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Abstract—The global availability of synthetic aperture radar
(SAR) wave mode data from the European Remote Sensing
(ERS) satellites ERS-1 and ERS-2, as well as ENVISAT, allows
for the investigation of the wind field over the ocean on a global
and continuous basis. For this purpose, 27 days of ERS-2 SAR
wave mode data were processed, representing a total of 34 310
imagettes of size 10 km 5 km, available every 200 km along
the satellite track. In this paper, two methods for retrieving
wind speeds from SAR imagettes are presented and validated,
showing the applicability of ENVISAT alike SAR wave mode
data for global ocean wind retrieval. The first method is based on
the well-tested empirical C-band scatterometer (SCAT) models,
which describe the dependency of the normalized radar cross
section (NRCS) on wind speed and direction. To apply C-band
models to SAR data, the NRCS needs to be accurately calibrated.
This is performed by a new efficient method utilizing a subset
of colocated measurements from ERS-2 SCAT and model winds
from the European Centre for Medium-Range Weather Forecast
(ECMWF). SAR wind speeds are computed from the calibrated
imagettes and compared to the entire set of colocated ERS-2
SCAT and ECMWF model data. Comparison to ERS-2 SCAT
winds result in a correlation of 0.95 with a bias of 0.01 ms 1

and an rms error of 1.0 ms 1. The second approach is based on
neural networks (NNs), which allow the retrieval of wind speeds
from uncalibrated SAR imagettes. NNs are trained using the
mean intensity of ERS-2 SAR imagettes and colocated wind data
from the ERS-2 SCAT and ECMWF model data. Validation of
the NN-retrieved SAR wind speeds to ERS-2 SCAT and ECMWF
model wind data result in a correlation of 0.96 with a bias of

0.04 ms 1 and an rms error of 0.93 ms 1.

Index Terms—Calibration, neural network, scatterometer, syn-
thetic aperture radar (SAR), wind speed.

I. INTRODUCTION

SINCE THE LAUNCH of the European Remote Sensing
(ERS) satellites ERS-1 and ERS-2 in 1991 and 1995, syn-

thetic aperture radar (SAR) imagettes have been acquired over
the oceans on a continuous basis. Full-swath SAR images of
100 km 100 km size are taken where receiving stations are
in line of sight (image mode), whereas 10 km5 km SAR
wave mode data are acquired every 200 km along the satel-
lite track and, therefore, yield global and continuous observa-
tions of the ocean surface during the last decade. Since March
2002, the ERS-2 SAR era has been continued by the Advanced
SAR (ASAR) aboard the ENVISAT satellite, acquiring wave
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mode data every 100 km along its satellite track. Due to their
all-weather capability and high resolution, SAR systems have
become a valuable tool for measuring marine parameters such
as wind fields [1], [2], ocean wave spectra [3], [4], and sea ice
variables [5].

Many studies on wind retrieval from calibrated spaceborne
SAR images have been performed [1], [2], [6]–[9]. All of
these rely on well-calibrated SAR images of the satellites
ERS-1, ERS-2, and the Canadian satellite RADARSAT-1 and
are limited to regional applications. In all of these studies,
wind speed is retrieved from the calibrated normalized radar
cross section (NRCS) of the ocean surface using the empirical
C-band models, which were originally developed for the ERS-1
scatterometer (SCAT) [10], [11].

A new approach to retrieve wind speeds from SAR data is
based on the application of neural networks (NNs) [12]. NNs
have been used in several applications in remote sensing, e.g.,
derivation of water properties from imaging spectrometers [13].
Furthermore, Thiriaet al. [14] and Richaumeet al. [15] applied
NNs to wind retrieval from spaceborne SCAT data and ERS-1
SCAT data.

In this study, a unique set of single-look complex ERS-2
SAR wave mode imagettes, which are not available as a stan-
dard product from the European Space Agency (ESA), is used
for wind speed retrieval on a global and continuous basis. In
total 34 310 ENVISAT-like SAR imagettes were processed at
the German Aerospace Centre representing 27 days of data. Pre-
vious studies on the use of ERS wave mode data for wind speed
measurements were already published by Kerbaolet al.[16] and
Lehneret al.[17]. However, a calibration and subsequent deter-
mination of wind speeds has not been previously undertaken. In
this paper, two methods for retrieving wind speeds from SAR
imagettes are applied and validated, showing their applicability
for continuous global ocean wind retrieval.

