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Comparison of Earth Observing-1 ALI and
Landsat ETM+ for Crop Identification

and Yield Prediction in Mexico
David B. Lobell and Gregory P. Asner

Abstract—This paper presents a comparison of Earth Ob-
serving 1 (EO-1) Advanced Land Imager (ALI) and Landsat-7
Enhanced Thematic Mapper Plus (ETM+) images collected over
an agricultural region in northwest Mexico. Across 115 fields
with a range of cover types, radiance measurements collected by
ALI were within 3% of ETM+ for all five common bands. Crop
discrimination was significantly improved with ALI compared
to ETM+, with an increase from 85% to 95% accuracy for
distinguishing maize from wheat fields. This improvement was
attributed to the greater SNR in ALI, as well as the unique in-
formation content of ALI band 4p (0.84–0.89 m), which may be
due to sensitivity to canopy water content. Yield predictions from
reflectance-calibrated data did not reveal significant differences
between the sensors. The greatest distinction between ALI and
ETM+ was observed in the panchromatic band, with ALI pro-
viding more detailed information on inter- and intrafield radiance
differences, which show promise for precision agriculture applica-
tions. We conclude that ALI meets or exceeds ETM+ performance
for agricultural applications evaluated here, thus providing a
plausible option for continuity of the valuable Landsat record.

Index Terms—Advanced Land Imager (ALI), Enhanced The-
matic Mapper Plus (ETM+), remote sensing.

I. INTRODUCTION

T HE LAUNCH of the Earth Observing 1 (EO-1) satellite on
November 21, 2000 marked a key phase in the National

Aeronautics and Space Administration’s (NASA) New Mille-
nium Program, which has the goal of testing advanced technolo-
gies for space and earth exploration. Among the three sensors
flown on EO-1 was the Advanced Land Imager (ALI), designed
to produce images directly comparable to Landsat-7 Enhanced
Thematic Mapper Plus (ETM+), but to do so with significant re-
ductions in sensor size, mass, and cost [1]. An important task of
the EO-1 mission is, therefore, to compare the performance of
ALI and ETM+ and to evaluate the potential for ALI technology
to provide continuity of the 30-year Landsat record.
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This paper presents a comparison of ALI and ETM+ images
collected over an agricultural region in northwest Mexico on
January 14, 2002. In addition to comparing the raw data col-
lected by the two sensors, we compared their performance in
specific applications relevant to cropland monitoring and man-
agement. This latter comparison was important for translating
differences in sensor characteristics to measurements relevant
to scientific and management end-users. As in all applications,
performance gains or losses should be considered along with the
associated costs as well as the required precision and accuracy
of a given application.

Several specific applications of remote sensing in agricul-
ture have been identified, ranging from total crop area estimates
to mapping of within-field moisture and nutrient deficiencies
[2]–[6]. In this study, we focused on two especially common and
important applications: crop identification and yield estimation.
Discrimination of crop types is needed to provide large-scale
area estimates, which are often lacking or severely biased in
less-developed countries; information on the spatial distribu-
tion of crops, which is useful for tracking the transport of nu-
trients such as nitrogen into groundwater supplies or adjacent
aquatic ecosystems [7]; and constraints on crop-specific char-
acteristics such as water and light-use efficiencies, which are
variables needed to estimate evapotranspiration and dry matter
production [8], [9]. Crop discrimination is most readily achieved
using sequences of images acquired throughout the year along
with knowledge of the growing season for each crop [10]. How-
ever, frequent cloud cover can severely limit image availability
in many agricultural regions, thereby creating a need for spec-
tral discrimination within a single multispectral image. This can
present a significant challenge, even when crops are observed at
different stages in their respective growth cycles.

Yield estimation from remote sensing goes one step further
than crop identification, requiring not only information on crop
type but also some measurement of crop condition. Typically,
remotely sensed estimates of leaf area index (LAI) or the frac-
tion of absorbed photosynthetically active radiation (fAPAR)
are used to drive, update, or initialize crop-specific growth
models, which often also incorporate soil and meteorological
variables [11], [12]. The resulting yield estimates, which may
be available months before harvest, provide valuable informa-
tion to farmers and governments for marketing and trading
decisions. Yield maps also provide the ability to identify con-
sistently high or low yielding areas of fields, which can then be
used to define separate management units and analyze spatial
and temporal patterns in yields for improved understanding of
controls over crop production [5], [13].
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Fig. 1. ALI panchromatic image of the Yaqui Valley study region. Fields used
to compare ALI and ETM+ radiance are delineated by white lines.

