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Abstract - Phaseless data are used to evaluate the application of an electromagnetic inverse-

scattering-based procedure for the detection of cylindrical inhomogeneities, which are schematized 

as multilayer infinite dielectric cylinders with elliptic cross sections. The electromagnetic inverse 

problem is recast as a global optimization problem and iteratively solved by an efficient memetic 

algorithm, which combines deterministic and stochastic concepts. Moreover, a recursive analytical 

procedure is used for the forward scattering computation. The possibility of localizing and 

reconstructing the scatterers by using phaseless input data, which would greatly simplify the design 

of the imaging apparatus, is evaluated both with reference to synthetically produced data and by 

means of experimental data obtained by a microwave tomograph.   
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I. INTRODUCTION 

 

The detection of pipes, tunnels and other cylindrical structures (for example those 

encountered in the inspection of archeological sites) by means of electromagnetic waves has been 

recently addressed in several works [1]-[7]. The need for detecting dielectric structures suggests the 

exploitation of inverse-scattering-based electromagnetic techniques, which can be considered as an 

extension of the now popular ground penetrating radar. Moreover, the detection of inhomogeneities 

is a challenging topic in several other applications, including nondestructive evaluation and testing 

in civil engineering and medical imaging [8]-[10]. 

It is well known that the inverse scattering problem resulting from the electromagnetic 

modeling of the detection configuration is ill-posed and highly nonlinear [11]. Great care must be 

exercised in the definition of the problem unknown, in the parametrization required by the integral 

equations/Green's function operators, and in the choice of the functional to be minimized (usually, 

the inverse scattering formulation is recast as an optimization problem). Several techniques have 

been devised in recent years. Although the best results were so far obtained by using iterative 

procedures (see, for example, [12]-[15] and the references therein), the use of stochastic global 

optimization procedures (e.g., genetic and evolutionary algorithms [16]) has also been recently 

considered [17]-[20] and allowed by the tremendous increasing of the computer powers. In fact, the 

main drawback of these procedures is represented by the computational load, since the convergence 

is usually very slow when they are implemented on serial computer. The greatest advantage of these 

techniques, widely discussed in several review papers [21]-[23], is related to the potential ability of 

finding the global minimum of a given functional, relatively independently of the structure of the 

functional itself (convexity, differentiability, etc.). In the author's opinion, another significant 

characteristic of these procedures, which is very important for the purpose of solving inverse 

scattering problems in real applications, is represented by the possibility of including a priori 

information into the model in a very simple way. 

In most of the previously mentioned applications there is also the need for the design of 

simple, fast, and economic detection apparatus. To this end, a schematic representation of the 

cylindrical structures to be detected is often considered, with a reduction of the parametrization 

dimensions. Usually, the distribution of the internal electric field is not required (e.g., in 

nondestructive evaluation and subsurface detection). However, this distribution is not known and 

for strong scatterers it cannot be approximated by the know distribution of the incident field [24]. In 

addition, the need for the measurement of the complex scattered field at the acquisition probes 

requires a reference channel and a synchronous detection in order to obtain phase data. Although at 
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microwaves and lower frequencies the measurement of the phase is not a technical problem, the 

possibility of using phaseless input data can notably simplify the design of the imaging apparatus. A 

lot of work has been recently made concerning the advantages associated with techniques based on 

amplitude-only data for several applications, including measurement and diagnoses of antennas, 

source reconstruction, dielectric permittivity estimation, and radar signal processing [25]-[30]. 

In the present paper the dielectric cylinders under test are represented by multilayer elliptic 

cylinders resorting to an efficient analytical model in order to compute the forward scattering 

needed for the developed iterative procedure. Firstly, an assessment of the multimodality of the 

functional to be minimized is presented. Successively, dielectric reconstructions are performed 

starting by phaseless input scattering data. In particular, the functional resulting from the inverse 

scattering formulation is minimized by applying a memetic algorithm, which has been found to be 

effective in a number of applications [31]-[32]. The most important feature of the approach is 

represented by the combination of the capability of the genetic algorithm in reaching the global 

minimum with the efficiency of deterministic local search methods. To the best of our knowledge, it 

is the first time that a memetic algorithm is applied to an inverse scattering problem with reduced 

information content of data (phaseless data). 