Different spaceborne sensors (e.g., the altimeter, radiometer,
SCAT, and SAR) exist, which provide information on the near-
ocean surface wind fields on a regional and global scale. All
these sensors rely on the fact that the small-scale sea surface
roughness is closely related to the local wind field. However, it
is well known that this connection is not simple, as the surface
roughness is also affected by features such as rain, fronts, sur-
face slicks, or sea ice, for example. SAR scenes give a direct in-
dication of these artifacts, while the other sensors often do not
detect these features and misinterpret them as wind. It is also
well known that surface gravity waves that have been generated
by wind fields in distant areas can have an impact on the wind re-
trieval [18]. The accuracy of wind measurement techniques has
now reached a level where these effects have to be addressed
in order to achieve further improvements. In this context, SAR
imagette data have great potential, as they provide information
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on both the small-scale surface roughness and the longer ocean
surface waves. The calibration method presented in this paper
also has an important technical application, i.e., the monitoring
of the radiometric performance of a SAR on a global and con-
tinuous basis.

This paper is organized as follows. In Section II, the avail-
able data are introduced. Section III shows the dependency of
SAR imagettes mean intensity on wind speed and direction
by comparison to ECMWF model and ERS-2 SCAT data. In
Section IV, wind speeds are retrieved from SAR imagettes
using the C-band SCAT model CMOD4. For this purpose the
amplitudes of the SAR imagettes are calibrated to NRCS using
a new efficient method. The resulting wind speeds are com-
pared to colocated ECMWF model and ERS-2 SCAT data. In
Section V, wind speeds are derived from SAR imagettes using
NNs. The NN-retrieved wind speeds are compared to colocated
ECMWF model and ERS-2 SCAT data. In Section VI, the
main differences between wind speeds retrieved from SAR
imagettes, ECMWF model results and ERS-2 SCAT data are
identified and differences are discussed.

II. I NVESTIGATED DATASETS

The ERS-2 satellite operates in a near-circular polar and sun-
synchronous orbit at a mean altitude of 785 km. The satellite
has a repeat cycle of 35 days with an orbital period of100 min,
resulting in 14.3 orbits per day. The platform is equipped with a
SAR and a SCAT combined in the active microwave instrument
(AMI), which operates with a frequency of 5.3 GHz (C-band)
and can transmit and receive with linear vertical polarization.
The AMI can be operated in an interleaved mode consisting
of SAR wave mode and SCAT measurements. In SAR wave
mode, 10 km 5 km imagettes are acquired at a nominal in-
cidence angle of 23with a spatial resolution of 30 m every
200 km along the orbit. These imagettes are processed at ESA
into image power spectra (UWA), which are used for global
ocean wave retrieval [3]. However, for wind retrieval, SAR wave
mode data have to be processed to single-look complex im-
agettes, which to date are not available as a standard product for
ERS, but will be available from the ASAR aboard ENVISAT.
To prepare and develop algorithms for the ENVISAT ASAR,
the German Aerospace Center processed 27 days of ERS-2 SAR
wave mode raw data to SAR imagettes between August 21, 1996
and June 2, 1997 [17] using their research processor BSAR [19].
Due to the lack of measurements needed for radiometric cal-
ibration, SAR imagettes are not radiometrically calibrated for
NRCS. In Fig. 1, the distribution of the entire set of processed
SAR imagettes over the globe is shown.

In contrast to the SAR, the ERS-2 SCAT measures the
backscatter from the ocean surface with three antennae looking
45 forward, sideways, and 45backward with respect to the
satellite flight direction. These beams continuously illuminate a
500-km-wide swath with a resolution of 45 km, covering inci-
dence angles between 18and 59 and are, therefore, colocated
to the SAR imagettes. From these triplets, wind speed, and
wind direction were derived by the Centere ERS d’Archivage et
de Traitement, using the C-band model CMOD_IFR2 with an

Fig. 1. Global distribution of the 27 days of ERS-2 SAR wave mode imagettes.
The black stars represent the coverage of one day.

accuracy of 1.2 ms in wind speed and 15in wind direction
[20].

In addition to the ERS-2 SAR and SCAT data, colocated
wind data from the atmospheric model of ECMWF were avail-
able. The model version used in 1996 was T213L31 and uses
a spectral formulation in the horizontal, with triangular trun-
cation at total wavenumber 213. In the vertical, 31 levels are
considered between the earth surface and 30 km height, and the
lower levels are terrain-following. The model produces global
ECMWF wind fields (ECMWF forecast) for the four main syn-
optic hours 00, 06, 12, and 18 UTC with a grid size of 0.5. In
a 6-h period, several observational data, e.g., ERS-2 SCAT, air-
craft, andin situ, of several parameters, e.g., wind, temperature
and surface pressure, are assimilated into the model and give the
routine ECMWF analysis wind fields.

