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Abstract-Various instruments are used to create images of 
the Earth and other objects in the universe in a diverse set 
of wavelength bands with the aim of understanding natural 
phenomena. These instruments are sometimes built in a phased 
approach, with some measurement capabilities being added 
in later phases. In other cases, there may not be a planned 
increase in measurement capability, but technology may mature 
to the point that it offers new measurement capabilities that 
were not available before. In still other cases, detailed spectral 
measurements may be too costly to perform on a large sample. 
Thus, lower resolution instruments with lower associated cost 
may be used to take the majority of measurements. EFigher 
resolution instruments, with a higher associated cost may be 
used to take oniy a smaii ii-acaon of rhe measuremenis in a 
given area. Many applied science questions that are relevant to 
the remote sensing community need to be addressed by analp-ng 
enormous amounts of data that were generated from instruments 
with disparate measurement capability. This paper addresses this 
problem by demonstrating methods to produce high accuracy 
estimates of spectra with an associated measure of uncertainty 
from data that is perhaps nonlinearly correlated with the spectra. 
In particular, we demonstrate multi-layer perceptrons (MLPs), 
Support Vector Machines (SVMs) with Radial Basis Function 
(RBF) kernels, and Sv;Ms with Mixture Density Mercer Kernels 
(MDMB). We call this type of an estimator a V - d  Sensor 
because it predicts, with a measure of uncertainty, unmeasured 
spectral phenomena. 

Index Terms- Data Mining, Neural Networks, Support Vector 
Machine, Kernel Methods, Remote Sensing. 

matrix, and the function Z(u,X,t) represents a data cube of 
size (n x 11 x T ) ,  where these symbols represent the number of 
spatial locations. the total number of measured wavelengths. 
and the total number of time samples. respectively. In this 
notation, the spatial coordinate u represents the coordinates 
(or index) of a measurement at a particular location in the 
field of view and is not in any way related to the distributed 
nature of the data centers. Conceptually, the equation above 
describes a set of n (A x T )  matrices. In the event that the 
spatial coordinate describes adjacent pixels. it is useful to think 
of Equation 1 as describing a time series of data cubes (spectral 
Images) of size n x n x A. 

Consider a situation where one is given a sensor SI which 
takes k spectral measurements in wavelen,oth bands B1 = 
{AI, X Z , .  . . , A,} at time tl. Suppose that we have another 
sensor S2 which has a set of spectral measurements taken 
at time t a ,  B2 = {AI, Az,. . . , X k ,  Ak+2,. . . , Ak+i} that 
partially overlaps the spectral features contained in B1 in terms 
of power in the specnal bands. Thus, B1 (or, in general, B1 f l  
B2) are the common spectral measurements. Note that these 
measurements are common only in their power. B = BZ \ 
B1 = {&I, &+a,. . . , &+I) represent the measurements 
available in B2 that are not available in B1. In this situation. 
we investigate the problem of building an estimator r(Z(B)) 
that best approximates the joint distribution P(Z(B)JZ(Bl)). 
Thus, we would have: 

I. INTRODUCTION 

the measurement capability. 
The ioint distribution piven by P(Z(B)IZ(B1)) above 

contains all necessary information to recover the underlying 

Z(u, A, tj = [Z,(X, t)]  
__ --- __ 

= [ZU1 (A. t)iz,, (A, q,:.:, zu,[X;t)lT 
In Equation 1, u represents the spatial coordinate, A repre- 

sents the vector of measured wavelength(s), and t represents 
time., The superscript indicates the transpose operator. If 
multiple wavelen,oths are measured. then each Zi is actually a 
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structure captured by the sensor S2. If perfect reconstruction of 
this joint distribution were possible, we would no longer need 
sensor S2 because all relevant information could be generated 
from the smaller subset of spectral measurements B1 and the 
estimator I?. Of course, such estimation is often extremely 
difficult because there is not sufficient information in the bands 
B1 to perfectly reconstruct the distribution. Also, in many 
cases, the joint distribution cannot be modeIled properly using 
parametric representations of the probability distribution since 
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Fig. 1. This figure helps Illusrrare the need for a Virtual Sensor. We have 
spectral measurements from two sensors SI and S2. (solid and dotted lines, 
respectively). We wish to estimate the output of sensor SI for a wavelen-gh 
where there is no actual measurement from the sensor. Note that some sensor 
measurements overlap perfectly, as in the case of wavelength = 3. and in other 
cases, such as wavelensh = 1, there is some overlap in the measurements. 

that may require a significant amount of domain knowledge 
and may be a function of the ground cover, climate, sun 
position, time of year, and numerous other factors. 

In this paper, we describe methods to estimate the first 
moments of this distribution. Some methods that we use allow 
us to model the second moment of the distribution as well: 

We use the function I' in the above computations as an 
estimate of the (unknown) joint distribution P. Several com- 
putational problems as well 2s problems due to the underlying 
physical measurement process arise when we attempt to es- 
timate r. We begin by describing some of the problems that 
may arise due to the physical aspects of the two measurement 
devices and then discuss computational considerations. 

