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Abstract— Various instruments are used to create images of
the Earth and other objects in the universe in a diverse set
of wavelength bands with the aim of understanding natural
phenomena. These instruments are sometimes built in a phased
approach, with some measurement capabilities being added
in later phases. In other cases, there may not be a planned
increase in measurement capability, but technology may mature
to the point that it offers new measurement capabilities that
were not available before. In still other cases, detailed spectral
measurements may be too costly to perform on a large sample.
Thus, lower resolution instruments with lower associated cost
may be used to take the majority of measurements. Higher
resolution instruments, with a higher associated cost may be
used to take only a smaii fraction of the measuremenis in a
given area. Many applied science questions that are relevant to
the remote sensing community need to be addressed by analyzing
enormous amounts of data that were generated from instruments
with disparate measurement capability. This paper addresses this
problem by demonstrating methods to produce high accuracy
estimates of spectra with an associated measure of uncertainty
from data that is perhaps nonlinearly correlated with the spectra.
In particular, we demonstrate multi-layer perceptrons (MLPs),
Support Vector Machines (SVMs) with Radial Basis Function
(RBF) kernels, and SVMs with Mixture Density Mercer Kernels
(MDMK). We call this type of an estimator a Virtual Sensor
because it predicts, with a measure of uncertainty, unmeasured
spectral phenomena.

Index Terms— Data Mining, Neural Networks, Support Vector
Machine, Kernel Methods, Remote Sensing.

I. INTRODUCTION

HIS paper describes the development of data mining
algorithms that learn to estimate unobserved spectra from
- remote sensing data. For purposes of the discussion presented
here, we will model the data as matrices of time series
(following the notation in [1]). The spatiotemporal random
function Z(u, A,t) is modelled as a finite number n of spa-
tially correlated time series with the following representation:

[Zu(A8)] (1)

Z(u, A\ )
a0 2), Zaa (58, Z SO

In Equation 1, u represents the spatial coordinate, A repre-
sents the vector of measured wavelength(s), and ¢ represents
time.. The superscript © indicates the transpose operator. If
multiple wavelengths are measured, then each Z; is actually a
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matrix, and the function Z{u, A, t) represents a data cube of
size (n x A x T'), where these symbols represent the number of
spatial locations, the total number of measured wavelengths,
and the total number of time samples, respectively. In this
notation, the spatial coordinate u represents the coordinates
(or index) of a measurement at a particular location in the
field of view and is not in any way related to the distributed
nature of the data centers. Conceptually, the equation above
describes a set of n (A x T') matrices. In the event that the
spatial coordinate describes adjacent pixels, it is useful to think
of Equation 1 as describing a time series of data cubes (spectral
images) of size n x n X A.

Consider a situation where one is given a sensor &; which
takes k spectral measurements in wavelength bands B, =
{A1,A2,..., A} at time f;. Suppose that we have another
sensor So which has a set of spectral measurements taken
at time t2, By = {/\1, Agy .. s Ak, /\k-;.]_, /\k+2, ceey ’\k+l} that
partially overlaps the spectral features contained in B; in terms
of power in the spectral bands. Thus, B; (or, in general, B; N
B,) are the common spectral measurements. Note that these
measurements are common only in their power. B = By \
B, = {Ak+1, Ak+2,- -, Ak41} Tepresent the measurements
available in B, that are not available in B;. In this situation,
we investigate the problem of building an estimator I'(Z(B))
that best approximates the joint distribution P{Z(B}|Z(B1))-
Thus, we would have:

T(Z(B)) ~ P(Z(B)|Z(By) @)
The value of building an estimator for P is clear particularly
in situations where one sensor has been in operation for a
much longer period of time than another. The first sensor may
have fewer spectral channels in which measurements are taken
compared to the newer sensor. However, it may be of scientific
value to be able to estimate what the spectral measurements
in wavelengths B would have been had the first sensor had
the measurement capability.

