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Abstract—We present an intelligent system for satellite sea ice
image analysis named Advanced Reasoning using Knowledge for
Typing Of Sea ice (ARKTOS). ARKTOS performs fully automated
analysis of synthetic aperture radar (SAR) sea ice images by mim-
icking the reasoning process of sea ice experts. ARKTOS automat-
ically segments a SAR image of sea ice, generates descriptors for
the segments of the image, and then uses expert system rules to
classify these sea ice features. ARKTOS also utilizes multisource
data fusion to improve classification and performs belief handling
using Dempster–Shafer. As a software package, ARKTOS com-
prises components in image processing, rule-based classification,
multisource data fusion, and graphical user interface-based knowl-
edge engineering and modification. As a research project over the
past ten years, ARKTOS has undergone phases such as knowledge
acquisition, prototyping, refinement, evaluation, deployment, and
operationalization at the U.S. National Ice Center. In this paper, we
focus on the methodology, evaluations, and classification results of
ARKTOS.

Index Terms—Data fusion, Dempster–Shafer belief theory, intel-
ligent image analysis, rule-based system, sea ice classification.

I. INTRODUCTION

REMOTE sensing of the polar regions has important ap-
plications in meteorology and in global climate studies.

For example, the thickness of sea ice influences the heat flux
between the atmosphere and water surface; thus, the classifi-
cation and temporal tracking of sea ice can be used as an in-
dicator in global climate monitoring [1]. Increased concern re-
garding global climate change and the subsequent increase in
the number of earth-orbiting satellites have resulted in a dra-
matic increase in the volume of satellite imagery available to
scientists. Thus, automation in sea ice image classification is
desired to assist sea ice experts in extracting geophysical infor-
mation from the increasing volume of images. Such automa-
tion releases sea ice experts from the task of having to retrieve
and disseminate different sources of data to classify images, al-
lowing them to concentrate on more important decision making.

There are many advantages to having a knowledge-based ap-
proach to sea ice image analysis. First, it mimics the reasoning
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process of sea ice experts and, thus, allows easier evaluation and
knowledge refinement by experts. This close interaction also en-
ables the software engineers and researchers to communicate
with the experts using explicit knowledge. Second, it is con-
venient for multisource data fusion. Derived information can
be readily added to the system with minimal programming im-
pact, and new rules can be plugged into the knowledge base
easily. Third, it is modular. Different knowledge bases may be
built for images of different regions, different seasons, and dif-
ferent applications. Fourth, because of its modularity, many of
the research and development processes have been conducted
in parallel or in overlapping phases. A knowledge base that is
stable can be promoted to be operational while another knowl-
edge base may still be undergoing refinement. This equips the
system with the ability to evolve cost-effectively. Finally, with
knowledge explicitly represented and available for evaluation,
this approach introduces accountability and encourages knowl-
edge transfer and exchange among experts. Expert analysts may
use the knowledge bases to train young analysts; experts may
exchange their knowledge bases, using a similar language and
subject particular rules to discussions and improvements; and
users may understand why certain images are classified the way
they are and may know which rules are the reasons behind the
classification and which experts wrote the rules. This account-
ability enhances the knowledge-engineering culture within the
sea ice community and makes sea ice expertise better organized
and better portable.

There has been previous work in knowledge-based systems
for remote sensing, such as aerial image understanding [2], land
change detection [3], segmentation [4], and vegetation classi-
fication [5]–[7]. However, most knowledge-based systems are
pixel-based, while the approach taken by Advanced Reasoning
using Knowledge for Typing Of Sea ice (ARKTOS) is feature-
based. Human experts do not analyze the images at the pixel
level; instead, they look at regions and features and reason about
them.

ARKTOS is also the only system that classifies synthetic
aperture radar (SAR) sea ice data automatically in an opera-
tional environment, i.e., in near real-time. Other SAR sea ice
classifiers include the work by Fetterer et al. [8], who developed
the Multi-Year Ice Mapping System (MIMS) at the University of
Colorado. MIMS was designed to quickly map old ice in uncal-
ibrated SAR images using a local dynamic thresholding. MIMS
only identifies old ice in high latitudes. The RADARSAT geo-
physical processor system (RGPS) classifies sea ice into local
age and thickness distributions using ice motion and an empir-
ical relation between accumulated freezing-degree days and ice
thickness [9]. The RGPS requires occasional human interven-
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tion to identify tie points used in calculating ice motion, works
only during the winter, is not near real-time, and cannot be used
in an operational environment.

In the following, we first give an overview of ARKTOS. In
Section III, we describe in detail the methodology of ARKTOS,
including the various components. In Section IV, we present
the evaluation results. Finally, in Section V, we summarize
ARKTOS and make recommendations for improving the
performance of the system.

II. OVERVIEW OF ARKTOS

ARKTOS is a fully automated intelligent classifier of sea
ice in SAR images, which also incorporates and fuses ancillary
data sources to support its classification conclusions. Given an
image, ARKTOS extracts objects or features and then computes
a set of attributes for each feature. Next, ARKTOS feeds the fea-
tures with the corresponding attributes into a rule-based system.
The rule-based system is supported by a Dempster–Shafer be-
lief system [10]. Each rule has an antecedent, a consequent, and
a weight. The antecedent consists of attribute–value pairs de-
scribing a feature in the image. The consequent is the resultant
assertion that the feature belongs to a certain ice class (in the
current version of ARKTOS the classes are open water (OW),
new ice (NI), first-year (FY) ice, and multiyear (MY) ice). The
weight is the confidence in the assertion. A feature may trigger
the firing of multiple rules, asserting complimentary or con-
flicting ice classifications. The Dempster–Shafer belief system
collects these weights as masses of evidence and combines them
to compute the belief and plausibility of a feature belonging to
a particular class.

ARKTOS performs multisource data fusion [11], [12] by in-
tegrating data of different formats and sources to help classify
the features. Since these data are of different resolutions and do-
mains, ARKTOS uses georeferenced conversions and attribute
measurements to bring them to a common, usable form.