In the results section, the procedure is tested by considering both synthetic and experimental 

scattering data. In the first case, exact analytical values are used as input data with reference to a 

configuration previously considered in the literature and usually solved starting by complex data 

(amplitude and phase). In the second case, the input data are constituted by real data obtained in an 

anechoic chamber by the French team of K. Belkebir and co-workers by means of a microwave 

illumination/measurement system.  

 

II. MATHEMATICAL FORMULATION 

 

A layered infinite cylinder, composed by L confocal elliptical layers, is illuminated by a set 

of incident electric fields TM-polarized (i.e., with the electric field vector polarized along the 

cylindrical axis). For the numerical simulations the incident fields are produced by a set of line 

current sources, so that 

 

( ) )(, )2(
0 ssinc kH

jI
xxxx −

η
−=Ψ                                               (1) 

 



 4

where ( )xincΨ  is the z-component of the incident field vector, xs, s = 1,…,S, is the source position, 

)2(
0H is the second-order Hankel function of zero-th order,  I  is the amplitude of the line current, 

and k and η are the wavenumber and the intrinsic impedance of the propagation medium, 

respectively. The scattered electric field can be collected in a set of M points ym, m = 1,…,M, where 

the probes are to be located. The scattered field can be expressed as: 
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where a series expansion in terms of Mathieu functions in elliptic coordinates (y = uu + vv) has 

been used [33]. In equation (2), Mcm
(4), Msm

(4), cem and sem denote the fourth-order radial and 

angular Mathieu functions, respectively, whereas em
L+1 and om

L+1 are unknown coefficients to be 

determined. Finally, ( )2
1 2/kdqL =+ , being d the half focal distance of the elliptical cross section. 

The z-component of the internal total field vector is given by [33]: 
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where Mcm
(1), Msm

(2), cem and sem indicate odd and even radial Mathieu functions; iq  is given by 

( )22/dkq ii = , where ik  is the wavenumber in the i-th layer; finally, ei
m,1, e

i
m,2, o

i
m,1 and oi

m,2 denote 

the unknown coefficients. 

Let us measure the phaseless values of the total electric field at the measurement points. 

After constructing the data set { s
mΞ , m = 1,…, M, s = 1,…,S} , the functional to be minimized is 

expressed as: 
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where ( )ksm
k

tot ξΨ ,,)( xy  is the total electric field computed at point ym when the source is at point xs 

and the scatterer is a cylinder characterized by the parameters constituting the array kξ , which is 

defined as: 
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The values of ( )ksm
k

tot ξΨ ,,)( xy  are analytically computed as the sum of the known incident 

field and the scattered electric field given by equation (1), in which the unknown coefficients of the 

series expansion are efficiently computed by the recursive procedure described in [34]. Since ( )kF ξ  

is iteratively minimized by applying the memetic algorithm, in equations (4) and (5), k represents 

the iteration number. We used here a single frequency processing; however, the functional ( )kF ξ  

can be easily extended to the multifrequency case. 

 

 

III. APPLICATION OF THE MEMETIC ALGORITHM 

 

The memetic algorithm combines, at each iteration, a local search and a stochastic 

minimization. When it was introduced, the algorithm was aimed at "emulating the process of 

exchange of ideas among people." However, from a computational point of view, it belongs to the 

class of evolutionary methods and can be considered as a hybrid genetic algorithm. Essentially, the 

use of a local search is aimed at increasing the convergence velocity, whereas the same genetic 

operators of the genetic algorithm are applied to escape from local minima. The method combines 

the advantages of both stochastic and deterministic minimization procedures and usually requires a 

limited population. We used a real code implementation for the memes on which the genetic 

operators act. Detailed discussions concerning implementation, capabilities and limitations of the 

memetic algorithm can be found in [30]-[32] and in the references therein. Concerning the 

implementation used in the present paper, Figure 1 provides a flow chart of the algorithm. In 

particular, since the memetic algorithm is a population-based method, the first operation is the 

creation of an initial set of trial solutions, which is randomly performed by using the function 