The _joint distribution given by P(Z(B)|Z(B,)) above

contains all necessary information to recover the underlying
structure captured by the sensor Sa. If perfect reconstruction of
this joint distribution were possible, we would no longer need
sensor Sp because all relevant information could be generated
from the smaller subset of spectral measurements By and the
estimator I. Of course, such estimation is often exiremely
difficult because there is not sufficient information in the bands
B, to perfectly reconstruct the distribution. Also, in many
cases, the joint distribution cannot be modelled properly using
parametric representations of the probability distribution since



" MANUSCRIPT SUBMISSION FOR [EEE TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING

We would fike 10 estmate
he outpul ot Sensor 51
for this wavelengih

Sansar measwements N
from Sensor S1 (solid lines}

®
T

Spactral measuramects
from Sensor 52 {dotted tines)

0o o

Powar, Z(B)
g

&
d

{
|
i
! !
'
i
i
! ;
I i ¢
i
L ' 2 U L
15 2 25 3 EH
Wavelength (8, and 8)

i
'

) "

4 45 5

Fig. 1. This figure helps illustrate the need for a Virtal Sensor. We have
spectral measurements from two sensors Si and Sa, (solid and dotted lines,
respectively). We wish to estimate the output of sensor S1 for a wavelength
where there is no actual measurement from the sensor. Note that some sensor
measurements overlap perfectly, as in the case of wavelength = 3, and in other
cases, such as wavelength = 1, there is some overlap in the measurements.

that may require a significant amount of domain knowledge
and may be a function of the ground cover, climate, sun
position, time of year, and numerous other factors.

In this paper, we describe methods to estimate the first
moments of this distribution. Some methods that we use allow
us to model the second moment of the distribution as well:

uB) = / I(B)BdB

#(B) = [Ir(B)-u(B)FBEB
We use the function T' in the above computations as an
estimate of the (unknown) joint distribution P. Severai com-
putational problems as well as problems due to the underlying
physical measurement process arise when we attempt to es-
timate . We begin by describing some of the problems that
may arise due to the physical aspects of the two measurement
devices and then discuss computational considerations.

Figure 1 gives a schematic view of the problem. The solid
and dotted lines correspond to sensors S; and S» respecuvely.
A Virtual Sensor can be built when there are some overlapping
sensor measurements as depicted in the figure. Notice that
if there are no overlapping sensor measurements, we are
unable to build an estimator. In real-world problems, some
measurements may overlap perfectly, while others have a
partial overlap. Generally speaking the measurements from
Sensor Sy are not available at all wavelength locations.

In the event that the spectral measurements are perfectly
overlapping for all £ wavelength bands and the measurements
for sensor &y are not available at the remaining B bands,

the eéstimation process is more straigtitforward. When “partial”

overlap occurs between two sensors for a given wavelength,
calculations need to be performed to estimate the amount
of power that would have been measured in the overlapping
bands. This can be done using interpolation methods.
Situations such as this often arise in practice. For example
consider the relationship between the AVHRR (Advanced Very
High Resolution Radiometer) and the MODIS (Moderate Res-
olution Imaging Spectroradiometer) instruments. Specifically,
we show how to create a so-called Virtual Sensor to model

[

MODIS Channel 6 as a function of other MODIS channels that
are also available in AVHRR. This way, the created model can
be used to construct the virtual AVHRR channel 6 as a function
of the other channels available in AVHRR. In our research,
data mining methods are tested and their results examined for
this task. New data mining algorithms are developed based
on these results. Because of the large amounts of AVHRR
and MODIS data available, we are focusing our development
on producing high-quality results efficiently and quickly with
principled estimates of uncertainty. Clearly, the construction
of a Virtual Sensor has two key components. The first is
constructing the model that generates the Virtual Sensor data
given the known data. This requires training data—data for
which there are true sensor values corresponding to the values
of the Virtual Sensor. In this example, we would use MODIS
images to generate a model that predicts MODIS channel 6 as
a function of the other MODIS channels that are also available
in AVHRR. Only channels common to MODIS and AVHRR
can be used because of the second component of virtual sensor
construction: generating the virtual sensor values. The learned
model has to be used to generate the AVHRR virtual channel
6 as a function of the other AVHRR channels.

Some preliminary studies were made to check the feasibility
of the Virtual Sensor using some MODIS and AVHRR images
acquired over the Greenland ice sheet. In particular, supervised
learning methods (e.g., neural networks) are capable of using
MODIS data to construct a mode] that can predict MODIS
channel 6 as a function of other MODIS channels. This model
can then take an AVHRR image as input and can construct the
virtual channel 6.