ARKTOS is also a knowledge-engineering tool [13], [14]. It
consists of a suite of graphical user interfaces (GUIs) that al-
lows users to refine the system and review the performance of
the software, verifying the classification rules. Initially, we con-
ducted knowledge acquisition from sea ice experts and then built
a prototype quickly. This stage involved interviewing sea ice
experts, transcribing the sessions, identifying descriptors and
rules, designing and implementing the knowledge, and deliv-
ering a modestly accurate classification prototype quickly. A re-
finement stage then involved evaluating the prototype, refining
the knowledge base, modifying the design, and reevaluating the
improved system. Finally, ARKTOS transitioned to operations
at the National Ice Center [15].

The ARKTOS software package operates on Windows NT
and UNIX platforms, using Naval Satellite Image Processing
System (NSIPS)-processed (by the Naval Research Laboratory)
[16] SAR images, and fusing other data such as climatology,
and Special Senor Microwave/Imager (SSM/I) ice concentra-
tion maps. ARKTOS was written in the C programming lan-
guage except for the GUIs, which were written in Java.

III. METHODOLOGY

There are four main components in ARKTOS: image pro-
cessing, rule-based classification, multisource data fusion, and a
suite of JAVA-based GUIs that form the knowledge-engineering
and evaluation component.1

A. Image Processing

We have studied, designed, and implemented four stages of
the image processing sequence in the course of researching and
designing ARKTOS: preprocessing, segmentation, attribute
measurement, and fact generation. As a feature-based classi-
fication system, the attribute set of each feature in ARKTOS
is matched against a set of rules. These rules are used to assert
or refute evidence that a feature belongs to a particular ice
class. Therefore, it is important for us to consider techniques
at both the feature and global level. At the global level, we
have the preprocessing and segmentation techniques applied
to the entire image. At the feature level, we have the attribute
measurements and symbolic description stages applied to each
feature found.

1) Preprocessing: The SAR images that ARKTOS handles
come in various formats, processed by four different satellite
reception stations: the Alaska SAR Facility (ASF), Tromsø,
Norway, Gatineau, Canada, and West Freugh, Scotland. In
addition, there are images that have been preprocessed by the
National Ice Center into NSIPS format. ARKTOS converts
these images into PGM format with 256 gray levels (see
http://netpbm.sourceforge.net/doc/pgm.html).

For a non-NSIPS-processed image, ARKTOS performs a
5 5 Gaussian sampling to reduce both the size of the image
and noise. The Gaussian sampling is a weighted intensity
average within a window using weights of a two-dimensional
Gaussian curve.

The current version of ARKTOS uses several external in-
formation sources: SSM/I ice concentration GRIB files, land-
masks, and two sets of ice climatology data, both extracted from
the records of the NIC: one representing the probability of a re-
gion containing ice in a 19-year span and the other representing

1In this paper, we do not discuss the knowledge-engineering process, which
is described in detail in [14].
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the median concentration of ice in that region during the same
span [17]. ARKTOS converts all these datasets into PGM format
for faster access at run-time.

Table I shows a brief summary of the different file formats.
2) Segmentation: We studied three main segmentation

algorithms: 1) dynamic local thresholding, 2) unsupervised
clustering, and 3) watershed merging. Dynamic local thresh-
olding is not suitable because it segments an image into
classes based on their global appearance, instead of fea-
ture-level homogeneity [18]. Unsupervised clustering is an
aggressive pixel aggregation technique that is not suitable for
feature extraction, as it merges too many features into one
single region [19]. Watershed merging was deemed the best
segmentation technique for our purposes and was implemented
in ARKTOS [20], [21]. In geography, watersheds are regions

of terrain that drain toward the same point. This situation can
be analogously applied to SAR sea ice images by treating
intensity as height. First, the algorithm identifies the local
intensity minima that define the bottoms of watersheds. A
minimum is defined as a pixel with all its eight neighbors
having greater intensities than the pixel. Then, the algorithm
computes the image gradient and partitions the input image into
watersheds by marking the locations of intensity minima with
unique region identifiers in an output image. For each of the
remaining pixels, the gradient information is used to follow the
image down to some intensity minimum. The corresponding
pixel location in the output image is assigned the identifier of
this minimum. The watershed merging algorithm subsequently
merges each pair of neighboring watersheds based on their
average intensities, sizes, and gradients.
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Specifically, the watermerge algorithm works as follows.
After the initial watershed-based segmentation, the image is
divided into a set of regions. Each region is attributed with an
average intensity and a size. The boundary gradient between
each pair of regions is also computed. In addition, there are
three basic thresholds: a boundary gradient threshold, Thresh ,
which is set at 6.0, an average intensity threshold Thresh ,
which is set at 12, and a size threshold Thresh , which is set at
10. For each image, we adapt the boundary gradient threshold
to Thresh Thresh range , where range is the
dynamic range of the image. Similarly, we adapt the average
intensity threshold to Thresh Thresh range . Next,
the watermerge algorithm performs two layers of merging.

The first layer carries out ten iterations of merging based on
the boundary gradient between each pair of regions. During it-
eration , we merge a pair of regions if the boundary gradient
between the two is less than Thresh , and the size of the
smaller region is Thresh . When the algorithm arrives
at the last iteration, it merges a pair of regions if the boundary
gradient between the two is less than Thresh and the size of
the smaller region is Thresh . The strategy here is to merge
smaller regions with smaller gradient differences first, before
moving to the next iteration. During the next iteration, newly
merged regions will be considered for further merging. This
strategy has been shown to perform well even with range ef-
fects in images [20].
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The second layer also carries out ten iterations of merging, but
based on the average intensity difference between each pair of
regions. During iteration , we merge a pair of regions if average
intensity difference between the two is less than Thresh
and the size of the smaller region is Thresh .

Note that in the first layer, the algorithm focuses on the
strength of the boundary. If the boundary is not strong enough,
then the two regions are merged. In the second layer, even if
the boundary is strong enough, it is possible that from a global
viewpoint, the average intensity of the two regions is very
similar. If they have similar average intensity values, they are
merged.