II. M ETHODS
A. Study Area

The study was conducted in the Yaqui Valley of northwestern
Mexico (27 N, 110 W), a region that covers 225 000 ha
between the Sierra Madre Mountains and the Gulf of California
(Fig. 1). The majority of the land in this area (165 000 ha) is
sown with spring wheat in late November–December, receives
three to five irrigations throughout the growing season, and
is harvested in late April–May. Both durum wheat (Triticum
turgidum L.) and bread wheat (Triticum aestivumL.) are
widely grown, comprising roughly 85% and 15% of the total
wheat area, respectively. The second most common crop is
irrigated maize (Zea maysL.), which is typically planted on

10 000 ha in September and harvested in late February.
Field observations were made during the week of January

10–16, 2002 to identify crops present on numerous fields within
the Valley (locations shown in Fig. 1). A total of 115 fields
were geolocated with a global positioning system unit and clas-
sified as one of the following cover types (total number of each
given in parentheses): alfalfa (3), bare soil (6), bread wheat (18),
brocolli (3), chile pepper (5), durum wheat (38), garbanzo (5),
lettuce (1), maize (29), orange (1), potato (3), squash (1), and
watermelon (2). Durum wheat appeared very similar to bread
wheat and was visually discriminated based on its more erec-
tophile leaves and slightly darker color. These fields were also
revisited later in the growing season, when differences are more
pronounced, to confirm the wheat type classification.

B. Image Collection and Processing

Landsat ETM+ imagery was collected at 10:35A.M. local
time on January 14, 2002, followed 1 min later by acquisition

TABLE I
BAND CHARACTERISTICS FORLANDSAT ETM+ AND EO-1 ALI SENSORS.

n/a= “NOT APPLICABLE”

of ALI data. The spectral range and spatial resolution of bands
for each sensor are given in Table I. Radiometric and geometric
corrections were applied to the ETM+ data at the U.S. Geolog-
ical Survey Earth Resources Observation Systems (EROS) Data
Center.

The ALI data were calibrated to radiance using a procedure
developed at MIT Lincoln Labs [14]. In-flight measurements
of dark current and an internal calibrator lamp were used to
define an offset and gain for each band, with a different cali-
bration factor for each detector (each sample across track) in
each of the four sensor chip assemblies (SCAs). Dead detectors
were not removed from the final dataset, resulting in lines of
bad data evident in bands 5 and 5p. Another problem in the dis-
tributed dataset was misregistration of band 3 in SCA 3. This
has been observed in other ALI images [24] and was attributed
to a “leaky” pixel correction applied to band 3 of SCA 3. No
band-to-band misregistration was evident in band 2 of SCA 4,
which also underwent leaky-pixel corrections [14]. Nonethe-
less, manual selection of ground control points was required to
register band 3 to the other SCA 3 bands.

Both the ETM+ and ALI datasets were converted to surface
reflectance for the purposes of yield prediction (see below),
using the ACORN software program (AIG, Boulder, CO). Both
datasets were also georegistered to within one pixel using ge-
ographic information systems (GIS) coverages of roads, which
were clearly visible in the images (see Fig. 1). For each of the
115 fields shown in Fig. 1, a rectangular region was defined that
covered a large portion of the interior of the field, while avoiding
field boundaries. This was done to eliminate potential contam-
ination from roads or adjacent fields when comparing the two
sensors.

C. Crop Identification

To compare ALI and ETM+ for crop identification, a su-
pervised maximum-likelihood classification (MLC) was per-
formed on each image using all optical bands (not including
Landsat thermal band) for each sensor and the three major crops
as classes: maize, durum wheat, and bread wheat. On January
14, all three crops exhibited a range of ground cover, canopy
density, and developmental stages. Most maize fields had re-
cently reached the flowering stage and showed early signs of
senescence associated with postanthesis development. Wheat
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fields were still in the preanthesis stage of development, with
several fields exhibiting a significant ( 20 ) fraction of ex-
posed soil. The ability of each sensor to correctly classify crop
type was quantified by comparing the training pixels with their
predicted classes in an error matrix.