III. D EPENDENCY OFSAR INTENSITY ON WIND

At moderate incidence angles between 20and 70 the
backscatter measured by the SAR is dominated by the
backscatter from centimeter-scale surface roughness, which
is in resonance with the incidence radiation of the radar, the
Bragg scattering. For the range of incidence angles covered
by the ERS-2 SAR wave mode (22.7to 23.4 ), the range
of scattering roughness lengths is strongly influenced by the
local wind field and, therefore, allows the backscatter to be a
measure of the local wind.

It is well known that the wind speed can only be retrieved
from SAR data that are free of sea surface features not due to the
local wind, e.g., sea ice and slicks (Fig. 2). To exclude SAR im-
agettes that contain features not associated with the local wind,
a filter is applied. The filter was developed by Lehneret al.[21]
and distinguishes between homogeneous and inhomogeneous
SAR imagettes. The technique was originally proposed to test
the homogeneity of ocean wave fields, e.g., the shift invariance
of the ocean wave spectrum. Inhomogeneous SAR imagettes
are significantly affected by features such as surface slicks and
sea ice. The technique is based on a test of statistical proper-
ties of periodograms, which are commonly used for spectral
estimation. According to standard theory, spectral densities es-
timated from a single periodogram are negative exponentially
distributed [22]. A standard approach to reduce the variance
of the spectral estimator is to average periodograms estimated
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Fig. 2. Typical examples of strongly inhomogeneous SAR imagettes that are
affected by sea ice, atmospheric effects, slicks, and other features (from top to
bottom row).

from subimages. To check the homogeneity of SAR imagettes
32 subimages of about 1 km 1 km size are used to estimate
the mean and variance of the periodogram. The estimator
of the inhomogeneity test is defined as

var
mean

mean
(1)

where is the wavenumber andmean andvar are standard esti-
mators for the periodogram mean and variance. For a perfectly
homogeneous image, the inhomogeneity parametershould be
1. However, visual inspection of the SAR imagettes resulted in a
choice of as threshold. Therefore, in the following, all
SAR imagettes with a inhomogeneity parameter were
defined as inhomogeneous and were omitted from this analysis.

To assess the performance of the inhomogeneity test, a visual
inspection of the SAR imagettes was carried out to detect errors
of the first kind (a homogeneous imagette is classified as inho-
mogeneous) and the second kind (an inhomogeneous imagette
is classified as homogeneous). Concerning the threshold of 1.05
for the parameter , 6.2% of the SAR imagettes did not pass
the inhomogeneity test. Visual inspection of the inhomogenous
SAR imagettes resulted in 93% of these imagettes showing arti-
facts, e.g., sea ice and slicks, which cannot be associated to the
wind. This means that the error of first kind occurs with a proba-
bility of 7%. Among the SAR imagettes, which are classified as
homogeneous, 6.9% are not suited for wind measurements, sug-
gesting that the errors of the first and the second kind have the
same order of probability. In 60% of the cases with misclassifi-
cations of the second kind, homogeneous sea ice features affect
the SAR imagettes. The most straightforward way to deal with
the latter cases is to exclude the polar regions. It is clear that,
in addition to the inhomogeneity test, other methods have to be
developed to distinguish SAR imagettes acquired over ice from
those over open water. In Fig. 3, wind speeds from the ERS-2
SCAT are plotted against mean SAR imagette intensities consid-
ering all homogenous imagettes. The correlation considering all
SAR imagettes is 0.73; neglecting the inhomogenous imagettes,

Fig. 3. Wind speeds from ERS-2 SCAT versus mean SAR imagette intensities.
The black dots represent SAR imagettes between 55S and 70N and the light
gray ones imagettes beyond 55S and 70N, respectively. Superimposed are the
curves resulting from the C-band SCAT model CMOD4 at an incidence angle of
23 for upwind (dashed line) and cross wind (solid line). The CMOD4 curves
were shifted by 45.5 dB.

the correlation improves to 0.79, and, if in addition, all imagettes
beyond 70N and 55S are neglected, the correlation is 0.86. In
the scatter plot of Fig. 3, all light gray dots represent SAR im-
agettes beyond 70N and 55S. It is obvious that most of the
outliers are located in latitudes where sea ice is very likely, and
these outliers are responsible for the low correlation of 0.79.

To investigate the dependency of the SAR imagette intensity
on wind speed, the mean imagette intensity is derived and com-
pared to the colocated wind from the SCAT aboard ERS-2. In
Fig. 3, wind speeds from the ERS-2 SCAT are plotted against
mean SAR imagette intensities. The correlation considering all
SAR imagettes is 0.79, while 0.86 is achieved when neglecting
SAR imagettes beyond 70N and 55S. The encircled outliers in
Fig. 3 are located in latitudes where sea ice is very likely and are
responsible for the low correlation of 0.79. For comparison, re-
sults of the empirical C-band SCAT model CMOD4 [10], which
describes the dependency of the NRCS on the wind, is used.
CMOD4 was especially tuned to the ERS SCATs and has been
shown to be accurate to 1.65 msin wind speed and 16.7in
wind direction [10]. However, investigations by Quilfenet al.
[11] and Donnellyet al. [23] have shown that CMOD4 signifi-
cantly underestimates the wind speed at high wind speeds above
20 ms .

