 $
— N

> Ni(we,wi) 32 Nj (wk, wi)

k=1 i=1 le—r>|
where N;; (wg,w;) is the frequency of occurrence of clasg
andw; as neighbors at pixel and j. For each pair of neigh- 6 5 4
boring pixelsi andj and each pair of classes and,w; there

is a compatibility measure; ; (wy, w;). The compatibility coef-
ficients are then projected to the rangel, 3 with —1 repre-
senting a strong incompatibility, 0, neutral compatibility, to 1,

Fig. 2. Window geometry for the TBL algorithm (Bhaetial. 1997 [47]).

o P7 PO P1
strong compatibility [44]. o o o
Third, deriving neighborhood function. It is defined as (-1,-1) (i-1,J) (-1, j+1)
N, K P6 P P2
o (wn) =3 dig Y rijlwnwp @) @) i,jD) i) G, j+1)
i=ri=t P5 P4 P3
where NV, is the number of neighbors considered for pixel (+1,j-1) G+1, j) (i+1, j+1)
d;; is the weight factor of neighbors, artds the number of
iterations.

. o Fig. 3. The 3x 3 neighborhood of the pixeP(i, j) (Chen—Hsu [54]).
The new probability for pixel with class labelv, at the 9 @ 3x 3 neighborhood of the pixe? (7. j) (Chen-Hsu [54]

(t+ 1)thiteration is modified by multiplying the class probabil- o o _

ities by the neighborhood function. These new values are therd) Edge Thinning:The fast parallel thinning algorithm by
normalized to one. Such a modification is an iterative proce$shen and Hsu [54] was used here, because this algorithm pre-
Theoretically, it will not stop until no changes in class probai€rves the merits of the original such as the edge noise immu-
bilities occur for all pixels. This can, however, lead up a hug@ity and good effect in thinning crossing lines, and overcomes
number of iterations, or simply not converging. In practice, it i§1® Weaknesses such as the serious shrinking and line connec-

observed that the classification results will be improved in tH#/ity problems. A 3x 3 window is used (Fig. 3). The new value
first few iterations [16], [58]. of pixel P (i, j) at thenth iteration depends on its own value as
well as those of its eight neighboring pixels at the— 1)th
B. Structural Analysis Featured by Edge Extraction Techniqu#gration, so that all image elements can be processed simulta-
1) Edge EnhancementThe Sobel edge detector [43] theneously. This process is divided into two subcycles. The first
' gcle will be executed at odd iterations while the second cycle

Prewitt edge detector [43], and the TBL edge detector wef

tested for the IRS-1C PAN image. We found that the TBL d(\e’\-"” be executed at even iterations. A detailed explanation of the

tector provides good results and is relatively robust to noislg_]plementanon of these two subcycles is given in [54].
Therefore, we used the TBL detector in the extraction of ed@a
elements. The TBL algorithm takes into account the fact thﬂ:e
on either side of two adjacent regions with gradual transition o
the image intensities. The textural attribute is derived from the The purpose of the fusion operation (FU) is to construct
meany, and standard deviatiom of eachN x N window of homogeneous regions over the noisy thematic map. This
the image, wheré is obtained as a function of image featuregperation adds detailed and reliable edge information to the
to be detected. In order to compute a texture gradient image)@sy land-use classification map to generate sharp interregion
(2B +1) x (2B+1) window is centered at each pixel, whege boundaries and reduce mixed pixels between them. Haralick
is a function of the size of the region of interest and/or the rang8d Shapiro [59] describe three common region-growing
of the scene objects from the sensor. The window geometry fiihemes: single-linkage region growing, hybrid-linkage region
an arbitrary locatio in an image is shown in Fig. 2. The pixelsgrowing, centroid-linkage region growing. Pitas [60] described
atthe centers of the four sides and the corners of the window afe efficient region-growing algorithm. This approach starts
labeled sequentially as shown in the figure. The texture gradidi@m some seed pixels representing distinct image regions and

Fusion of Thematic Map and Edge Map Using A
gion-Growing Algorithm

at a pixel is obtained as grows them, until they cover the entire image.
L A modified version of Pitas’ region-growing algorithm was
) 0 % . : el . i
01252(3 {(M — pisa)’ + (05 — 0iga) } ] 4 proposed here. The image data used in the region-growing op

eration include the thematic map obtained from the MLC, the
2) Edge Thresholdingin this study, histogram-basedPR map from the probabilistic relaxation and the edge map from

thresholding was used to produce a binary image, in that &flge extraction. Region-growing takes three steps.