Overall accuracy was defined as the percentage of total
pixels used for training that was correctly classified by the
MLC. Producer’s accuracy was calculated by dividing the
number of pixels correctly classified for each crop by the total
number of training pixels for that crop, while user’s accuracy
was the number of correctly classified pixels divided by the
total number of classified pixels for that crop. Finally, the kappa
coefficient was calculated as a measure of the significance of
the classification results relative to chance agreement

kappa (1)

where is the number of observations in rowand column ;
is the total number of observations in row; is the total

number of observations in column; and is the total number
of observations. A kappa value of zero indicates that a classi-
fication is no better than random assignment of pixels, while a
value of one indicates perfect agreement between training pixels
and their prescribed classes [15].

D. Yield Prediction

Yield estimates were derived for maize following the ap-
proach of [16], which relies on satellite estimates of fAPAR to
constrain a simple crop growth model. fAPAR was calculated
in the same manner for both ALI and ETM+, based on the
following:

fAPAR
NDVI NDVI

NDVI NDVI
SR SR

SR SR
fAPAR fAPAR fAPAR (2)

where NDVI is the normalized difference vegetation index

NDVI
NIR RED
NIR RED

(3)

and SR is the simple ratio index

SR
NIR
RED

(4)

RED and NIR represent reflectance at red and near-infrared
wavelengths, respectively, which correspond to bands 3 and 4
in ETM+ and ALI. NDVI and NDVI are defined as the
second and 98th percentiles, respectively, of NDVI within the
image, while SR and SR are similarly defined based on
the SR image. fAPAR and fAPAR are set equal to 0.01
and 0.95, corresponding to the extremes of potential canopy ab-
sorption of photosynthetically active radiation (PAR) [17], [18].
While this approach assumes that fields with extreme values
of fAPAR (0.01 and 0.95) are observed within the image, our
experience is that this requirement is almost always met when
working in an agricultural landscape containing both bare fields
and fully developed crops. The use of NDVI and SR is based
purely on empirical evidence that a simple combination of the
two indices performs better than either one alone [16], [18].

TABLE II
REGRESSIONSTATISTICS FORAVERAGE RADIANCE IN EO-1 ALI VS. LANDSAT

ETM+ FOR COMMON BANDS IN 115 AGRICULTURAL FIELDS. STANDARD

DEVIATIONS OF ESTIMATES ARE SHOWN IN PARENTHESES. SLOPE IS
SIGNIFICANTLY DIFFERENT FROM 1.0 (p = 0:05). OFFSET IS

SIGNIFICANTLY DIFFERENT FROM 0.1 (p = 0:05)

TABLE III
CORRELATION BETWEENEO-1 ALI BANDS IN 115 AGRICULTURAL FIELDS

To estimate yield, a time profile of fAPAR based on
growing-degree days was adjusted at each pixel to match
the computed fAPAR in the January 14, 2002 image. Daily
estimates of fAPAR were then multiplied by measured values
of incident PAR to compute total growing-season absorption of
PAR (APAR). Finally, yield was calculated using field-mea-
sured values of light-use efficiency (LUE) and harvest index
(HI):

Yield APAR LUE HI (6)

The details of this approach are provided in [16]; however, the
important aspect for this study is that any differences between
yield estimates in ETM+ and ALI were due solely to differ-
ences in fAPAR. While the high correlations between the rel-
evant bands (Tables II and III) lead to the expectation of similar
yield predictions from the two sensors, quantifying the degree of
this similarity is important for translating sensor differences into
practical units (e.g., tons per hectare). Unfortunately, field mea-
surements of maize yields were not available for independent
validation of yields. We, therefore, assessed the performance of
ETM+ and ALI yield predictions relative to each other on the
29 maize fields, and cannot state which are closer to the actual
yields. Wheat yields were not considered since the image was
acquired too early in the season for accurate yield prediction.

III. RESULTS

A. Multispectral Comparison

Radiance measurements in the five common bands of ETM+
and ALI (bands 1, 2, 3, 5, and 7) agreed very well in the 115
fields surveyed (Table II). These fields spanned a range of cover
types from bare soil to fully developed canopies and, there-
fore, facilitated a comparison of radiance across a wide range of
values in each band. Band 1 averaged 2.3% higher in ALI than
ETM+, with corresponding values of 1.8%, 0.5%,0.7 , and

0.8 for bands 2, 3, 5, and 7, respectively. Thus, we conclude
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Fig. 2. Average radiance spectra for maize, durum wheat, and bread wheat
fields measured by (a) ETM+ and (b) ALI.

that ALI radiance was generally within 2% of ETM+ measure-
ments.