In Fig. 3, the CMOD4 curves for upwind (toward the radar
look direction) and cross wind (perpendicular to radar look di-
rection) at an incidence angle of 23are superimposed. They
give a reference for the dependency of radar backscatter on the
wind. To fit the SAR imagette intensities, the CMOD4 curves
were shifted by 45.5 dB. The shift of 45.5 dB represents the bias
to the CMOD4-retrieved NRCS and gives a rough estimate of
the calibration constant (for details refer to Section IV). Due to
the nonlinear relation between wind speed and the NRCS and
the additional dependency of NRCS on wind direction, indi-
cated by the CMOD4 curves, a much higher correlation cannot
be expected. However, it is obvious that the CMOD4 curves are
in good agreement with the dependency of SAR intensity on
wind speed.
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Fig. 4. Wind speeds from ERS-2 SCAT versus mean SAR imagette intensities.
The black dots represent SAR imagettes between 55S and 70N considering
SCAT wind directions of�10 up- and downwind (a) and�10 cross wind (b).

To investigate the dependency of SAR imagette intensity on
wind speed and direction, the wind directions from the colo-
cated ERS-2 SCAT data were partitioned into 20intervals.
In Fig. 4, wind speeds from ERS-2 SCAT are plotted versus
mean SAR imagette intensities considering SCAT wind direc-
tions of 10 from up- and downwind [Fig. 4(A)] and from
cross wind [Fig. 4(B)], respectively. Comparing these plots to
the one shown in Fig. 3 indicates a significantly better correla-
tion for both cases. The cross wind case has a lower correlation
than the up- and downwind case, which is due to the stronger
nonlinearity of the wind speed intensity relation for cross winds
than for up- and downwind, as indicated by the CMOD4 curves.

In case of up- and downwind, it is obvious that for SAR
imagette intensities over 42 dB the CMOD4 predicted intensi-
ties are significantly higher than the SAR measured intensities
[Fig. 4(A)]. This also corresponds to distinct differences at up-
and downwind between CMOD4 and SAR imagette intensities
at wind speeds above 10 ms. In the crosswind case, no char-
acteristic differences between CMOD4 and SAR imagette in-
tensities are apparent, and there is an overall good agreement
for wind speeds up to 20 ms. This indicates that the dis-
agreement between COMD4 and SAR imagette intensities is
predominantly caused by the choice of the analogue-to-digital
converter (ADC) settings of the SAR system and not by uncer-
tainties of the CMOD4 at high wind speeds. The correct choice
of ADC settings is a well-known problem affecting ERS-1 and
ERS-2 SAR images in the case of high radar backscatter [1],
[24]. When radar backscatter is high, the input power to the
ADC is too high, which leads to saturation of the ADC and
in turn to an output power of the ADC that is lower than the
input power. In the other case, when radar backscatter is very

low, below the offset applied to the ADC, the digitized power is
higher than the input power to the ADC [25]. In the following,
these ADC errors are referred to as power loss. This later effect
can be seen especially for wind directions of10 cross wind at
wind speeds below 6 ms [Fig. 4(B)], where the SAR intensity
is higher than that predicted by CMOD4. Contrary to the five-bit
sampling in the ERS-2 SAR image mode, the wave mode data
are only four-bit sampled, which leads to a distinct increase of
power-loss errors requiring correction. Nevertheless, a strong
wind dependency of SAR imagette intensity is observed and is
used in the following sections to retrieve wind speeds applying
the CMOD4 model as well as NNs.

IV. SAR WIND RETRIEVAL USING CMOD4

So far, in contrast to the image mode, SAR imagettes are not
calibrated and there is no calibration information available, such
as a calibration constant, a power-loss lookup table, or an an-
tenna pattern. However, to apply C-band models to SAR im-
agettes, their mean intensity has to be accurately calibrated and
transformed to the NRCS. In the following, the NRCS is derived
from the SAR imagettes according to the scheme for ERS-1
and ERS-2 SAR image mode data proposed by Meadowset al.
[24]. Most of the parameters that have to be applied are inci-
dence-angle dependent; however, in case of SAR imagettes, the
dependence on incidence angle can be neglected due to the small
range of incidence angles (0.7 ), which leads only to minor
changes in the calibration constant and antenna pattern. There-
fore, the NRCS ( ) can be approximated for SAR imagettes
very well by the following equation:

pl (2)

where is the amplitude, a calibration constant for ERS-2
SAR imagettes including the range spreading loss, and plthe
power loss corresponding to the correction for ADC errors.