Rand(x,y), which returns random values uniformly distributed. g(i) denotes the i-th element of the 

initial population of the algorithm, whose dimension is indicated with M. Any element of the 

population is used as a starting point for a local search algorithm. As a result of this first operation, 

a set of M local minima is obtained. When the starting set has been defined, the genetic operators 
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are applied on the population. The three considered operators are indicated by select(g1, g2), 

crossover(g1, g2), and mutate(g1, g2), where g1 and  g2 are two individuals of the population. In 

particular, the selection operator, denoted by select(g1, g2), chooses two elements of the population 

for reproduction. The reproduction consists of two operations. First, the selected individuals are 

mated by using the single-point cross over function [32] (crossover(g1, g2)) in order to create two 

new arrays with a probability pc. Later, the mutation operator (mutate(g1, g2)) is applied with a 

probability pm. The obtained elements are then optimized by the local search procedure. The 

Replacement  block performs the substitution of the old population with the new individuals created 

by the previous operators. In particular, all new elements are copied into the population except the 

worst element, which is replaced with the best one of the old population (elitism operator). In Figure 

1, Kmax and Fth denote the maximum number of iterations and the threshold for the cost function, 

respectively. The iterative algorithm terminates when the cost function F(ξ) reaches a value below 

Fth or when the number of generations exceeds Kmax. 

 

IV. NUMERICAL RESULTS 

 

In the first example, we consider the reconstruction of a buried elliptic cylinder with the 

measurement points arranged in a borehole configuration (the geometry is shown in the inset of 

Figure 2). Synthetic data are used as input data and, according to the assumptions made in [7], in 

which a similar configuration has been assumed, the effect of the interface is neglected. The 

purpose of this first example is the evaluation of the impact of phaseless data on the functional to be 

minimized. In particular, Figures 2 shows the functional to be minimized in the case of complete 

data and phaseless data (equation (4)). The dielectric cylinder has a cross section of elliptic shape, 

which is centered at point x0 = −0.173λ, y0 = −0.865λ, being λ the wavelength of the incident wave. 

The semi major axis of the ellipse is 0.26λ, The semi-focal distance is d = 0.245λ. The dielectric 

permittivity of the void cylinder is ε0 and the background medium is characterized by εb = 12ε0 and 

µb = µ0.  

The scattered data are collected at a set of 13 measurement points, which are uniformly 

distributed along a probing line at points xm = 0.865λ, ym = −(m−1)⋅0.173λ, m = 1,...,13. The 

incident wave is produced by a line source located at xs = −0.865λ, ys = −1.04λ. 

As can be seen from Figure 2, in the phaseless case one more local minimum is present and 

the other local minimum is much deeper (clearly, the functional related to the complex input data is 

multimodal, too). Figures 3(a)-(d) show pictorial representations of the functional ( )ξF  computed 

for different values of x0, y0 and εr.  It is evident that ( )ξF , in the phaseless case (Figures 3 (b) and 
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3(d)), is much more irregular than the corresponding functional for complete data (Figure 3(a) and 

3(c)). As expected, phase data, when available, are very important, since they represent additional 

information of the inverse scattering experiment. Nevertheless, the application of an efficient global 

optimization algorithm may allow the correct reconstruction of the unknown target even in the 

phaseless case, in which, as counterpart, a far simpler measurement apparatus can be used. 

In particular, by using the memetic algorithm, the following reconstructions have been 

obtained. Figure 4 shows the behavior of the cost function (equation (4)) for three elements of the 

population. After the first iteration of the memetic algorithm, the convergence threshold 

( ( )ξF ≤ thF = 10-5) is reached. In Figure 4, "CGij" denotes the value of the functional ( )ξF  for the j-

th element of the population, whereas "MA" indicates the value of ( )ξF  for the best element of the 

population at the i-th iteration of the memetic algorithm. The initialization phase is denoted by i = 0.  

Between two iterations of the memetic algorithm (in the present case, between the initialization and 

the first iteration), the plots are related to the local search. The small rhomb denotes the optimum 

element. It is evident that the local search is trapped in local minima, whereas the application of the 

genetic operators (after the local search) enables to escape from the local minima and explore a 

different region of the solution space, allowing the convergence of the process. However, unlike the 

classic genetic algorithm, in the memetic algorithm the genetic operators are applied few times and 

the main search process is performed by the local search procedure. As a result, the memetic 

algorithm is faster than the genetic algorithm. 