A correlation matrix of ALI bands indicated that bands 1p and
4p were highly correlated with their neighboring bands 1 and
4 (Table III). Band 5p exhibited a slightly negative correlation
with band 5 in these fields ( ), and was correlated most
strongly with band 4p ( ). Since both ALI bands 4 and
4p were highly correlated with ETM+ band 4 ( ), these
results suggest that the “prime” bands in ALI added little addi-
tional spectral information over ETM+ data in this setting. How-
ever, small differences between highly correlated bands may
still represent a significant source of information. The following
sections explore the nature of this information for crop identifi-
cation and yield prediction.

B. Crop Identification

The average radiance spectra for maize, durum wheat, and
bread wheat are shown in Fig. 2(a) for ETM+ and Fig. 2(b) for
ALI. The most prominent difference between maize and wheat
spectra was the magnitude of NIR radiance, reflecting the more
advanced stage of canopy development for maize at this time
of year, which results in greater scattering of NIR photons. The
two wheat spectra were very similar, with the greatest differ-
ence observed at band 3 of both sensors. This agrees with field
observation of slightly darker leaves in durum wheat.

The results of the MLC are summarized in Table IV for the
ETM+ image and in Table V for ALI. Overall classification ac-
curacy increased from 72.0% to 81.4% from ETM+ to ALI, re-
sulting mainly from improved separation of maize from wheat.
A classification was also performed using only the ALI bands
common to ETM+ (discarding the prime bands), resulting in
78.8% overall accuracy. These results suggest that both the in-
creased SNR of ALI and the additional spectral information in

TABLE IV
ERRORMATRIX FOR SUPERVISEDMAXIMUM LIKELIHOOD CLASSIFICATION OF

JANUARY 14, 2002 LANDSAT ETM+ IMAGE. VALUES INDICATE THE NUMBER

OF PIXELS OF EACH CROPFALLING IN EACH CLASS

TABLE V
ERRORMATRIX FOR SUPERVISEDMAXIMUM LIKELIHOOD CLASSIFICATION OF

JANUARY 14, 2002 EO-1 ALI IMAGE. VALUES INDICATE THE NUMBER OF

PIXELS OF EACH CROPFALLING IN EACH CLASS

the ALI prime bands, although small in magnitude, have a sig-
nificant impact on crop classification. In this case, the differ-
ence between band 4 and 4p radiance distinguished maize from
wheat beyond the capabilities of ETM+ (Fig. 3). While the two
bands were highly correlated, maize fields were marked by con-
sistently higher radiance in band 4p relative to wheat fields with
the same radiance in band 4.

We attribute this difference to the onset of senescence in
maize, which is accompanied by a decrease in canopy water
content. Numerous previous studies have shown that the
derivative of reflectance near 900 nm increases as leaf water
content decreases, because of the strong absorption of water
at longer wavelengths [19]–[22]. The sensitivity of ALI to
these subtle changes, and the resulting improvements in clas-
sification, demonstrates the utility of the multiple NIR bands
notwithstanding their extremely high correlation. Although
wheat classification was also improved in ALI, this was due
mainly to the removal of erroneously classified maize pixels.
Significant confusion between durum and bread wheat was
evident for both sensors.

C. Yield Prediction

Although band 4 comprises a more narrow wavelength range
in ALI than ETM+, the fAPAR estimates from each sensor were
very close, resulting in similar yield predictions (Fig. 4). The
root mean square difference between ALI and ETM+ estimates
was 0.30 tons ha , which is roughly 5% of average yields. Dif-
ferences in yield estimates from ALI using band 4 versus band
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Fig. 3. (a) Scatter plot of radiance in ALI bands 4 and 4p for the three major
crops. (b) Mean residuals of the best-fit regression line between bands 4 and 4p.
Error bars show one standard deviation from the mean.

Fig. 4. Comparison of predicted maize yields using ETM+ and ALI sensors
for 29 fields. Dashed line is 1 : 1 line.

4p as the NIR band in (2) were less than 1%, which reflects the
high correlation between NDVI computed using band 4 versus
4p ( ).