edge elements have value one. The threshold is not an absolut&) Automatic searching of seed pixels from the entiragm

one, but an upper percentage from the cumulative distribution A seed pixel is the first nonedge pixel that follows directly

function of the texture gradient image. a contour pixel.
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2) Region-growing starting with a seed pix&his results in 5 ¥ i:l g4t " ] i ¥,
connected homogeneous regions. Two rules are needed,| = ol 4 _ | o %8
i.e., a rule describing a growth mechanism and a rule i§ SV o ﬁiT 3 ] PRGN S g 3 1
checking the homogeneity of the regions after each %!‘"Q g '& f"“ r_.l «‘
growth. The growth mechanism is: at each stage and for | -5 ! i k E
each regionRY”), © = 1,2,...,G, it will be checked i

?

if there are unclassified pixels in a four-neighborhood

. |1
T Axi il :?‘%1

of each edge pixel and in the eight-neighborhood of (a)

each nonedge pixel. Before assigning such a pitela " X 7
regionRS", it will be checked if the region homogeneity rl i piey W medtoren
is still valid. Two conditions are used in checking the [k _&% ' g1 e -
homogeneity of the regions: 1) an edge on the edge map "‘ : i'l * - — “"
is reached; and 2) a class change on the PR map occurred. 5 E E arsssland NN woter

In other words, the algorithm makes “seed” regions grow | 1 $ g = highway wheat
until reaching a closed edge on the edge map or a class|_1 ' i

change on the PR map. (c)

3) Assigning the winning class to all pixels of each con-
) gning 9 P Fig. 4. Resultant maps from (a) MLC and ISODATA classification, (b) proba-

nected homog.ene'ou.s regioThe majority class of the bilistic relaxation after ten iterations, and (c) fusion of MLC map, PR map, and
connected region is first computed. Class labels of eaetiye map.

pixel in connected regions are the classes resulted from

the MLC. This class is defined as the winning class, and This classification results in a thematic map with 36 spec-

then assigned to all pixels in the homogeneous regiaial classes. These spectral classes were then grouped into 14

These three steps are repeated until all pixels in the imag@d-use classes according to the actual classes they represent.

have a class label. This operation results in an improvedsypset of the MLC result is shown in Fig. 4(a). In addition to

thematic map. the 12 classes listed in our land-use classification system, cloud

A software package consisting of four groups of algorithmgnd shadows were also included. Classification accuracy and

using C was developed. The package comprises the MLC alg@ppa statistics for each class were calculated for the MLC, PR,
rithm, PR algorithm, edge extraction techniques (the TBL edg@d region-growing fusion operation. The overall classification
detector, the histogram edge thresholding algorithm, and a fagturacies and kappa statistics are listed in Table II. A total of
parallel thinning algorithm), and a region-growing informations0 test sample points were randomly selected. The number of

fusion algorithm. sample points for each class is stratified to the distribution of
classes. During test sample collection, it was obvious to see, at
IV. RESULT AND DISCUSSION the center of sample areas, that the pixels are accurately clas-
A. Multispectral Classification sified with any of the three methods (MLC, PR, and FU). At

the inner edges, however, the pixels are often incorrectly clas-
ﬁified by MLC, and correctly identified by PR and FU. At the

rural imagery. For the implementation of MLC, a signature f"%tle:ruedges, the pixels are sometimes only correctly classified

containing the means and variance—covariance matrices of

spectral classes was generated from both the ISODATA clus.-tcjl? be ?ientht? ! cloudl,lwlhea%.sg%artaee,\t/,lIilvca t_?_:; parlle Y a}nd
tering procedure and training samples. mixed forest have been well classified by the . Their classi-

Fifty spectral classes were first created from the ISODA-l-Rcation accuracies are greater than 60% This is becaus_e those
clustering algorithm. The 50 classes in the thematic layer wegSS€s have better spectral separability. Heavy confusion oc-
then assigned the actual class names by comparing the origﬁ%{fed between vmgyarq and grassland_because of their similar
image data with the individual classes. As a result, 14 spe€Pectral responses in this season. A unique feature of the land-
tral classes corresponding to clearly identified conifer, decigé@Pe of this area is the extensive fields of vineyards. Owing
uous, barley, cloud and shadows were obtained. Twenty-two &@different vine types, exposition, soil condition, and growing
ditional spectral signatures were generated using training satatus, eight different spectral signatures of vine were first gen-
ples. A total number of 400 training sample areas were selecd@ted by using training samples. After MLC, these spectral sig-
with knowledge gained from fieldwork, topographic maps, dighatures were then merged into one land-use type. Similar to
ital orthophotos, original PAN and LISS-IIl data, merged PANINg, six spectral classes of grassland were also first trained for
and LISS-Il data, as well as the ATKIS data. It should be notedassification, and then merged into one land-use type. After
that the fieldwork was done in 1998, one year later than the @&@mparing the mean plots, histograms, and statistics of signa-
quisition of the satellite data. For some crop types that mightres from vine and grassland, it was found that the two spectral
change from year to year, training sample selection was caasses overlapped to some extent. As a result, these two classes
ducted using an agricultural database of the town of Suedlicb@nnot be identified clearly, and they are mixed together. Other
Weinstrasse. This database records the actual crop types of figlasfusion occurred between sugar beet and grassland and grass-
for 1997. land and forest.