3) Feature Attribute Measurements: The segmentation
stage identifies intensity-based homogeneous regions in the

image as features. For each feature, we compute a set of
attribute measurements that helps us generate the facts that
are needed by the classification rules. The set of attributes
used to define a feature was based on conversations with and
knowledge acquisition from expert analysts of SAR sea ice
imagery. They attempt to capture what the experts defined as
the visual cues they use when classifying sea ice. Some of these
attributes are common sense (e.g., the area or average intensity
of a feature), while others are domain-specific and have names
assigned to them by the experts (e.g., “mottledness” as a mea-
sure of texture variation of a feature). Since ARKTOS needs
to classify images quickly, some traditional image analysis
measurements, such as grayscale cooccurrence matrices, were
not used, as they are computationally expensive. The complete
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set of the attributes we compute and their descriptions are listed
in Table II.

The first set of attributes we measure are intrinsic and include
area, average intensity, standard deviation of the intensity values
in the feature, and contrast (the ratio of the standard deviation
over the average intensity).

To measure boundary-related attributes, we first build the
chain code of a feature. The chain code has a starting point and
a set of directions leading from that starting point and ending
at the starting point. It is an efficient way of storing boundary
information and traversing a boundary. We then compute the
length of the boundary (or perimeter) and the length of only the
outer boundary where the perimeter length of internal holes of
an object is not included. We use these to compute perimeter
porosity, which is simply the ratio of the greater perimeter over
the shorter one. This attribute is used to specifically describe
the degree of irregularity of sea ice features. A sea ice feature
may also have different boundary types, such as curved, linear,
or angular; these boundary types are sometimes good proxies
of a feature’s age.

The third type of attributes is texture-based. These turned out
to be very difficult to design and implement, as human experts
are able to detect complex textures that computer algorithms fail
to capture accurately. Currently, we have three different types
of textural attributes: mottledness, average roughness, and new
roughness. The objective of mottledness is to detect the intensity
differences within a feature: “mottled” features display high-in-
tensity differences. Based on interviews with experts, “mottled-
ness” is designed to tolerate less difference for bright features
than for dark features in order to capture the experts’ observation

that a slight change at the bright end of the intensity spectrum
is more significant than one at the dark end. The average rough-
ness is a more traditional, but far more time-consuming, texture
measure, in that it uses overlapping 5 5 windows to compute
variances and then averages them over the feature. New rough-
ness was designed specifically by the experts for sea ice features,
and integrates average roughness with the standard deviation of
the intensity of the feature. The goal is to capture large-scale
textual variations, where locally (in a 5 5 window) there is
homogeneity but globally there is texture variability.

To obtain geometric attributes, we compute principal axes,
the centroid, and the bounding rectangle of each feature. Given
these, we are able to determine the orientation of a feature,
its maximum length and width, area porosity, elongation,
roundness, thinness, irregularity, eccentricity, and jaggedness.
Most of these attributes are specifically designed for sea ice
features. For example, the area porosity of a feature is the ratio
of the bounding rectangle over the actual area of the feature
and approximates the “branchiness” of the feature. A feature
with branches has a high area porosity, and this corresponds to
ice leads, a rather unique feature observed in sea ice images.
Also, a feature is eccentric if it has boundary pixels that are
close to its centroid and boundary pixels that are far from
its centroid. A circle is not eccentric, because all boundary
pixels are equidistant from the centroid. An N-pointed star is
eccentric, however, because the boundary pixels at its points
are farther away from the centroid than the pixels at the valley
between points. Irregularity is an innovative complex attribute:
a feature that has a high perimeter porosity (a lot of holes)
and a high area porosity (a lot of branches) is highly irregular.
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Note that our watershed-based segmentation technique may
sometimes merge regions overaggressively, resulting in a
feature of irregular shape. By describing these features with
our irregularity measurement, ARKTOS singles them out and
classifies them using specific rules. Thus, ARKTOS is able to
compensate for segmentation overmerging.

4) Fact Generation: The feature attribute measurements
(except those for curved, angular, and linear boundaries)
are continuous, real-valued numbers that cannot be used in
their raw form for classification. Human analysts express
their knowledge in a discrete way. For example, a feature is
of either “small,” “medium,” or “large” size, or it is either
elongated or not. Consequently, the feature attribute values
had to be quantized and translated into a set of discrete
values. In addition, other, higher level facts (such as a feature
being a “lead”) are generated. Thresholds were defined with
the help of experts that divide continuous measurements
into discrete fact values. Table III shows all facts with their

discrete values, the attribute values that lead to them, and the
expert-defined threshold(s). Some of the facts are relational,
obtained by looking at the shared boundaries of the features:

encloses ; is neighbor of ; contains cracks;
is adjacent to land, etc. Other attributes are obtained by
comparing attributes of features with shared boundaries:

is darker than its neighbors; is more mottled than its
neighbors, etc. These are important indicators in sea ice
image analysis. For example, if a feature is found to be
brighter than its neighbors, then it is more likely to be a
piece of multiyear ice.

Most facts are self-explanatory except, possibly, for one:
“blob.” In some images, there appear features that are vast in
size and basically featureless (often large areas of multiyear
ice or open water); these are defined as “blobs.” If a feature is
found to be a blob, then all its geometric and boundary-related
attributes (such as roundness, elongation, irregularity, etc.)
are neither computed nor used in classifying the feature. This



236 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 1, JANUARY 2004

TABLE III
(Continued). FACTS EXTRACTED FROM THE FEATURE MEASUREMENTS FROM THE SAR IMAGE

important distinction is made, since rules are designed to
describe individual ice floes rather than groups of ice types.

Figs. 1 and 2 illustrate facts generated by ARKTOS in rela-
tionship to their spatial (intensity and mottledness, in this case)
and shape-related (roundness, elongation, and irregularity)
attribute values. Fig. 1(a)–(c) gives examples of features of
varying intensity, while Fig. 1(d)–(f) provides examples of
features of varying mottledness. It should be noted that Fig. 1(e)
represents a feature with a mottledness value just below the
mottledness threshold of 15.00, which separates features that
ARKTOS considers smooth from features that ARKTOS
considers mottled. Fig. 2(a)–(c) provides examples of features
of varying ARKTOS roundness, with Fig. 2(a) being the most
round and Fig. 2(c) the least round. For this attribute, the smaller
the value, the rounder the feature. Features with roundness
values below the threshold of 1.05 are considered to be round

by ARKTOS, while those with values greater than 1.05 are
not. Fig. 2(d)–(f) illustrate how the attributes of elongation and
irregularity are considered together to characterize a feature
as a lead. For a feature to be characterized as a lead, both its
elongation value and its irregularity value must be above preset
thresholds. The features in Figs. 2(d) and 2(e) have values
that are all above the thresholds and are thus considered by
ARKTOS to be leads. The feature in Fig. 2(f) has an elongation
value higher than the threshold but not irregularity, so it is not
considered to be a lead by ARKTOS.