II. VIRTUAL SENSORS FOR CRYOSPHERE ANALYSIS

Intensification of global warming in recent decades has
caused a rise of interest in year-to-year and decadal-scale
climate variability in the Polar Regions. This is because
these regions are believed to be among the most sensitive
and vulnerable regions to climatic changes. The enhanced
vulnerability of the Polar Regions is believed to result from
several positive feedbacks, including the temperature-albedo-
melt feedback and the cloud-radiation feedback. Recent ob-
servations of record regional anomalies in ice extent, thinning
of the margins of the Greenland ice sheet, and reduction in
the northern hemispheric snow cover, may reflect the effect of
these feedbacks. Remote sensing products now provide spa-
tially and temporally continuous and consistent information on
several polar geophysical variables over nearly three decades.
This period is sufficiently long enough to permit evaluation of

~how several cryospheric-variables-change in-phase-with each-

other and with the atmosphere and can help to improve our
understanding of the processes in the coupled land-ice-ocean-
atmosphere climate system. Cloud detection particularly over
snow- and ice-covered surfaces is difficult using sensors such
as AVHRR. This is because of the lack of spectral contrast
between clouds and snow in the channels flown on the earlier
AVHRR/2 sensors. Snow and clouds are both highly reflective
in the visible wavclengths and often show little contrast in the

thermal infrared.
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The AVHRR Polar Pathfinder Product (APP) consists of
;

twice daily gridded (at 1.25 and Skm spatial resolution) surface
albedo and temperature from 1981 to 2000. A cloud mask
accompanies this product but has been found 1o be inadequate.
particularly over the ice sheets [5]. The 1.6 micron channel on
the MODIS instrument as well as the AVHRR/3 sensor can
significantly improve the ability to detect clouds over snow
and ice. Therefore, by developing a virtual sensor to model
the MODIS 1.6 micron channel as a function of the AVHRR/2
channels, we can improve the cloud mask in the APP product,
and subsequently improve the retrievals of surface temperature
and albedo in the product. In doing so we will be able
to improve the accuracy in documenting seasonal and Inter-
annual variations in snow, ice sheet and sea ice conditions
since 1981.

II1. CREATING A VIRTUAL SENSOR

In this section we outline the procedure for creating a Virtual
Sensor. At a minimum, we assume that for sensor S; we
have measurements Z; (B;) from one image, and for another
sensor Sy we assume that we have another image Z»(B-). The
procedure for creating a Virtual Sensor is as follows, assuming
that we need to build a predictor for channel by ; (recall that
% is the number of bands in B;):

1) Divide the data set Z»(B,) into a training set and a

test set.

2) Find parameters 6 that minimize the
squared  error  (or  another  suitable  metric)
[E[T(Z5(B1),8)] — Z2(bk+1)]

Apply I' to the dara from sensor S&; to generate an
esumate of E[I(Z;(by.1),8)]. This is the step where
the esumation of the unknown spectmal conwibution

occurs.

)

4) Evaluate the results based on science based metrics and
other information known about the image.

The procedure described above is standard in the data mining
literature. From the remote sensing perspective, it is interesting
to see the potentially systematic differences between the
performance of the esumator on data from sensors 1 and 2.

Note thar this procedure will only work if sufficient in-
formation exists to predict Z(B) given data Z(B;). One
simple procedure for determining this is to look at the linear
correlation between the spectra. The top panel of Figure 2
shows the inter-channel linear correlation for the first seven
channels of MODIS data. Larger squares indicate stronger
linear correlation. Red squares indicate negative correlaton
and green squares indicate positive correlation. The lower
panel in this figure shows the results of computing the mu-
tual informauon between the pairs of channels. The murtual
informanion berween two random variables is given by:
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The upper panel of this figure shows the linear correlation between the
first seven channeis of the MODIS instrument for one point in time. The size
of the square indicates the degree of linear :or’eladcn. Green cclor indicates
a posiuve correlaton, and red color muu.‘.te: a negati i
that Channel 6, which is a channe} that we caVa
Sensor, has a relatively weak correlation with the other «.‘hnn"" The Iou
panel indicates the mutual informaton berween the same MODIS channels.
Notice that for this nonlinear measure of information. channel 6 has more
relationship with the other channels. thus giving hope that a nonlinear model
could be built to predict channel 6.

This method gives a nonlinear measure of the relationship
between the channels. Again, the larger the square, the greater
the degree of relationship. In the case described in this paper,
we will be building models in order to predx t Channel 6.
Nouce that Channel 6 has small linear
other chiannels but moderate mutual information.

The next section describes three estimation methods that
we have used to build a Virwal Sensor: a feed-forward
neural network (also called a mululaver perceptron. (MLP)). a
Support Vector Machine (SVM). and an SVM with a Mixture
Density Mercer Kernel.

IV, STANDARD DATA MINING METHODS

There are many machine learning methods that have b
used in many different tvpes of problems. We give a brief
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Fig. 3. An example of a MultiLayer Perceptron (MLF).

review of the methods that we use in this paper.