Analogously, Figure 5 gives the values of the reconstructed dielectric permittivity. In 

particular, at the convergence, the relative error is less than 5 %. The parameters used for the 

memetic algorithm are listed in Table I. In order to provide a deeper assessment of the behavior of 

the memetic algorithm at the various iterations and, in particular, to better evaluate the capabilities 

of the method to escape from local minima, Figures 6 shows the "movements" of the coordinate of 

center of the elliptic cross section during the minimization phases, including the local search and the 

application of the genetic operators. In particular, in Figure 6, the continuous lines denote the 

"movements" of the trial solutions during the initialization phase, whereas the dashed lines denote 

"movements" during the first iteration of the memetic algorithm. Moreover, the black triangles 

indicate the starting points and the white triangles indicate the arrival points of the local search. 

Again, the small rhomb denotes the optimum element. From figures 5 and 6, it is quite evident the 

capabilities of the method to avoid local minima, whereas the usually applied iterative inversion 

procedures can be trapped there if care is not exercised in the choice of the initial trial solution. The 

"jumps" in the solution space are particularly evident in Figure 5, which also confirm the local-

minimum nature of the trial solutions of the memetic algorithm. See, for example, the two 
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trajectories on the right part of the figure: A trial solution of the initialization phase reaches a local 

minimum at about x = 0.36λ, ys = −1.52λ. The same local minimum is reached, during the first 

iteration of the memetic algorithm, by another trial solution starting from a different point. Finally, 

as can be clearly seen from Figures 5 and 6, the memetic approach is able to reach the global 

minimum even with starting solutions very far from the correct data (e.g., in Figure 5, the relative 

dielectric permittivity is equal to about 40 for the starting solution). In the authors' opinion, this 

feature of the approach can be quite important in the light of practical applications. 

A preliminary result concerning a two-layer elliptic cylinder is reported in Figure 7, which 

gives the final images of the reconstructed elliptic cross sections at the various iterations of the 

memetic algorithm, corresponding to the best elements constructed during the minimization 

process. The parameters of the two-layer model are the following: the cross-section center is x0 = 

−0.173λ, y0 = −0.865λ; the semi major axes of the ellipses defining the external boundaries of the 

two layers are equal to 0.26λ and 0.295λ; the semi-focal distance is d = 0.245λ; the relative 

dielectric permittivities are 1.0 (inner layer) and 5.0 (external layer). All the other parameters of the 

configuration are the same as those used in the previous example. The final solution is reached after 

5 iterations of the memetic algorithm (which has been run with the same parameters listed is Table 

I). In particular, the behavior of the cost function for the best element of the iterative optimization 

process is reported in Figure 8. As can be seen, at iterations k = 1 and k = 2, the same local 

minimum is reached, for which the same cross section is obtained in the final image (Figure 7). 

After iteration k = 1, in fact, the genetic operators produced a new optimum solution very near to 

the optimum solution at the end of the local search of iteration k = 1. However, the excellent 

capabilities of the approach in escaping from local minima are clearly shown in the last two 

iterations. 

 

V. EXPERIMENTAL RESULTS 

 

The proposed inversion procedure has also been tested by considering real input data. In 

particular, the measurement data have been obtained by K. Belkebir, M. Saillard and co-workers at 

the Institut Fresnel, UMR-CNRS, Marseille, France, by using a tomographic imaging configuration 

[35]-[37]. The experiment has been carried out in a circular configuration, i.e. the antennas 

(emitting and receiving antennas) are located on circles surrounding the unknown object. Actually, 

the transmitting antenna is fixed and the object is rotated, which is equivalent to rotate the emitting 

antenna. Double-ridged horn antennas are used (ARA DRG118A of dimensions 14.30 × 24.13 

cm2). The distance between the center of the experimental setup and the emitting antenna is rs = 
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72.135 cm, whereas the distance between the center of the experimental setup and the receiving 

antenna is rr = 76.135 cm.  