B. Multisource Data Fusion

In addition to the raw image data, ARKTOS incorporates an-
cillary data into its reasoning process. This multisource data fu-
sion component is necessary, as various data sources are often
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Fig. 1. Examples of spatial attribute values. Features with intensity values of (a) 162, (b) 84, (c) 36, where (a) is considered by ARKTOS to be bright, (b) gray,
and (c) dark. Features with mottledness values of (d) 10.67, (e) 14.68, (f) 34.39, where (d) and (e) are considered by ARKTOS to be smooth and (f) mottled. Images
are from November 7, 1999, March 29, 1998, and December 8, 2000. Images CSA 1998–2000.

used by human experts to help them classify sea ice images.
Our fusion framework is attribute- and knowledge-based. The
information derived from various data sources is converted into
attributes and facts linked to each feature. Then, the knowl-
edge on how to use these pieces of information is encoded in
the rules of the rule-based classification module. The fusion is
performed at two levels. At the attribute level, for each fea-
ture we find a combined list of attribute measurements com-
puted from the imagery data and all other sources of data. For
each data source, ARKTOS has to perform appropriate geo-
referencing and conversions. At the knowledge level, we de-
fine how different sources of data should work with each other
through weighted rules and a Dempster–Shafer belief system
(Section III-C). Currently, there are four different sources: an-

cillary data, SSM/I concentration maps, landmasks, and histor-
ical ice climatology data.

Ancillary data comes with the raw SAR image as the header,
trailer, or leader information and specifies the date and the co-
ordinates of where the image was taken. These data are in-
tegrated into the database through several facts:2 summer
true winter true west of xxxx east of xxxx, and
latitude xxxx, where xxxx is a coordinate value in degrees.
Each SAR image processing facility generally has a different
ancillary data format to accompany its images. Ancillary data
are also used to establish intersource information coordination

2Table IV shows all facts generated by ancillary data and that are used in the
reasoning of ARKTOS.
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Fig. 2. Examples of shape attribute values. Features with roundness values of (a) 0.37, (b) 1.06, (c) 1.78, where (a) is considered by ARKTOS to be round, and
(b) and (c) are not. Features with elongation and irregularity values of (d) 4.36 and 4.09, (e) 10.12 and 3.62, (f) 1.53 and 2.68, where (d) and (e) are considered by
ARKTOS to be leads, and (f) is not. Images are from March 5, 2000, March 9, 2000, and March 12, 2000. Images CSA 2000.

TABLE IV
FACTS EXTRACTED FROM THE ANCILLARY DATA SOURCES

and to select the corresponding ice chart and SSM/I concentra-
tion map, for example.

We also keep track of the geographic location (latitude and
longitude coordinates) of the four corners of the image, key in-
formation for our fusion. Since we have attribute-level fusion,
we need to tag each feature with its latitude–longitude location
so that ARKTOS can locate the corresponding data point when
moving from one data source to another. ARKTOS can analyze
images using SSM/I sea ice concentration maps. These gridded

TABLE V
COMBINATION OF TWO MASS VALUES USING

DEMPSTER’S RULE OF COMBINATION

ice concentrations are generated with the calibration/validation
(CAL/VAL) algorithm [22] in GRIB format by the U.S. Navy’s
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Fleet Numerical Meteorology and Oceanography Center
(FNMOC). To improve the run-time performance of ARKTOS,
we convert all such files into the PGM format in which each
pixel represents the ice concentration value at that location,
computable through a conversion algorithm. For each feature,
we convert its centroid (in image-based Cartesian coordinates)
to latitude–longitude coordinates and map these coordinates
onto the Cartesian coordinates of the corresponding concentra-
tion GRIB map (by date). Finally, we extract the concentration
value, an integer between 0 and 100.

On a coastal sea ice image, in order to prevent land pixels
from being factored into the segmentation and feature extraction
process, we superimpose a land mask so that land pixels are dis-
tinctively designated. The land masks currently in use were pro-
vided to us by the Naval Research Laboratory, in NSIPS format,
and are geocoded for easy mapping. To fuse land masks into
ARKTOS, we created an attribute called adjacent_to_land and
encoded six expert rules that involve the attribute. Any feature
neighboring a land region will thus have its adjacent_to_land
attribute set to true. In this manner, we are able to maintain a
consistent use of land masks in the fusion process. These data
have proven to be important in correctly identifying fast ice.

The NIC ice climatology dataset is a statistical computation
describing extent and coverage of sea ice in specified areas of
the Arctic and Antarctic Oceans. The data were compiled from
19 years of NIC Arctic and Antarctic sea ice analyses (covering
most of the years 1972–1994) and are important for sea ice clas-
sification, as experts can draw inferences from the expected ice
conditions in a region.

The current version of ARKTOS requires two sets of ice cli-
matology data. The first set is the OCC, a map of the Arctic
region for a particular month, where each pixel on the map rep-
resents the probability of that region containing ice in a 19-year
span. Thus, the pixel value is between 0 and 19, with some other
default values for land and null values. The second set is the
MEDCT data, a map of the Arctic region for a particular month,
where each pixel on the map represents the median concentra-
tion of ice in that region in a 19-year span. Thus, the pixel value
is between 0 and 100, with some other default values for land
and null values.

For each feature, we convert its centroid (in Cartesian coordi-
nates) to latitude–longitude coordinates, map those coordinates
onto the Cartesian coordinates of the corresponding climatology
map, and extract the number of years of ice coverage value from
the OCC files and the value of total ice concentration from the

MEDCT files. Finally, ARKTOS converts the above two mea-
surements into facts, using the thresholds shown in Table IV for
the symbol descriptors numyr and medct.