To determine , typically measurements from transponders
are analyzed that are not available for the investigated SAR im-
agettes. Therefore, in the following, calibration is performed by
applying a new efficient method, based on knowledge of the
dependency of the NRCS on the wind. Given the wind vector,
CMOD4 allows an estimation of the NRCS for each SAR im-
agette. Therefore, the wind speed and wind direction informa-
tion from the colocated ECMWF model or ERS-2 SCAT data
and a fixed incidence angle of 23are taken as input to the
CMOD4. Computing the bias between SAR imagette intensities
and colocated CMOD4-retrieved NRCSs results in an estimate
of . To obtain an accurate estimate of , only SAR im-
agettes in the range of 5–8 msin wind speed are considered
so as to exclude SAR imagettes affected by power-loss errors
caused by the ADC. This procedure is followed using CMOD4,
together with each of the wind datasets (ECMWF model and
ERS-2 SCAT wind data). The mean resulting is equal to

44.96 dB with differences of 0.1 dB between each dataset,
which is in the order of the radiometric accuracy of ERS-2 SAR.

To check the consistency of the retrieved calibration constant,
the NRCS is derived for each SAR imagette neglecting the
power loss and is used to derive the wind speed via CMOD4.
Therefore, the SAR imagette NRCS, at a fixed incidence
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Fig. 5. (a) Wind speeds from ECMWF forecast, (b) ECMWF analysis, and (c) ERS-2 SCAT versus wind speeds retrieved from SAR imagette-derived NRCS
neglecting power-loss corrections. The dotted curve gives the regression line.

angle of 23 and the wind direction of the colocated ECMWF
model or ERS-2 SCAT data, is taken as input to the CMOD4.
The resulting comparisons are plotted in Fig. 5, where the
wind speeds from the ECMWF forecast [Fig. 5(A)], ECMWF
analysis [Fig. 5(B)], and ERS-2 SCAT [Fig. 5(C)] are plotted
versus the SAR imagette-derived wind speeds. The corre-
sponding main statistical parameters are given in the upper left
of each scatterplot. There are only minor differences between
the statistics considering the ECMWF forecast and ECMWF
analysis. However, comparison of SAR imagette-retrieved
wind speeds to ERS-2-SCAT-retrieved wind speeds show a
significantly better correlation than the comparison to ECMWF
model results.

The overall good agreement between the SAR and SCAT-re-
trieved wind speeds is expected. The low bias is due to the
calibration method, which ensures, by construction, that the
mean SAR-derived wind speed must equal the mean SCAT
wind speed in the interval of 5–8 ms. Furthermore, the
good agreement is due to the similarity of the two sensors
and the colocation in space and time, as well as the fact that
both instruments use a similar C-band model to retrieve the
wind speed. However, it is obvious that with increasing wind
speed SAR-derived wind speeds underestimate the wind speed
significantly. This effect is due to power loss caused by satura-
tion of the ADC. In Fig. 5(C) a slight overestimation for SAR
imagette-retrieved wind speeds can be seen below 5 ms,
which is due to the power gain caused by bit redundancy at the
ADC.

The power-loss correction can be estimated in a manner
similar to that of the calibration constant. Therefore, the
power-loss-affected NRCSs of all SAR imagettes are
derived according to

(3)

The expected NRCS of each SAR imagette was retrieved by
applying the CMOD4 with input of a fixed incidence angle
(23 ) and the wind speed and direction from the colocated
ECMWF model or ERS-2 SCAT data. The differences between
the expected and power-loss-affected NRCS give an estimate
of the power loss for each SAR imagette. To obtain a function
of the power loss, a third-degree polynomial was fitted to

Fig. 6. Mean radar cross section versus power-loss correction.

the differences between the expected and power-loss-affected
NRCSs. In Fig. 6, the mean radar cross section is plotted against
the power-loss correction resulting from each dataset together
with the best fit considering all data. The power-loss correction
curves look very similar to the power-loss corrections, which
are applied to the ERS-2 SAR data in the imaging mode.
However, for increasing NRCS, the estimated power-loss
corrections are of low accuracy, due to the lack of data available
at high wind speeds, which leads to high NRCSs.