A. Multi-Layer Perceptrons

We first describe multilayer perceptrons, a type of neural
network [4]. The central idea of neural networks is to construct
linear combinations of the inputs as derived features, and then
model the target as a nonlinear function of these derived
features. Neural networks are often depicted as a directed
graph consisting of nodes and arcs. An example is shown in
Figure 3. Each column of nodes is a layer. The leftmost layer
is the input layer. The inputs of an example to be classified
are entered into the input layer. The second layer is the hidden
layer and the third layer is the output layer. Information flows
from the input layer to the hidden layer and then to the output
layer via a set of arcs (depicted in figure 3 as arrows). Note
that the nodes within a layer are not directly connected. In our
example, every node in one layer is connected to every node
in the next layer, but this is not required in general. Also, a
neural network can have more or less than one hidden layer
and can have any number of nodes in each hidden layer.

Each non-input node, its incoming arcs, and its single
outgoing arc constitute a neuron, which is the basic com-
putational element of a neural network. Each incoming arc
multiplies the value coming from its origin node by the weight
assigned to that arc and sends the result to the destination
node. The destination node adds the values presented to it by
all the incoming arcs, transforms it with a nonlinear activation

function (to be described latér), and then sends the resulralong

the outgoing arc. For example, the return value of a hidden
node z; in our example neural network is

14

U (1),
;=49 Zwi’j z;l,
i=1
(k}

where |4] is the number of input units, w;; is the weight
on the arc in the kth layer of arcs that goes from unit 7 in the

kth layer of nodes to unit j in the next layer (so wglj) is the

weight on the arc that goes from input unit 4 to hidden unit
§) and g is a nonlinear activation function. A commonly used
activation function is the sigmoid function:

1

9(a) 1 +ezp(—a)’

The return value of an output node y; is

l

Z
2
= (Sl
i=1

where Z is the number of hidden units. The outputs are
clearly nonlinear functions of the inputs.

Neural networks are trained to fit data by a process that
is essentially nonlinear regression. Given each entry in the
training dataset, the network’s current prediction is calculated.
The difference between the true function value and the pre-
diction is the error. The derivative of this error with respect to
each weight in the network is calculated and the weights are
adjusted accordingly to reduce the error.

B. Support Vector Machines

Support Vector Machines for classification and regression
are described in detail in [3], but here we briefly describe
Support Vector Regression (SVR), which we use in this paper.
In real-world problems, traditional linear regression cannot
be expected to fit a set of points perfectly (ie., with zero
error). For this reason, nonlinear regression is often used with
the hope that a more powerful nonlinear model will achieve
a better fit than a linear model. However, this power often
comes with two drawbacks. One is that the space of parameters
of a nonlinear model (such as the multilayer perceptrons
discussed above) often have many local optima that are not
globally optimal. Nonlinear regression algorithms such as
backpropagation for MLPs often find these local optima, which
can result in a model that does not predict well on unseen data.
The second drawback is that nonlinear model fitting is often
overly sensitive to the locations of the training points, so that
they overfit the training points and do not perform well on
new data.

SVR addresses these problems in three ways. The first way
is to use an e-insensitive loss function. If y is the true response
and f(x) is the predicted response for the input x, then the
loss function is

= f®e=maz{0fy - fE)T = T

That is, if the error between the true response and the
predicted response is less than some small €, then the error on
that point is considered to be zero. For example, in figure 4, the
solid line, which is the fitted line, is within ¢ of all the points
between the two dashed lines; therefore, the error is considered
to be zero for those points. If € is set to the level of the
typical noise that one can expect in the response variable, then
support vector regression is less likely to expend effort fitting
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Fig. 4. Support Vector Machine for regression. The solid line is the line
fitted to the points (represented as circles). The dashed lines are a distance ¢
from the fitted line. The points within the dashed line are considered to have
zero error by an e-insensitve loss function.

the noise in the training data at the expense of generalization
performance, i.e., it 1s less likely to overfit. In particular, to
estimate the linear regression

w-x+b

fx) =

one solves the optimization problem of minimizing

m
Sl + O s — Fxo)le
=1

where C is a user-determined constant that determines the
tradeotf between the closeness of the fit (second term) and the
level of regularization (first term).

The second way support vector regression addresses the
above problems is to allow some error beyond e for each
training point but minimize the total such error over all the
points. In figure 4, £ is the additional error for one particular
point. For m training points, define &; fori € {1,2,...,m} to
be the slack variables that represent the additional allowable
error if f(x;) —y; > € (i-e., & = 0 otherwise) and & to be the
additional error if y;— f (x;) > €. In that case, the optimization
problem is the following:

NS - .
minimize §”W”2 + C;(ﬁi +&7)
m ... subject to _ S
fxi)—y: < e+&
—f(x:i) < e+¢§
& > 0
& > 0

forallt€1,2,....m.