A hybrid method combining ISODATA and the MLC algo-
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CLASSIFICATION ACCURACY AND KAPPA SI'ATISTT?SB(IEEMI!—’IARISON AMONG MLC, PR,AND FU APPROACHES
Producers Accuracy Kappa statistics
Class Name MLC PR FU MLC PR FU
barley 60.00% 50.00% 86.67% 0.6635 0.652 0.8542
cloud 88.89% 88.89% 94.44% 1 1 1
conifer 33.33% 79.17% 83.33% 0.4632 0.7109 0.8211
corn 55.56% 0.00% 55.56% 0.5006 0 1
deciduous 55.56% 77.78% 80.56% 0.5223 0.7067 0.759
grassland 41.67% 58.33% 75.00% 0.2653 0.3109 0.4532
highway 55.56% 61.11% 72.22% 0.6047 0.59 0.8023
mixed forest 62.50% 70.83% 79.17% 0.5974 0.839 0.8978
oat 45.00% 40.00% 80.00% 0.536 0.6465 0.8325
shadows 50.00% 50.00% 83.33% 0.4729 0.5388 0.6988
sugar beets 62.50% 75.00% 87.50% 0.5974 0.8048 0.8282
vine 52.78% 52.78% 58.33% 0.3006 0.2704 0.518
water 61.11% 72.22% 72.22% 0.8378 0.8594 0.9247
wheat 66.67% 76.67% 80.00% 0.5898 0.625 0.9159
Overall 55.71% 62.00% 77.43%
Classification
Accuracy
Overall Kappa 0.5188 0.5859 0.7548
Statistics
B. Probabilistic Relaxation classes, forest (i.e., conifer, mixed forest, and deciduous) gained

Probabilistic relaxation was performed on the rural thematipoSt improvement, from 0.46 to 0.71, 0.60 to 0.84, and 0.52 to
map. This operation generated the PR map. Experimen?a_?l’ rgspectlvely. This is because lots of |sole_1ted plxels con-
results show that after initial probabilistic relaxation, cloud@in€d in these classes were removed, and regions in the image
shadows, and highway tended to be overclassified. To overcolfy€ become more homogeneous. The classification accuracy
this problem, a modification of compatibility coefficients wa®f 9rassland increased from 42% to 58%, whereas the clas-
done. Compatibility coefficients between cloud and shadowd!ication accuracy of vine stayed unchanged (53%) with the
and highway and each of the 36 signatures were set to zerd®@PP2 decreased a bit. The reason is that generating homoge-
very small. This means if the class of a pixel belongs to any BEOUS patterns is an important characteristic of PR. In this case,
the classes of cloud, shadows or highway, the class probabilifB€ Vine polygons are more homogeneous than grassland poly-
of that pixel would be influenced to a much less extent by tHoNns before PR operation. The kappa of barley also slightly de-
neighboring pixels during the relaxation process. creased. Classification accuracies of cloud and shadows stayed

After visual comparison it was found that the best result w&§ichanged. However, the class of “corn” was reduced to zero.
achieved after ten iterations. In cases where a pixel possessBff IS because there are very few corn fields in the study area
a high probability, there was no change in class reassignm@ﬂd'ng to a negative compatibility coefficient between corn and
after the relaxation. Otherwise, if a pixel had low probabilitieSther classes.
the class of the central pixel would be replaced by the class , i .
of neighboring pixels. The probabilistic relaxation process wis ©One-Pixel Width Edge Map Generation
computationally intensive. For example, for an image size of 1) Generation of the Edge MapThe following combina-

1.6 MB with 36 classes, each iteration took approximately otiens of parameter® = 1,2,3; N = 3,5,7; T = 15,25,
hour on a Sun Solaris UltraSparc-2 workstation. and 35% were tested. As can be seen from the combination in

A subset of the class map after probabilistic relaxation Eg. 5(a), thick edges are the main problem with this edge de-
shown in Fig. 4(b). A comparison of the PR map with the ML@ector.
map suggests that the probabilistic relaxation operation has re2) Generation of Pixel-Width Edge Mapthe thinning op-
sulted in a significant reduction of the “salt-and-pepper” effeeration generated many closed boundaries and resulted in a one-
in the MLC map. Furthermore, the number of mixed pixels hasxel-width edge map. Results suggested that the combination
reduced. Consequently, regions in the image have become mafrd3 = 1, N = 3 andT = 15% is the best [Fig. 5(b)]. As
homogeneous, while line elements are maintained. can be seen from the figure, there are a lot of isolated points