To check the consistency of the complete calibration, again
wind speeds is retrieved from SAR imagette NRCSs according
to (2). Again wind speeds are derived using CMOD4 and a fixed
incidence angle of 23and the wind directions according to the
colocated ECMWF model or ERS-2 SCAT data. The compar-
isons of wind speeds resulting from SAR imagettes to the colo-
cated ECMWF model and ERS-2 SCAT wind speeds are given
in Fig. 7. Again, the statistical parameters are similar consid-
ering the winds from ECMWF forecast and ECMWF analysis
and are significantly better when comparing to ERS-2 SCAT
measurements. The scatter in the comparison of ERS-2 SAR
imagette and SCAT-retrieved wind speeds is expected because
a SAR imagette covers only 2.5% of the area of a SCAT res-
olution cell. It is obvious that consideration of the power loss
significantly improves the consistency between SAR imagette
and SCAT-retrieved wind speeds at high wind speeds. This can
be seen by the regression lines, which are closer to the diagonal
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Fig. 7. Same as Fig. 5 but considering power-loss corrections.

Fig. 8. Scatterplot of ERS-2 SCAT wind speeds versus SAR imagette-
retrieved wind speeds using the CMOD4 model with a fixed wind direction of
45 . The dotted curve gives the regression line.

representing the optimum regression line than in Fig. 5. How-
ever, the change in the main statistical parameters is negligible.
To obtain a more accurate correction of the ADC errors, espe-
cially at high NRCS ( 43 dB), the SAR imagette raw data have
to be analyzed according to the method described by Meadows
et al. [25].

In the previous analysis, wind direction information was
taken from the ECMWF model or ERS-2 SCAT data. However,
in case there is no wind direction information available, the
wind direction has to be set to a constant. In Fig. 8, wind speeds
from ERS-2 SCAT are plotted against the results from SAR
imagettes wind speeds, which are derived by applying CMOD4
to the fully calibrated imagettes with a fixed wind direction
of 45 , the optimal choice. The dependency of wind direction
increases significantly with wind speed, which is the reason for
the large scatter for wind speeds above 10 ms. In Fig. 9, the
rms errors of the comparisons of SAR imagette-retrieved wind
speeds to ERS-2 SCAT wind speeds is plotted for wind speed
intervals of 2 ms between 0 and 22 ms. Assuming a fixed
wind direction for wind speed retrieval results in an rms error of

2.1 ms for wind speeds below 10 ms and the rms error
increases significantly for wind speeds above 8 ms. If the
wind direction is considered, the rms error is1.7 ms for

Fig. 9. Bar plot of rms errors of wind speed from the comparison of SAR
imagette wind speeds to ERS-2 SCAT wind speeds. The rms errors were derived
for wind speed intervals of 2 ms .

wind speeds below 18 ms and then increases significantly,
which is due to the lack of wind data available at high wind
speeds for the SAR imagette calibration.

V. SAR WIND RETRIEVAL USING NNs

A straightforward method for retrieving wind speeds from
uncalibrated SAR imagettes can be obtained by using NNs,
which allow for the retrieval of the wind speed directly from
the SAR imagette intensity, independent of the knowledge of
the NRCS. The NN approach does not require explicit models
for the SAR imaging process and can, therefore, be easily ap-
plied to any system configuration, i.e., polarization, incidence
angle, etc. The only requirements for application of an NN to
SAR-wind-speed retrieval is the relative radiometric stability of
the SAR system as well as a dependency of backscatter on wind
speed. In case of the ERS SAR systems both requirements are
fulfilled. In the following, NNs are used as a multiple nonlinear
regression technique to parameterize the relationship between
the SAR imagette intensity and ocean surface wind.

An NN is built up of several layers: an input layer, one or
more hidden layers and one output layer. Each layer consists of
“neurons”; the input layer has as many neurons as input parame-
ters and the output layer as many neurons as output parameters.
The number of neurons in the hidden layer(s) is dependent upon
the problem. Each neuron in a layer is linked to each neuron of
the neighboring layer with a weight.
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Fig. 10. Schematic of a neural network having two input parameters,
two hidden layers with five, and two neurons and an output layer with one
parameter.

An example of an NN with two hidden layers is given in
Fig. 10. The output value of each neuron is derived ac-
cording to

(4)

where is a bias value specific to each neuron;is the
number of incoming links; is a weight specific to each neuron;

is the output value of the neuron in the preceding layer; and
is a nonlinear function assuming monotonically increasing

values between zero and one as the value of the argument goes
from to . The most common choice, also used in the NNs
applied here, is the function . An NN operates
sequentially from layer to layer; output neurons of the first layer
are given by the input values. The output of each neuron of the
first hidden layer is computed by summation of the weighted in-
puts, shifting by the bias and application of the nonlinear func-
tion. This is repeated for each layer until the output layer is
reached, giving the results of the NN. To determine an NN, a
sufficiently large set of input and output vectors has to be avail-
able to generate a training and a test sample. During the training
of the NN, the values of the biases and weights are changed to
minimize the error function. The resulting trained NN has to
be tested with the test sample for its generalization power, e.g.,
whether reasonable results are produced for input values, which
are not included in the training sample.