Note that the above optimization problem will involve
minimizing the sum of the slack variables. Also, any points

for which the error is already less than € will end up with
zero for their corresponding slack variables. Because this is
a convex optimization problem, there is a unique globally
optimal solution.

The third way that SVR addresses the above problems is to
map the data from the original data space into a much higher
(possible infinite) dimensional feature space and calculate the
support vector machine in that space. The idea is that the linear
model in the feature space may correspond to a complicated
nonlinear model in the original data space. Clearly, one needs
a practical way to deal with data that is mapped to such a
high-dimensional space, which intuitively seems impossible.
However, one is able to do this using the kernel trick. By
introducing Lagrange multipliers and obtaining the dual of
the previous optimization problem (see [3] for the details),
one obtains the following:

Mmaximize, p~cRr — eZ(a + o) + Z(a — o)y

=1

m m
ISl —aMat — oy xs
9L L NH T RN TR X
© =1 j=1
subject to 0 < @y, ISC’foraIlze{12 m}

and Z(a,- —a;)=0.

i=1

The resulting regression estimate is of the form

m
Fx) =D (af —ai)xi-x; +b.
i=1 .
Note that the inputs only appear as dot products in the above

solution. Therefore, one can map the inputs into a very high or
even infinite dimensional space H using a function ® : R¢ —
H and the dot product ®(x;) - ®(x;) will stll be a scalar.
Of course, & would be too difficult to work with because
of the high dimensionality of H. However, there exist kernel
functions K (z;,z;) = ®(x;) - 8(x;) such that K is practical
to work with even though the ® induced by that K is not. For
example, the Gaussian kernel

g~ H
K(xi,xj) =e 27

gives rise to a & that is infinite-dimensional. However, we
do not need to deal with ® or even know what it is because
the ®’s only appear as dot products, which can be replaced
by K. Therefore, the new regression estimate after mappmo

the inputs from the data space to the feafure space i5

Z(a K(Xl7x.‘l)+b

In summary, the Support Vector Machine allows us to fit a
nonlinear model to data without the local optima problem that
other procedures suffer from.

The kernel function can be viewed as a measure of similarity
between two data points. For example, with the Gaussian

fe) =
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kernel, the value increases as the distance between the pair of
points decreases. There is significant current research attempt-
ing to determine which kernel functions are most appropriate
for different types of probiems. One such novel kernel function
is the Mixture Density Mercel Kernel (MDMK) which is
discussed in the next section.

C. Mixture Density Mercer Kernels

The idea of using probabilistic kernels was discussed by
Haussler in 1999 (2] where he observes that if X (x;,x;) > 0

Vi(xi,x;) € X x X, and 3, > K(xi,x;) =1 then K is
a probability distribution and is cafled a P-Kernel. He further
observed that the Gibbs kemel K(x;,x;) = P(x;)P(x;) is
also an admissible kernel function.

Our idea is to use an ensemble of probabilistic mixture
models as a similarity measure. Two data points will have a
larger similarity if multiple models agree that they should be
placed in the same cluster or mode of the distribution. Those
points where there is disagreement will be given intermediate
similarity measures. The shapes of the underlying mixture dis-
tributions can significantly affect the similarity measurement
of the two points. Experimental results uphold this intuition
and show that in regions where there is “no question” about
the membership of two points, the Mixture Density Kernel
behaves identically to a standard mixture model. However,
in regions of the input space where there is disagreement
about the membership of two points, the behavior may be
quite different than the standard model. Since each mixture
density model in the ensemble can be encoded with domain
knowledge by constructing informative priors, the Mixture
Density Mercer Kernel (MDMK) will also encode domain
knowledge. The MDMK is defined as follows:

K(xi,x;) = &7(x:)8(x;)
M C
.o 1 m
Z(Xi, X_]) Tn2:1 CMXZ:I Pm(cm|x1)Pm(Cm|xJ)

[Pi(c = 1x:),Pi(c =
Pile=Clx3),Polc = 1|xi), .. -,

The first sum in the defining equation above sweeps through
the M models in the ensemble, where each mixture model is
a Maximum A Posteriori estimator of the underlying density
trained by sampling (with replacement) the original data. We
will discuss how to design these estimators in the next section.
Cy defines the number of mixtures in the mth ensemble, and

Pyr(ec = Clxy)]

& 15 the cluster (or mode) tabel assigned by the-model. The -

quantity Z(x;,x;) is a normalization such that K (x;,x;) =1
for all 7. The fact that the Mixture Density Kernel is a valid
kernel function arises directly from the definition.