C. Rule-Based Classification

The rules of ARKTOS encode the knowledge extracted from
expert analysts through a series of interviews and subsequently
refined through testing and evaluation of prototype systems (the
knowledge acquisition and refinements processes are detailed in
[14]).

ARKTOS rules consist of a condition, a possible classifica-
tion, and a weight. The condition is expressed as a collection
of attribute–value pairs, where all attributes and their possible
values are described in Tables III and IV. An example condition
is

return bright AND winter true AND rounded true

The resulting ice classification is one of four possible ice
classes: open water, new ice, first-year ice, or multiyear ice.
The weight of a rule indicates the mass of evidence in a
classification, given the feature description defined in the
condition part. A weight ranges between 0.1 and 1 for positive
belief in a classification, and between 1 and 0.1 for negative
belief. Weights of 1.0 and 1.0 indicate absolute certainty that
a feature belongs or does not belong to a class, respectively.
Currently, we have about 100 rules in our rule base, specifically
for analyzing SAR sea ice images in the Beaufort Sea area.

For each feature, the rule-based classification module
matches the facts associated with that feature with every rule
in the rule base. If the conditions of a rule are matched, then
the rule asserts a classification with a confidence value. For
each feature, there are many rules that may be matched, and
we may have rules supporting the feature as belonging to any
number of classes. Hence, we need to combine these assertions
in a consistent manner and determine which class (if any)
is supported by the strongest evidence. To do so we use the
Dempster–Shafer belief system [23].

Suppose that all of the ice classes that ARKTOS knows are
of the frame of discernment or universe . Thus, the set of all
propositions (of all possible classifications) is , the power
set of . Let be a function—a basic prob-
ability assignment. Let an assertion in favor of a classification
be . Then, the basic probability assignment function satisfies
the conditions for a certainly false classification
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Fig. 3. Polygons derived from (a) NIC ice charts, (b) same polygons overlain on the source RADARSAT image, and (c) ARKTOS classification result. (c) CSA
2000.

and for a certainly true classification . The
belief function Bel is defined in terms of
the basic probability assignment Bel .
This tells us the degree of belief associated with the classifica-
tion as the probability mass associated with and its sub-
sets. The plausibility of a classification is further defined as
Pls Bel . Hence, a classification is always bound
by Bel, Pls in terms of the confidence in its perceived truthful-
ness. To combine various pieces of evidence for building up be-
liefs in favor of various classifications, Dempster’s rule of com-
bination is used. Suppose we are given two assignments (two
pieces of evidence), and , and we want to combine them
into a single piece of evidence. Hence, we compute

where , and .
For example, suppose that after matching the facts of a feature

to our rule base we arrive at two assertions: old_ice with confi-
dence 0.7 and open_water with confidence 0.2. Hence, cor-
responds to the mass supporting the feature to be old ice

and to be any of , where is the set of all ice
classes; and corresponds to the mass supporting the feature
to be open water and to be any of . Then,

TABLE VII
MEAN AND MEDIAN ABSOLUTE DIFFERENCES IN ICE CONCENTRATION FOR

ALL POLYGONS BETWEEN ARKTOS AND NIC ICE CHART CLASSIFICATION

we can compute their combination using the rule of combi-
nation above, resulting in the classifications shown in Table V.
Table V says that the evidence for the feature to be of the old_ice
type is now 0.56; of the open_water type is now 0.06; and of one
of the ice classes is now 0.24.

In this manner, all new evidence is incorporated into the pre-
viously accumulated beliefs consistently. From , we can fur-
ther compute the evidential interval Bel, PLs for each of the
ice classes.

ARKTOS uses a modified Dempster–Shafer belief system to
deal with the intricacies of sea ice classification. The modifica-
tions of the theory are as follows.

1) In ARKTOS, the classification of a sea ice feature into a
set such as {open_water, old_ice}, , or {} is not useful.
Thus, the mass or evidence accumulated for such proposi-
tions is purged. For example, in Table V, after purging, the
reweighted evidence for {open_water} is 0.09, and that
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for {old_ice} is 0.85. Note that the Dempster–Shafer be-
lief system assigns beliefs to all possible combinations
of classifications, such as {open_water, old_ice}. That is,
the system could indeed classify an object as open_water
or old_ice with a degree of belief. However, we deem
such a “hybrid” classification useless. Thus, we use the
above purging technique, removing such ambiguity from
our final classification. The purging process is simply re-
moving the weights of these hybrid classifications, and
renormalizing the remaining classifications so that they
sum up to 1.0.

2) The original Dempster–Shafer belief theory does not in-
clude negative beliefs, something important in ARKTOS,
since sea ice experts express knowledge of both positive
and negative classification (e.g., if a particular feature ex-
hibits certain attributes, then that feature cannot be of ice
type “A”). Moreover, whenever such a negative assertion
is made, it carries more weight than a corresponding posi-
tive assertion, as determined by sea ice experts. We mod-
ified the Dempster–Shafer belief system to account for
negative assertions exactly the same way as for positive
ones, and to weigh negative assertions more heavily.

3) We compute the product of belief and plausibility for each
ice class for each feature and use that to determine the
most credible ice class. If the product of the most cred-
ible ice class is below a certain threshold (0.25), then
ARKTOS classifies the feature as “unknown.”

4) Some rules have absolute certainty (positive or negative),
i.e., they have a weight of 1.0 or 1.0. When such rules
are fired, we deal with the classification differently. If a
feature has competing classifications weighted with an
absolute belief (1.0) or the same classification weighted
with absolute belief (1.0) and absolute disbelief ( 1.0),
ARKTOS classifies the feature as “unknown.” Otherwise,
ARKTOS immediately classifies the feature according to
the absolute beliefs, ignoring other “less than absolute”
assertions.

Table VI lists a few rules whose antecedents are based on the
attribute–value pairs, and the consequents are ice type classifica-
tions. To summarize, each rule has a weight value that indicates
the contributing factor of the rule. This weight value is input as
evidence or mass into the Dempster–Shafer belief system. The
belief system combines the evidence (different weights) from
different rules to obtain a belief measure for each ice class.
It also computes the plausibility measure—a likelihood indi-
cator—for each ice class based on the belief measure. Finally,
ARKTOS multiplies the belief and plausibility measures to find
the most credible ice class.