Two NNs are trained, one using the mean SAR imagette
intensity together with the colocated ERS-2 SCAT wind speed
and a second considering ERS-2 SCAT wind direction in addi-
tion. For both cases, the training sample consisted of12 000
colocations, which are selected randomly. The remaining

11 600 colocations are taken to test the trained NN. The first
NN, considering only SAR imagette intensity, is composed
of three hidden layers with eight neurons in the first hidden
layer, five in the second, and two in the third. The second NN
is also composed of three hidden layers, however, with six
neurons in the first, four in the second, and two in the third. In
Fig. 11 wind speeds from the ERS-2 SCAT are plotted against
the wind speed resulting from SAR imagettes using the first
NN 1) considering intensity and the second NN 2) considering
wind directions in addition. The corresponding statistics of the
comparison are given in the upper left of the scatter plots. The
main statistical parameters for comparisons of ECMWF model

Fig. 11. Scatterplots giving the comparison of the ERS-2 SCAT wind speeds
versus wind speeds retrieved from collocated SAR imagettes. The SAR imagette
wind speeds were retrieved using an NN with the SAR imagette intensity and
the wind direction from the collocated ERS-2 SCAT data as input. The dotted
curve gives the regression line.

TABLE I
MAIN STATISTICAL PARAMETERS FORCOMPARISON OFSAR-IMAGETTE-
RETRIEVED WIND SPEEDS TOECMWF MODEL AND ERS-2 SCAT WIND

SPEEDSUSING A NN WITH IMAGETTE INTENSITY AS INPUT (FIRST NN) AND

WITH ERS-2 SCAT WIND DIRECTIONS INADDITION AS INPUT (SECONDNN)

and ERS-2 SCAT wind speeds to SAR imagette-retrieved wind
speeds via both NNs are given in Table I.
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Fig. 12. Bar plot as given in Fig. 9. SAR imagette wind speeds were retrieved
using the NN considering mean SAR imagette intensity and wind direction from
the ERS-2 SCAT.

Although the wind direction is not considered in the first NN,
the statistics are quite good. As anticipated and similar to Fig. 8,
the scatter increases significantly with wind speed, due to the
additional dependency of SAR imagette intensity on wind di-
rection. Considering wind direction significantly decreases the
scatter over the range of mid to high wind speeds resulting in a
correlation of 0.96, a bias of 0.04 msand an rms of 0.93 ms .

In Fig. 12, the rms errors in wind speed of the comparisons
of SAR imagette-retrieved wind speeds to ERS-2 SCAT wind
speeds is plotted for intervalls of 2 ms. For SAR imagette
wind speeds that are retrieved using the NN considering mean
SAR imagette intensity and wind direction from the ERS-2
SCAT, the rms error is rather constant for wind speeds below
18 ms . Above 18 ms , the error increases significantly, due
to the insufficient number of available data at high wind speeds
for the training of NNs. In the case of SAR imagette-retrieved
wind speeds using the NN with only input of mean SAR
imagette intensity, the error increases significantly for wind
speeds above 10 ms, showing that in addition wind directions
have to be taken into account.

Again the statistics of each of the colocated datasets differ
significantly. Comparison of wind speeds from SAR imagettes
and ERS-2 SCAT shows the best consistency, as expected, due
to the similarity of the two instruments. Also, the better con-
sistency of SAR imagette-retrieved wind speeds to the results
from the ECMWF analysis than to the ECMWF forecast is as
expected. However, although additional sources of data are con-
sidered in the ECMWF analysis, the results are not significantly
better in comparison to SAR imagette wind speeds than those
of the ECMWF forecast [see also Fig. 7(A) and (B)].

Comparing the resulting correlation, bias, and root mean
square error achieved by using the CMOD4 (Fig. 7) to those
obtained by using an NN for SAR imagette wind speed retrieval
look very similar. However, in all cases the NN-retrieved wind
speeds give slightly better results, which is to be expected as
there is no separate calibration step to be performed.