The Mixture Density Kernel function can be interpreted as
follows. Suppose that we have a hard classification strategy,
where each data point is assigned to the most likely posterior
class distribution. In this case the kernel function counts the the
number of times the M mixtures agree that two points should
be placed in the same cluster mode. In soft classification,
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Fig. 5. MODIS predictions from year 2000, days 140-153. This image shows
the percent cloud cover in each image as well as the true positive and true
negative rates for MLPs on these images.

two data points are given an intermediate level of similarity
(between 0 and 1) which will be less than or equal to the case
where all models agree on their membership, in which case
the entry would be unity. Further interpretation of the kernel
function is possible by applying Bayes rule to the defining
equation of the Mixture Density Kernel. Thus, we have:

" Mo Pm(xi|cm)Pm(cm)
K(x;,x;) = Z(xz,x] n;cz P (x3)
P (xj]¢m)Pmicm)
P (x5)
M P, (xl,xjicm)P (cm)
Xl’x-])rnz:lcz‘:l X”X])

The second step above is valid under the assumption that the
two data points are independent and identically distributed.
This equation shows that the Mixture Density Kernel measures
the ratio of the probability that two points arise from the same
mode, compared with the unconditional joint distribution. If
we simplify this equation further by assuming that the class
distributions are uniform, the kernel tells us on average (across
ensembles) the amount of information gained by knowing that

A rmeada in o ivtiira
e density.

two pOlan are arawn from the same mode in a mixtor

V. RESULTS

To derive the results described in this section, we trained
the three methods described above on a small subset of a
MODIS image from day 140. We first selected those pixels
for which channel 1 was at least 0.3, thereby removing pixels
that are over open water and keeping the snow/ice-covered
areas. This turned out to be about half of this particular image
(1.6 million pixels). Out of these pixels, we chose about 2500

of them.at random for training..In all cases, the inputs were __

the five MODIS channels that correspond most closely to the
five AVHRR/2 channels (see the Appendix for tables with
AVHRR/2 and MODIS instrument specifications). That is, the
inputs were channels 1, 2, 20, 31, and 32. The output to be

predicted was channel 6.

A. MODIS Results
In testing the MODIS channel 6 prediction algorithms, 13
MODIS images from the year 2000 were processed. All the
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Fig. 7. AVHRR predictions from year 2000, day 140. (a) Upper Left. Channel

I (b). Upper Right. Prediction of an MLP. (¢) Lower Left. Predicdon of an
SVM with RBF kernel. {d). Lower Right. Prediction of an SVM with MDMK
kemnel. The black areas with \U.ught boundaries are regions containing no

data.

MODIS imagery were gridded to a 1.25 km Equal Area
Scalable Earth Grid (EASE-Grid) fb}) Figure 5 summarizes

the amount of cloud cover for each day (defined using a
threshold of 8.3 on the MODIS xhanﬂe 6 images) togethe

with the true positive and true negative cloud cover retrieva
rates by the MLP model. The true positive retrieval rate is
defined as the number pixels predicted to have cloud cover
that actually have cloud cover divided by the total number
of pixels that actually have cloud cover. Similarly, the true
negative retrieval rate is the number of pixels predicted to not
have cloud cover that actually do not have could cover divided
by the total number of pixels that actually do not have cloud
cover. The MLP appears to accurately model areas that are o
low reflectance in the MODIS channel 6 (e.¢. no clouds) as
seen by the high rate of true negative retrieval. The MLP model
is slightly less successful in always correctly modelling the
high reflectance (e.g. clouds), but the overall positive retrieval
rate 1s still relatively high (70 to 90%)

AVHRR Results
/e now discuss our results on two AVHRR images. Fig-

ure 7(a) shows the visible {channel 1) top-of-the-atmosphere
1 AVHRR for day 140
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Fig, 8. HRR predictions from year 2000, da‘ 150. (a) Upper Left. Channel
1. (b). L per Right. Prediction of an MLP. (c) Lower Left. Prediction of an
S\'M with RBF kemel. (d). Lower Right. Predicton of an SVM with MDMK

kernel. The black areas with straight boundaries are regions containing no

data.