In the absence of field measurements of yield, it is difficult to
say which sensor more accurately predicted true yields. How-
ever, previous yield estimates for wheat in this region using
Landsat ETM+ have proven highly accurate, with errors gen-
erally within 0.4 ton/ha [16]. We can conclude here that the dif-
ferences between the two sensors for yield prediction are small
and of secondary importance in the context of other modeling
uncertainties [16].

D. Panchromatic Comparison

While this study focused on the multispectral sensors of
ETM+ and ALI, the most significant differences were observed
in the panchromatic (pan) bands. Fig. 5 shows the pan band of
each sensor for a 4 4 km subregion within the Valley. The

(a)

(b)

Fig. 5. A panchromatic image from (a) ALI and (b) ETM+ for a 4� 4 km area
within the study region, demonstrating superior quality of ALI. Digital number
(DN) values along the transect indicated by the white line are plotted on the
right. The dotted line marks the boundary between two fields.

ALI pan band revealed far more landscape detail than ETM+,
as demonstrated by the clear depiction of roads and boundaries
between fields.

The enhanced performance of the ALI pan band is attributed
to several factors: 1) the instantaneous field of view (IFOV) is
10.0 m versus 14.25 m for ETM+; 2) ALI possesses a supe-
rior SNR and a greater dynamic range [23]; and 3) ALI pan is
restricted to visible wavelengths (480–690 nm), while ETM+
covers both visible and NIR wavelengths (520–900 nm). The
latter aspect is important because multiple scattering by veg-
etation in the NIR leads to greater pixel-to-pixel interactions,
or adjacency effects. Also, sensitivity to both visible and NIR
wavelengths reduces the contrast between bare soil and vege-
tated surfaces for ETM+ relative to ALI (because a decrease in
visible reflectance is offset by an increase in NIR reflectance).

The transect in Fig. 5 illustrates the lower SNR and larger
dynamic range of the ALI pan band, which was capable of dis-
cerning gradients within each field not evident in the ETM+
data. The ability to resolve small differences within fields is of
great relevance to precision agriculture (PA), which aims to ad-
just inputs within fields to account for soil and topographic vari-
ations [13]. This ALI image could be used to detect early season
deficiencies in different parts of the field, which could then be
addressed by the farmer. Significantly, most applications of re-
mote sensing in PA to date have utilized airborne instruments,
largely because of the limited spatial resolution of satellite sen-
sors. The availability of low-cost satellite images with a spatial
resolution of 10 m could have a great impact on the future of PA,
especially for the majority of the world’s farmers who cannot af-
ford ground- or airplane-based approaches [13].

IV. SUMMARY AND CONCLUSION

Radiance measurements collected by ALI over an agricultural
region agreed very well with coincident Landsat data. The ho-
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mogeneous fields and accurate georeferencing possible in this
agricultural setting allowed us to compare the spectral response
of each sensor without complications due to varying pixel sizes.
We conclude that ALI is within 3% of Landsat radiance for all
five bands with similar wavelength ranges. However, misregis-
tration of band 3 in ALI SCA 3 presents a significant obstacle
to operational image analysis that needs to be resolved.

The additional bands in ALI were highly correlated to ex-
isting ETM+ bands in this landscape, yet still contained infor-
mation leading to significant improvements in crop identifica-
tion. Specifically, residuals of a regression between bands 4 and
4p provided clear discrimination between maize canopies in
early stages of senescence and newly formed wheat canopies.
This contrast was attributed to the effect of canopy water status
on NIR reflectance derivatives, and indicated a potential for
more quantitative estimates of canopy water content from ALI
that should be tested in future.

The greatest difference between the two sensors was evident
in the panchromatic bands, with ALI clearly outperforming
ETM+. The high spatial resolution and quality of ALI’s pan
band enabled detection of within field gradients in early season
wheat conditions that could be used by farmers to define dis-
tinct management units. Even simple measures of within field
variability, if provided in a timely manner, can have significant
impacts of cropland management [13].

Overall, we conclude that ALI technology matches Landsat
performance in all aspects, with the exception of problems as-
sociated with leaky pixels in band 3. For the agricultural ap-
plications investigated here, ALI exceeded Landsat capabili-
ties for crop identification resulting from improved SNRs and
additional spectral bands (particularly band 4p), and produced
very similar yield predictions. In addition, the ALI panchro-
matic band provided superior high spatial resolution images
owing to its increasedS/Nand dynamic range and its decreased
IFOV and spectral range.
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