VI. DISCUSSION OFMAIN DIFFERENCES INWIND SPEED

To analyze the geographical distribution and sources of
differences between wind speed from ERS-2 SAR and the
ECMWF forecast, ECMWF analysis and ERS-2 SCAT data,

Fig. 13. Geographical locations of SAR imagettes that differ in wind speed
by � 3 ms from (top) the ECMWF forecast, (middle) ECMWF analysis,
and (bottom) ERS-2 SCAT data. Locations marked by gray symbols represent
higher wind speeds for SAR imagettes and black symbols a lower wind speed.

the locations of the differences are marked on a world map.
In Fig. 13 the geographical locations are marked where the
differences in wind speed between the SAR imagettes and
the ECMWF forecast, ECMWF analysis and ERS-2 SCAT
(from top to bottom) are 3 ms . In all plots of Fig. 13,
most of the wind speed differences are located in the Southern
Hemisphere at high latitudes (above 30S), where the ECMWF
models and ERS-2 SCAT predict higher wind speeds than the
wind speeds measured by ERS-2 SAR. Furthermore, most of
the underestimated SAR winds occurred at high wind speeds
(above 16 ms ), which occur more often at higher southern
latitudes. This underestimation at high winds speeds is due
to the low number of colocated data available at high wind
speeds for the training of the NNs and the poor performance of
NNs for extrapolation. In the comparison to ERS-2 SCAT data,
wind-speed differences of 3 ms occur significantly less,
which again is expected due to the similarity of the instruments
and exact colocation in time.
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Fig. 14. Typical SAR imagettes where the differences in wind speed are�

4 ms in comparison to the wind speed measured by the colocated ECMWF
model analysis.

In contrast to most other radar sensors for wind-speed re-
trieval, e.g., altimeter and SCAT, the SAR is an imaging radar
that gives an image of the ocean surface. This is one of the major
advantages of SAR imagettes for wind retrieval, because it al-
lows identification of the source of ocean backscatter that is not
wind induced, e.g., sea ice, surface slicks, strong rain, current
shear, and topography.

In total, 356 SAR imagettes where found were the differences
in wind speed retrieved from SAR imagettes to the ECMWF
analysis was 4 ms . Visual inspection of these SAR im-
agettes resulted in 19% of the SAR imagettes affected by fea-
tures not due to the wind field and most of these features at-
tributed to ice or surface slicks. In Fig. 14, a subset of typical
SAR imagettes is selected from the 356 SAR imagettes which
depict features that are not due to the mean wind field. The SAR
imagettes in the panel are ordered according to the inhomo-
geneity parameter. It can be seen that most of these are affected
by ice and surface slicks. Additional image-analysis tools need
to be developed to exclude these SAR imagettes from SAR wind
retrieval.

VII. SUMMARY

Since 1991, ERS SAR wave mode data have been acquired
over the oceans on a global continuous basis. As the SAR wave
mode data were only processed to SAR image spectra to mea-
sure ocean wave spectra, their full potential has been exploited
only to a very limited extent. This study shows how SAR im-
agette data can be used to derive the ocean surface wind speed
with and withouta priori wind direction information. There-
fore, two approaches are proposed, which are especially tai-
lored to meet the needs of the ENVISAT ASAR wave mode. The
first method is based on the well-known C-band SCAT model
CMOD4 and is limited to C-band VV-polarized SAR systems.
In case of the utilized ERS-2 SAR imagette data, a separate step
for radiometric calibration had to be performed. The second ap-
proach is based on the application of NNs, which are used to
parameterize the dependency of SAR intensity on the ocean sur-
face wind and which are independent of radar frequency and po-

larization. Both methods are strongly dependent on the relative
stability of the SAR system.

The radiometric calibration of the SAR imagettes was per-
formed by utilizing a new method that is based on the knowledge
of the strong dependency of the NRCS on incidence angle and
the ocean surface wind vector, which is given by the CMOD4.
This method allows the accurate calibration of the spaceborne
C-band SAR system on a short term basis (a few days of data).
In contrast to conventional methods, all data acquired over the
ocean surface can be considered for calibration and, therefore,
enable continuous and global monitoring. Furthermore, this im-
plies the opportunity to monitor short term calibration variations
as well as orbital variations, which cannot be monitored with
conventional methods.

Comparison of SAR-derived wind speeds to ERS-2 SCAT
measurements utilizing the CMOD4 witha priori information
on wind direction, resulted in a correlation of 0.95 and an rms
error of 1.0 ms . If the wind direction is not considered the
correlation is 0.87 with an rms error of 1.93 ms, whereby
the error increases significantly with wind speeds. Comparisons
applying an NN witha priori information on wind direction
resulted in a correlation of 0.96 and an rms error of 0.93 ms
and a correlation of 0.87 and an rms error of 1.55 msif wind
directions are not considered.

The main source of errors in wind speed retrieval is due to
the lack of SAR imagettes available at high wind speeds for
radiometric calibration and training of the NNs. Another source
of error is due to SAR imagettes that passed the inhomogeneity
filter and are effected by artifacts not due to the wind, e.g., sea
ice and slicks.

For this study, only a very limited set of 34 000 SAR im-
agettes was available. However, it is planned to reprocess the
entire set of ten years of ERS SAR wave mode data and use
them together with the very similar, soon to be available, ASAR
wave mode data from ENVISAT to investigate effects of global
as well as local wind field climate change.
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