land ice sheet. Note also that not only is the ice sheet shown
in the image, but also open water areas (black color) and sea
ice. Clouds are evident by textural variations in the south,

and some darker than the underl\ INg SNOw.
In Figure 7(b) through (d) the TOA reflectance predictions
for a channel at 1.6 microns are shown. The MLP prediction
(Figure 7(b)) indicates that the majority of the ice sheet is
cloud free (very low reflectance at 1.6 microns) and the clouds
that are seen as textural variations in the visible image show
up as bright (higher reflectance) in the image. Most of the
clouds are captured. although the few scattered clouds in the
northwest part of the ice sheet are not detected. In addition
some of the clouds in the central part of the ice sheet may be
if a threshold of 0.3 is selected. A more
2, which is currently used by

classified as “clear”
conservative threshold may be 0.
the MODIS snow cover team to discriminate between clouds
and snow. The SVM RBF (Figure 7(c)) picks up the clouds
as well (the brighter areas in the image), but this method also
starts to distinguish between different snow tvpes as evident
by the slightly different reflectance values along the western
margin of the ice sheet. Further discrimination of different
snow types is observed in the SVM MDMK (Figure 7(d))
image. Note however, in both of these models. picking a
threshold of 0.3 to decide whether or not the pixel is clear or
cloudy may cause areas of the ice sheet that are actually clear
to be labeled as clouds. Thus. additional information would be
needed in order to distinguish between atmospheric variations
(i.e. clouds) and variations in the snow/ice conditions. Note
also that, off the northwestern coast of the ice sheet, areas
that are sea ice with no cloud cover appear as clouds (higher
reflectance) in the prediction models.

Figure 8(a)-(d) shows the same results as discussed above
but for day 150. The visible image (Figure 8(a)) suggests that
the enure western margin of the ice sheet is cloudy as well
as the north central/eastern part of the ice sheet. The MLP
(Figure S(b)) captures some of the scattered clouds along
the western margin of the ice sheet. but misses quite a few
of them. especially in the southern part. Similarly, in the

of the ice
) tiit Al

the MLP is not capturing

w

~rt tarn heer
northeastern part of neet
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all the clouds observed in the visible image. The SVM RBF
(Figure 8(c)) model does a better job in detecting the clouds in
the northeastern region of Greenland as well as along the west
coast. The SVM MDMK model further detects some clouds
that are missed in the SVM RBF model (e.g. along the south-
west edge of Greenland) and also begins to highlight more of
the different snow/ice types.

These two different examples help to illustrate that simulat-
ing a 1.6 micron sensor channel does not necessarily capture
all the clouds. In general, snow has very low reflectance at
1.6 microns, whereas clouds have high reflectance. Thus, we
would expect snow cover to be bright in the visible channel
and dark in at 1.6 microns. However, cloud reflectance at 1.6
microns depends in part on the cloud type and may be bright
or less bright (e.g. gray).

In the day 140 example, the MLP prediction does capture
most all of the clouds observed in the visible image. For this
day, the 1.6 micron is a good cloud classifier. On day 150
however, the MLP prediction does not perform quite as well.
Even though it may still accurately predict the TOA reflectance
at 1.6 microns, some clouds are missed.

V1. CONCLUSION

In this paper we have presented the development of data
mining algorithms to estimate unobserved specra. We call this
estimation “Virtual Sensors.” We presented some results on a
particular instantiation of Virtual Sensors: the estimation of
MODIS channel 6 for AVHRR. Our motivation for choosing
this particular problem is to aid in the discrimination of
clouds from snow and ice. This is a challenging problem that
is essential to solve in order to map the cryosphere .using
visible and thermal imagery. Clouds often have similar spectral
reflectance as snow and similar temperatures. Most cloud
detection algorithms operationally employ a series of spectral
tests to determine if a pixel is clear or cloudy. Having a channel
centered around 1.6 microns has significantly improved the
ability to discriminate between clouds and snow using new
sensors such as MODIS and AVHRR/3. Unfortunately, a vast
amount of data have been collected before these sensors
existed that did not have a channel designed to detect clouds
over snow and ice-covered surfaces. These data sets have large
importance for climate studies since they provide over 20
years worth of observations. Thus, being able to improve the
cloud masking abilities of these previous sensors will allow for
improved monitoring of several cryospheric variables, such as
surface albedo, surface temperature, snow and ice cover.

In the above analysis, we used calibrated TOA reflectances
 from the MODIS and ‘AVHRR instruments: These reflectance
values are dependent upon the specific viewing and illumina-
tion geometry of the orbit considered. This may or may not
lead to some errors since snow and clouds do not reflect the
incoming solar radiation isotropically. The magnitude of this
effect remains to be determined. However, given the robustness
of the method, the angular variability of the reflectance may
fall into the “noise” of the data so that our methods can
be applied prior to using methods to correct for the angular
variability of the TOA reflectance.