 The electric field is measured at 49 points located on a circular line of radius rr. A 

multiview approach is used (36 views). Furthermore, the data are collected using 4 frequencies, 

varying from 4 to 16 GHz. The object to be reconstructed is an infinite cylinder with circular cross 

section and relative dielectric permittivity εr=3.0; the radius is 0.015 m and the center is located at 

point (0.0, 0.03) m. In the present paper, in order to test the reconstruction procedure, only one view 

and one frequency (4 GHz) are used and the threshold has been fixed to thF = 10-2. In particular, the 

procedure described in Section II is applied to reconstruct the coordinates of the center of the 

circular cross section and the semi minor axis (smina).  

Results are reported in Figures 9-12. In particular, Figure 9 shows the behavior of the 

functional ( )ξF  at various iteration steps and Figure 10 gives the errors (normalized to the 

wavelength) in the reconstruction of the center of the cylinder cross-section. As can be seen, after 

four iterations of the memetic algorithm, the cylinder is located very well although the starting point 

(corresponding to the best individual) is rather distant from the exact one and the input data are 

noisy amplitude-only data. Moreover, Figure 11 shows the reconstructed values of the normalized 

semi minor axis, which, at convergence, reaches with a good approximation the exact value of the 

dielectric cylinder used for the experiment. 

Finally, Figure 12 reports the trajectories of each trial solution during the entire 

minimization process in the planes x-smina and y-smina, confirming the capability of the approach 

in escaping from local minima. 

 

VI. CONCLUSIONS 

 

The phaseless reconstruction of cylindrical inhomogeneities has been explored in this paper. 

A global optimization method has been applied, which is based on a memetic algorithm, which 

combines a series of local searches with the use of genetic operators. The unknown cylinders are 

schematized by multilayer elliptic cylinders, for which the forward problem, at the various 

iterations, has been analytically solved by a recursive procedure. Synthetic data are used for the 

reconstruction of cylinders in a borehole configuration. Moreover, the procedure has been validated 

by real scattering data obtained in a tomographic arrangement. Although the functional to be 

minimized, in the phaseless data, results to be highly multimodal, locations and shapes of the 

unknown cylinders have been reconstructed quite accurately, due to the ability of the memetic 

algorithm to escape from local minima. 
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FIGURE AND TABLE CAPTIONS 

 

Figure 1 – Flow chart of the memetic algorithm. 

Figure 2 – The functional ( )ξF  in the case of complete and phaseless data (equation (4)) computed 

along the y-coordinate of the cross-section center. 

Figure 3 – The functional ( )ξF  computed for different values of the cross-section center and of the 

relative dielectric permittivity. (a)(c) Complete data (amplitude and phase). (b)(d) Phaseless data. 

Figure 4 – The functional ( )ξF  computed for three elements of the population.  

Figure 5 – Reconstructed values of the dielectric permittivity of the cylinder versus the iteration 

number. 

Figure 6 – Trajectories of the individuals of the population of the memetic algorithm in the x–y- 

plane (coordinates of the cross-section center). 

Figure 7 – Reconstruction of a two-layer elliptic cylinder. Cross section of the cylinder at the 

various iterations of the memetic algorithm (best elements of the population). 

Figure 8 – Reconstruction of a two-layer elliptic cylinder. Behavior of the functional ( )ξF  for the 

best element of the population.  

Figure 9 – The functional ( )ξF  computed for three elements of the population versus the iteration 

number. Real scattering data. 

Figure 10 – Errors on the reconstruction of the cross-section center. The errors are normalized to the 

wavelength, λ. 

Figure 11 – Reconstructed values of the semi minor axis (smina) at the various iterations of the 

memetic algorithm.  

Figure 12 – Trajectories of the individuals of the population of the memetic algorithm in the two 

planes (a) x–smina (semi minor axis) and (b) y–smina.  

 

Table I - Parameters of the memetic algorithm for the numerical simulation. 
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Cross-over probability 0.9 

Mutation prabability 0.3 

Maximun number of iteration for the 

local search 

20 

Maximun number of iteration for the 

memetic algorithm 

40 

Threshold on ( )kF ξ  (local search procedure) 10-5 

Threshold on ||∇ ( )kF ξ ||  (local search procedure) 10-3 

Threshold on ( )kF ξ  (memetic algorithm) 10-5 

Minimum value of x/λ -0.865 

Minimum value of y/λ 2.1 

Minimum value of ε 1.0 

Maximum value of x/λ 0.865 

Maximum value of y/λ 0 

Maximum value of ε 120 

 

Table I 

 