IV. EVALUATION OF ARKTOS

The evaluation of ARKTOS was performed using 54
RADARSAT images collected over the years 1998–2000. The
locations of these images ranged over the Beaufort, Bering,
and Chukchi regions, and the images were evenly distributed
throughout the course of the year. None of the imagery was
used previously in any of the ARKTOS fine-tuning efforts.
Climatology coincident with the imagery was retrieved

(a) (d)

(b) (e)

(c)

Fig. 4. Distributions of ice concentration differences (absolute value) for
(a) total ice concentration, (b) multiyear ice, (c) first-year ice, (d) new ice, and
(e) open water.

TABLE VIII
MEAN AND MEDIAN ABSOLUTE DIFFERENCES IN ICE CONCENTRATION FOR

ALL IMAGES BETWEEN ARKTOS AND NIC ICE CHART CLASSIFICATION

from the NIC, and the Fleet Numerical and Meteorological
Oceanographic Command (FNMOC) provided the necessary
coincident ancillary SSM/I CAL/VAL ice concentration data
[22].

The ARKTOS ice classification results were then compared
to the total and partial ice concentrations obtained from coin-
cident NIC ice charts. Using a combination of ARCINFO and
NSIPS tools, polygons representing areas of common partial
and total ice concentrations were derived from the NIC ice
charts and then overlain onto the ARKTOS ice classification
product (Fig. 3). The ARKTOS ice classification product
consists of a five-value image with pixel values representing
multiyear ice, first-year ice, new ice, open water, and un-
known/undecided. Values obtained from a histogram of the
ARKTOS ice classification product within an area defined by
a polygon derived from the NIC ice chart were then used to
calculate ARKTOS’ estimates of total and partial ice concen-
tration inside that polygon.

Approximately 100 NIC ice concentration charts were used
as “truth” for the comparison. These weekly ice concentration
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Fig. 5. Typical ARKTOS results for a mixture of multiyear and first-year ice. (a) RADARSAT image from February 20, 2000, (b) ARKTOS segmentation, and
(c) ARKTOS classification product. Note the accuracy of the segmentation (a) CSA 2000.

charts are produced by a team of experienced ice analysts from
a combination of different sources of satellite imagery received
at the NIC. When available, in situ observations are also used.
Stringent classification criteria are used by the ice analysts in
order to insure the accuracy and consistency of their product.
Although the ice charts are not ground truth per se, they repre-
sent the absolute best guess about the types and concentrations
of ice that can be inferred from the data. Note that by assuming
the NIC ice charts as “truth,” our study uses absolute difference
between ARKTOS’ classification and the ice charts as the clas-
sification error.

Although the NIC ice charts are produced by ice experts, they
are still the product of a human interpretation of the data and,
as such, are not entirely free of uncertainty. Total concentrations
are generally represented by a range of values that can span up to
20%. For example, an area in an NIC ice chart of multiyear pack
ice may be represented as having 80% to 100% total ice concen-
tration, with no indication within the area where the concentra-
tion is 80% and where it is 100%. This value range, which is not
constant from ice chart polygon to ice chart polygon, can intro-
duce error when compared to the exact total ice concentrations
calculated from the ARKTOS classifications. To minimize this
error, NIC total ice concentration estimates used in the compar-
ison were calculated from a sum of the partial ice concentrations
in the polygons. There may also be some variability introduced

by the subjective nature of the NIC ice analyses themselves. Al-
though the Beaufort region is routinely analyzed at the NIC by
one of their best analysts, interpretation of the input data may
vary from analyst to analyst. There will be variations among the
analysts in the estimates of concentration boundaries and in the
ice types within those boundaries. These interanalyst variations
can be up to 10% for the estimate of total concentration and up
to 20% for the estimate of partial concentration. This variability
can also increase based on differences in the level of expertise
among the analysts.

Care was taken to ensure that error was not introduced into
the analysis when using the ice charts for comparison. Most of
the imagery used in the evaluation went directly into the pro-
duction of the ice charts, thus rendering the evaluations a direct
comparison of ARKTOS’ results to those of the ice analysts. For
cases where the analyzed imagery was not used as input to the
ice chart, care was taken to make sure that whatever product was
used (Advanced Very High Resolution Radiometer (AVHRR),
Operational Linescan System (OLS), SSM/I) was generated on
the same day as the RADARSAT imagery. As a final check, the
imagery was visually inspected to reaffirm that the ice chart con-
centrations and classifications were accurate at the feature scale
of the imagery. In a few cases, visual inspection values did not
mirror ice chart values. In some of these cases, the mismatch
was due to the dynamic nature of the ice pack (the effects of ice
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Fig. 6. Typical ARKTOS results for multiyear ice pack in winter. (a) RADARSAT image from February 20, 2000, (b) ARKTOS segmentation, and (c) ARKTOS
classification product. (a) CSA 2000.

motion). These cases were removed from the analysis. Other
cases were sent to the NIC for a more in-depth analysis at the
image feature level. Every effort was made to visually evaluate
and validate the NIC ice concentration estimates at the image
feature level prior to the comparison to the ARKTOS results.

ARKTOS’ estimates of ice type and ice concentration within
areas of analysis derived from NIC ice chart polygons were then
compared to the matching NIC values within those areas. For
every polygon analyzed, the difference between the total and
partial NIC ice concentrations and the ARKTOS ice concen-
tration estimates was calculated. These differences were exam-
ined with respect to latitude, longitude, and data and were listed
as either underestimating or overestimating of ice concentration
by ARKTOS. Statistics were then derived from all the pairs of
values.