We plan to extend our work on the problem of estimating
MODIS channel 6 for AVHRR images in several directions.
In order to see how quickly our methods can learn a good
quality model, we trained on very little data. We plan to train
on additional data over different times of year to understand
how much improvement is possible. We plan to develop
more scalable algorithms that will allow us to train on large
amounts of data in a practical amount of time. For example,
active learning algorithms only process examples on which the
current model’s predictions are significantly in error and do not
waste effort on the remaining examples the way traditional
machine learning algorithms do. Online learning algorithms
process training examples only once rather than repeatedly
cycling through them the way traditional algorithms do. We
also plan to perform a more detailed analysis of the results
over more images from different years and different times
of year in order to better understand the situations in which
different data mining algorithms are most effective. This may
lead to the development of a hybrid scheme (ensemble) that
performs better than any one method. Our algorithms currently
only train on and generate predictions for individual pixels in
individual images. Spatial correlation and temporal correlation
will be accounted for in our future work.

We also plan to go beyond the particular problem of pre-
dicting channel 6 to predicting other channels and quantities
that are of scientific importance. We will attempt to quantify
cross-channel information through further mutual information
studies.

APPENDIX 1
INSTRUMENT SPECIFICATIONS

Tables 11 and OI contain specifications of the AYHRR/2 and
MODIS instruments, respectively.

TABLE I
AVHRR/2 INSTRUMENT SPECIFICATIONS

Channel Number | Wavelength Purpose
1 0.58 to 0.68 Cloud Cover
Snow Cover
Vegetation Index
2 0.725 to 1.00 Earth Radiation Budget
Surface Water Boundaries
Vegetation Index
3 3.55t0 3.93 Water Vapor Correction
Thermal Mapping
4 103t 113 Thermal Mapping
5 [1.5t0 125 Water Vapor Correction
Thermal Mapping
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TABLE II
MODIS INSTRUMENT SPECIFICATIONS
Band Bandwidth Primary Use
1 620 - 670 Land/Cloud/Aerosols
Boundaries
2 841 - 876 Land/Cloud/Aerosols
Boundaries
3 459 - 479 Land/Cloud/Aerosols
Properties
4 545 - 565 Land/Cloud/Aerosols
Properties
5 1230 - 1250 Land/Cloud/Aerosols
Properties
6 1628 - 1652 - Land/Cloud/Aerosols
Properties
7 2105 - 2155 Land/Cloud/Aerosols
Properties
8 405 - 420 Ocean Color/
Phytoplankton/
Biogeochemistry
9 438 - 448 Ocean Colot/
Phytoplankton/
Biogeochemistry
10 483 - 493 Ocean Color/
Phytoplankton/
Biogeochemistry
11 526 - 536 Ocean Color/
Phytopiankton/
Biogeochemistry
12 546 - 556 Ocean Color/
Phytoplankton/
Biogeochemistry
13 662 - 672 Ocean Color/
Phytoplankton/
Biogeochemistry
14 673 - 683 Ocean Color/
Phytoplankton/
Biogeochemistry
15 743 - 753 Ocean Color/
Phytoplankton/
Biogeochemistry
16 862 - 877 Ocean Color/
Phytoplankton/
Biogeochemistry
17 890 - 920 Atmospheric
Water Vapor
18 931 - 941 Atmospheric
Water Vapor
19 915 - 965 Atmospheric
‘Water Vapor
20 3.660 - 3.840 Surface/Cload
Temperature
21 3.929 - 3.989 Surface/Cloud
Temperature
22 3.929 - 3.989 Surface/Cloud
Temperature
23 4.020 - 4.080 Surface/Cloud
Temperature
24 4.433 - 4498 Atmospheric
Temperature
25 4.482 - 4549 Atmospheric
Temperature
26 7 T I3607-103907 T T T Curus Clouds T
Water Vapor
27 6.535 - 6.895 Cirrus Clouds
Water Vapor
28 7.175 - 7475 Cirrus Clouds
Water Vapor
29 8.400 - 8.700 Cloud Properties
30 9.580 - 9.880 Ozone
31 10.780 - 11.280 | Surface/Cloud Temperature
32 11.770 - 12.270 | Surface/Cloud Temperarure
33 13.185 - 13.485 Cloud Top Altitude
34 13.485 - 13.785 Cloud Top Altitude
35 13.785 - 14.085 Cloud Top Altitude
36 14.085 - 14.385 Cloud Top Altitude