Table Il gives us a quantitative measurement after PR. Thad short lines that do not form connected boundaries. Some fil-
overall classification accuracy increased from 56% to 62%, atets such as the median and Lee—Sigma filter were tested. These
overall kappa statistic increased from 0.52 to 0.59. Of thosewanted details have been reduced significantly by using a
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(©

Fig. 5. Resultant maps from (a) TBL algorith@®: = 1, N = 3, T = 15%,
(b) Chen—Hsu algorithmB = 1, N = 3, T = 15%, and (c) edge map after
using Lee-Sigma filter.

improvement in classification accuracy. Wheat and sugar beet
have relatively large and homogeneous fields. Their edges are
the most clearly detected, and form lots of closed boundaries.
The spectral variance at different locations between forest and
cropland helps increasing the classification accuracy very much.
It is worthwhile to note that the kappa statistics for vine in-

creased from 0.3 to 0.52, and grassland from 0.27 to 0.45. The
accuracies of vine and grassland with similar spectral responses
have also been improved to some extent.

V. CONCLUSION

A series of procedures were taken to improve land-use classi-
fication in the rural areas by making fuller use of the spatial and
structural information of IRS-1C PAN imagery and the spectral
information in the multispectral data. Each procedure can be im-
plemented simply, and the integration is effective in preserving
thin and edge details, which a simple filter cannot achieve. In
an earlier stage of our project, we tested the majority filter after
performing MLC, and the majority filter resulted in more homo-
geneous patterns by reducing “salt-and-pepper” noise. But the
mixed-pixel problem in the interregion areas and blurred inter-
class boundaries still exist, and cannot be solved. The combi-
nation of data fusion, edge detection, and probability relaxation
algorithms as a whole is worth documenting. In any image clas-
sification tasks, it is easy to get some results but harder to im-
prove the accuracy. The results of this research have general im-
plications. The combined use of multiresolution data by taking
advantage of the strengths of each type of data can be extended
to classification of PAN and multispectral images from Landsat
ETM+, SPOT, IKONOS, and Quickbird.

The main results obtained in this study are summarized
below.

1) The PR operation has resulted in a considerable reduction

Lee-Sigma filter [Fig. 5(c)]. Lee—Sigma filter uses the average = ¢ ihe “salt-and-pepper” noise in the MLC map. Conse-

of all pixel values within the moving window that fall within the

quently, regions in the image have become more homo-

designated range of standard deviations. Field visits indicated geneous, while line elements are maintained. However,

that even field paths were detected.

D. Fusion of Thematic Map and Edge Map Using
Region-Growing Algorithm

this algorithm does not work well for classes with iso-
lated coverage and small size.

2) The texture boundary locator algorithm is relatively ro-
bust to noise. The TBL and a fast thinning algorithm have

Three information sources were used in the fusion: 1) the  not only produced very fine edges from the IRS-1C PAN
MLC map, 2) the PR map, and 3) the edge map. Part of the image, but also succeeded in closing most of the edges to
final thematic map is shown in Fig. 4(c). The fusion of the the- form field boundaries.We found that the resulting edges
matic map and the edge map provides a series of closed bound- lent robustness to the classification system against the
aries more or less corresponding to individual fields and con-  mixed-pixel problem by capturing detailed spatial infor-
taining a unique class. As can be seen from the figure, important  mation that is not available from the multispectral data.
boundaries that have not been detected during the edge-dete@®) A modified region-growing algorithm was used to fuse

tion process are obtained from the probabilistic relaxation m
in a coarse manner.

ap classification information previously obtained from the
MLC, the PR, and the edge map. The fusion operation

The overall kappa statistics of the fusion operation increased  resulted in more homogeneous regions over the noisy the-
significantly, from 0.52 to 0.75 (Table Il). When calculating the matic map.
absolute improvement of each land-use class comparing to that) The postprocessing image fusion strategy has proven to
of MLC, we found that corn, conifer, wheat, mixed forest, decid- be particularly effective for generating sharp interclass

uous, oat, sugar beet, and shadows contributed most to the

im- boundaries and reducing mixed pixels between interfield

provement. Owing to the detected edges, land-use type “corn,” boundaries. Important edges that had not been detected

which was reduced to zero after the probabilistic relaxation,

is  during edge extraction were compensated from the PR

rectified. The clearly identified edges of oat result in a large map in a coarse manner. The fusion of the thematic map
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and the edge map provides a series of closed boundarigz]
closely corresponding to individual fields with unique
classes. 23]
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