A few trends were observed in the values of the differences
that were calculated. One of the most noticeable trends was
the large number of overestimations of total ice concentration
by ARKTOS (and paired underestimations of open water) at
5% and 10%. These values may reflect uncertainty in the ice
concentration values in the ice charts rather than real error in
ARKTOS. The majority of these errors are associated with re-
gions of multiyear pack ice in the NIC ice charts. These areas
are usually represented by a total ice concentration of 90% to

100%, with partial concentrations of 80% multiyear ice, 10%
first-year ice, and a trace of new ice. Efforts were made to mini-
mize error introduced by a range of total concentration values by
comparing ARKTOS total ice concentration values to the sum
of the NIC ice chart partial values. But there was still a ques-
tion of how to represent the “traces” of new ice. A trace can
represent values from 0% to 9%, making the sum of the partials
equal to anywhere from 90% to 99%. When the RADARSAT
images paired with these NIC values are examined, the areas
that make up the consequent 0% to 9% of open water are not
readily discernable by the ice analysts. They rely more heavily
on clues from AVHRR and OLS data, or from meteorology and
season to estimate this open water. As the ARKTOS classifica-
tion is driven by the RADARSAT image, it cannot compensate
for what is not present in the image, and it calls the entire re-
gion 100% ice, introducing a 5% to 10% overestimation of ice
throughout.

There appear to be some seasonal trends in the errors. One
is in the classification of new ice. With the exception of a few
values on day 200 (mid-July), most of the large errors in es-
timation of new ice appear to occur between day 260 (mid-
September) and day 350 (mid-December) and seem to be some-
what paired with errors in the estimation of first-year ice. When
the imagery is analyzed, these errors appear to come from areas
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Fig. 7. Typical ARKTOS results for multiyear ice pack in summer. (a) RADARSAT image from August 9, 2000, (b) ARKTOS segmentation, and (c) ARKTOS
classification product. (a) CSA 2000.

classified by the NIC as young ice in the central Beaufort. For
the purposes of this comparison, young ice was collected to-
gether with much thinner ice types into a new ice class, although
it can be nearly as thick as FY ice. It is interesting to see that
these errors are present mostly in the fall and early winter. It
may be a result of the fact that polygons which cover areas that
are considered to be young ice switch to first-year ice (in the
NIC ice charts) each fall, when ice thickness increases as tem-
peratures drop. The other trend observed is a slight increase
in the size of the errors for the total ice concentration and the
multiyear and first-year partial ice concentrations during the
summer. Low image contrast and intermittent backscatter in-
version (where water pixels appear brighter and ice pixels ap-
pear darker in the image, due to the wind-roughened water sur-
face during the summer) play a large role in classification error
during the summer.

With respect to latitude, there are no significant trends in the
differences for the total ice concentration or the partial concen-
tration of open water, other than the overestimation of ice (and
underestimation of water) described previously. MY and FY
partial ice concentration differences display a spread of overesti-
mations and underestimations for both ice types beyond 70 , al-
though there appears to be slightly more overestimations of FY
ice (and coincident underestimations of MY ice) between 70
and 75 . Below 70 ARKTOS appears to be underestimating

FY ice and overestimating MY ice, although the differences are
not completely correlated. The only area of the analysis with lat-
itudes less than 70 was the Bering Sea, so these values may rep-
resent some confusion by ARKTOS among MY, FY, and open
water in the marginal ice zone. The largest errors in the estima-
tion of new ice occur between about 68 and 75 . Examination
of these areas indicates that they are from polygons located in
the central Beaufort and are correlated with large errors in the
FY ice estimates, so this set of results is similarly indicative of
young ice/FY ice confusion.

There appear to be no significant trends in the differences
between ARKTOS and NIC concentration for MY and FY ice
with respect to longitude, but total ice concentration, open water
(which is paired with total concentration), and new ice values
show larger errors at specific longitudes. In the case of the total
ice concentration values and the open water values, errors are
on the order of 5% to 10% for longitudes between 120 and

160 , and range fairly widely between 160 and 180 .
These trends are mostly due to the types of ice features at the
different locations. The central Beaufort lies between 120 and

160 , and this area tends to be filled with the standard MY/FY
ice pack described above, with the errors as described above.
Between 160 and 180 , the Beaufort is merging with the
Chukchi and Bering Seas. These areas are very dynamic, and
as such, have a wider range of mixtures of open water and
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Fig. 8. Typical ARKTOS results for the ice edge in summer. (a) RADARSAT image from Augut 8, 1998, (b) ARKTOS segmentation, and (c) ARKTOS
classification product. (a) CSA 1998.

ice. The cluster of ARKTOS underestimations of new ice be-
tween 140 and 160 is caused primarily by confusion on
ARKTOS’ part between young ice and first-year ice.

Table VII presents the mean and median absolute differences
between the total and partial ice concentration estimates de-
rived by ARKTOS for each polygon and those derived from
the NIC ice charts. Fig. 4 shows distributions of these abso-
lute differences. Although the mean absolute differences are
somewhat large, the median values and histograms show that
most errors for total concentration (and hence, also open water)
are on the order of 5% to 10%. Those for the partial ice con-
centrations (MY, FY, and NI) are on the order of 5% to 20%.
These values coincide with the expected variability in the ice
charts of 10% for total ice concentration and 20% for partial
ice concentration, and on par with results from other classifi-
cation algorithms [24].

These measurements provide a sense of ARKTOS error for
a random set of comparisons, but they are somewhat biased to-
ward the more complex images in the dataset. Complex images,
having a wider range of combinations of different ice types and
concentrations, contribute more polygons per image to the mean
and median estimates, but their area does not necessarily repre-
sent a large spatial portion of the Beaufort. In order to provide a
more spatially based examination, an analysis of ARKTOS ac-
curacy on a per-image basis was also performed, with polygon
size being taken into account. The results of this analysis are

presented in Table VIII. When the results from each image are
allowed to contribute equally to the error estimates, the mean ab-
solute error for the total ice concentration is 8.4%, while that for
the partial ice types ranges from 4.3% to 23.5%. Median values
are 5.5% for the total ice concentration and 4.3% to 17.7% for
the partial ice types.

Results taken over the course of this evaluation indicate
that the inclusion of SSM/I ice concentration data is necessary
for the optimal operation of ARKTOS. SSM/I data should be
made available to ARKTOS whenever possible. SSM/I data aid
ARKTOS in the delineation of open water and ice and assist
in the identification of ice along the ice edge. When operated
without the inclusion of SSM/I input, ARKTOS’ accuracy
varies greatly. For images consisting of 100% total ice concen-
tration throughout, the results of operating ARKTOS without
SSM/I input are almost identical to those results obtained when
SSM/I input is included. Results obtained over areas of open
water or along the ice edge can be correct when SSM/I data are
omitted, but are usually flawed. Differences in the source of
the SSM/I ice concentrations will also cause differences in the
results obtained from ARKTOS. Currently, threshold values for
the SSM/I ice concentration feature attribute (SSMICON) are
geared toward the range of values obtained from the FNMOC
CAL/VAL ice concentration algorithm. If other sources of
SSM/I ice concentration values are used, the threshold file
should be modified accordingly before operation.
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Fig. 9. ARKTOS capturing regions of new ice and pockets of multiyear ice within the new ice. (a) RADARSAT image from October 31, 1999, (b) ARKTOS
segmentation, and (c) ARKTOS classification product. Note: the black areas in (c) within the sea ice map are land. (a) CSA 1999.

Figs. 5–9 represent results typical of ARKTOS performance.
Fig. 5 presents the results for an image of the MY/FY ice pack
in the central Beaufort taken on February 20, 2000. ARKTOS
performs an excellent job of separating first-year ice areas from
multiyear ice areas and of classifying them correctly. Within the
multiyear ice pack, it can identify and segment out some indi-
vidual floes, but also aggregates some floes into larger features
that no longer obey the standard set of rules the ice analysts have
developed for multiyear ice floes. Even with the change in scale
and appearance brought about by this aggregate segmentation,
ARKTOS is able to classify the multiyear pack ice correctly.
Figs. 6 and 7 present ARKTOS results for winter (February 20,
2000; Fig. 6) and summer (August 9, 1998; Fig. 7) images of
ice pack. In the winter image, the multiyear ice pack is broken
down into four main features roughly based on image intensity.
In the summer image, low image contrast causes ARKTOS to
segment the image into basically one large feature. In both cases,
ARKTOS correctly classifies the multiyear pack and the sur-
rounding first-year ice areas.

Fig. 8 provides an example of ARKTOS performance in the
marginal ice zone (MIZ). The image is from August 7, 1998
in the western Beaufort. Most of the image is correctly seg-
mented, except for a small area of ice surrounded by open water
in the eastern half of the image. ARKTOS classifies all but
the very western edge of the image correctly. It calls this area
first-year ice, while the NIC ice charts indicate that it is really
an area of low-concentration multiyear ice. This error illustrates

an interesting conundrum within the operational capability of
ARKTOS. ARKTOS does an excellent job of separating this
area of low ice concentration from adjacent areas of high ice
concentration and open water, but does not have the capability
of labeling it as a low ice concentration area. No matter what
ARKTOS calls this area, it will be at 100% concentration. Seg-
mentation parameters can be tweaked so that ARKTOS can pick
out the individual floes within this area in order to achieve an
overall lower ice concentration, but such tweaking would cause
major segmentation errors elsewhere.

Fig. 9 presents a complex example of the ARKTOS algorithm
at work. The raw RADARSAT image, taken on October 31,
1999, is of the eastern Beaufort during freeze-up. ARKTOS ac-
curately delineates darker open water areas from darker new ice
areas, and brighter new ice areas from multiyear ice. In addition,
it picks out individual features within the new ice. ARKTOS
correctly classifies both brighter and darker open water areas,
which it has segmented into separate features, as open water.
It also correctly classifies an area of darker multiyear ice in
the northwest corner of the image as multiyear ice. Both the
ARKTOS result and the NIC ice chart display an ice pack made
up of predominantly new ice on the ice edge and in the south,
merging into a mixture of new ice and multiyear ice toward
the northwest. Although the ARKTOS classification does not
match the NIC ice charts exactly pixel for pixel everywhere, it
is a fairly accurate representation of the ice and water present
overall.
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V. DISCUSSION

We have presented the ARKTOS intelligent system for
satellite sea ice image analysis. ARKTOS is a fully auto-
mated system that classifies sea ice images by mimicking
the reasoning process of sea ice experts. The approach is a
feature-based, rule-based classification system supported by
multisource data fusion. ARKTOS underwent a rigorous evalu-
ation process against actual operational sea ice charts generated
and maintained by the U.S. National Ice Center and achieved
good results in high-Arctic areas, even when compared to
human expert classification. ARKTOS has a flexible and
extensible design due to the modularity of the knowledge bases
and the suite of GUI-based software for effective evaluation
and refinement. The NIC has also operationalized ARKTOS
and the NIC analysts use the ARKTOS output as one of
the information sources they study to develop their standard
operational map product.

The major contribution of ARKTOS is that it proves that it is
possible to develop a fully automated, accurate intelligent clas-
sifier of natural scenes that starts from the original data sources
and, without any human intervention, produces a final classifi-
cation product in near real-time. ARKTOS is also the first fully
automated, near real-time, operational sea ice classifier, and it
has been shown to achieve very good classification results com-
pared to these of human experts, with mean absolute difference
for the total ice concentration 8.4%, and that for the partial ice
types ranging from 4.3% to 23.5%. Finally, the methodologies
we have employed, the lessons we have learned during our re-
search, and the innovative approaches to image processing, data
manipulation, and knowledge engineering during the past ten
years of developing, prototyping, refining, and testing ARKTOS
provide a detailed and successful roadmap for building other in-
telligent geophysical classification systems.

The following are several possible modifications to ARKTOS
that may further improve its performance:

1) image correction during the preprocessing stage to com-
pensate for nadir ambiguities and near-range brightness
due to fall-off;

2) adaptive segmentation using spatial and temporal
information;

3) consideration of a previous week’s ice analysis to account
for the persistence and continuity of the ice;

4) modification of ARKTOS for use on EN-
VISAT/RADARSAT-2 polarimetric data, since HV
polarization data should improve ARKTOS’ ability to
discriminate between ice and open water;

5) consideration of AVHRR and OLS data as part of the an-
cillary data input for ARKTOS, since these data are often
used by ice analysts to delineate between ice and open
water;

6) consideration of weather and other environmental param-
eters, since these factors are often taken into account by
ice analysts to help delineate new ice from first-year ice

7) further development of shape and texture attributes;
8) refinement of ARKTOS’ knowledge bases and expansion

to cover the entire Arctic region.
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