Figure 1 gives a schematic view of the problem. The solid 
and dotted lines correspond to sensors SI and S2 respectively. 
A Virtual Sensor can be built when there are some overlapping 
sensor measurements as depicted in the figure. Notice that 
if there are no overlapping sensor measurements, we are 
unable to build an estimator. In real-world problems, some 
measurements may overlap perfectly, while others have a 
partial overlap. Generally speaking the measurements from 
Sensor SI are not available at all wavelength locations. 

In the event that the spectral measurements are perfectly 
overlapping for all k wavelength bands and the measurements 
for sensor SI are not available at the remaining B bands, 
~ f i e s t l m a t l o ~ e s s -  i-c i i i 6 ~ n ~ i ~ f i t f o ~ w - a r d .  When -partial-- 
overlap occurs between two sensors for a given wavelength, 
calculations need to be performed to estimate the amount 
of power that would have been measured in the overlapping 
bands. This can be done using interpolation methods. 

Situations such as this often arise in practice. For example 
consider the relationship between the AVHRR (Advanced Very 
High Resolution Radiometer) and the MODIS (Moderate Res- 
olution Imaging Spectroradiometer) inhtrumeiits. Specifically, 
we show how to create a so-called Virtual Sensor to model 

MODIS Channel 6 as a function of other MODIS channels that 
are also available in AVHRR. This way. the created model can 
be used to construct the virtual AVHRR channel 6 as a function 
of rhe orher channeis available in  Ai.'ERR. In our research, 
data mining methods are tested and their results examined for 
this task. New data mining algorithms are developed based 
on these results. Because of the large amounts of AVHRR 
and MODIS data available, we are focilsing our development 
on producing high-quality results efficiently and quickly with 
principled estimates of uncertainty. Clearly, the construction 
of a Virtual Sensor has two key components. The first is 
constructing the model that generates the Virtual Sensor data 
given the known data. This requires training data-data for 
which there are true sensor values corresponding to the values 
of the Virtual Sensor. In this example, we would use MODIS 
images to generate a model that predicts MODIS channel 6 as 
a function of the other MODIS channels that are also available 
in AVHRR. Only channels common to MODIS and AVHRR 
can be used because of the second component of virtual sensor 
construction: generating the virtual sensor values. The learned 
model has to be used to generate the AVHRR virtual channel 
6 as a function of the other AVHRR channels. 

Some preliminary studies were made to check the feasibility 
of the Virtual Sensor using some MODIS and AVHRR images 
acquired over the Greenland ice sheet. In particular. supervised 
learning methods (e.,o.. neural networks) are capable of using 
MODIS data to construct a model that can predict MODIS 
channel 6 as a function of other MODIS channels. This model 
can then take an AVHRR image as input and can construct the 
virtual channeI 6. 

11. VIRTUAL SENSORS FOR CRYOSPHERE ANALYSIS 

Intensification of global warming in recent decades has 
caused a rise of interest in year-to-year and decadal-scale 
climate variability in the Polar Regions. This is because 
these regions are believed to be among the most sensitive 
and vulnerable regions to climatic changes. The enhanced 
vulnerability of the Polar Regions is believed to result from 
several positive feedbacks. including the temperature-albedo- 
melt feedback and the cloud-radiation feedback. Recent ob- 
servations of record regional anomalies in ice extent, thinning 
of the margins of the Greenland ice sheet, and reduction in 
the northern hemispheric snow cover, may reflect the effect of 
these feedbacks. Remote sensing products now provide spa- 
tially and temporally continuous and consistent information on 
several polar geophysical variables over nearly three decades. 
This period is sufficiently long enough to permit evaluation of 
how severaf-cryosphencvariables change irrphase- with each ~ ~ 

other and with the atmosphere and can help to improve our 
understanding of the processes in the coupled land-ice-ocean- 
atmosphere climate system. Cloud detection particularly over 
snow- and ice-covered surfaces is difficult using sensors such 
as AVHRR. This is because of the lack of spectral contrast 
between clouds and snow in the channels flown on the earlier 
AVHRW2 sensors. Snow and clouds are both highly reflective 
in the visible wavelengths and often show little contrast in the 
thermal infrared. 



The ;\\XP.R ?n!x Pathfinder Product (-4PPj consists of 
tmice daily gridded (at I .25 and 5i;m spacial resolution’) surface 
albedo and temperature from 1951 to 2000. A cloud mask 
accompanies this product but has besn fmnd 10 be inadequate. 
parricularly over the ice sheets [5]. The 1.6 micron channel on 
the &IODIS instrument as well as the AVHRR’3 sensor can 
significantly improve the ability to detect clouds over snow 
and ice. Therefore, by developing a virtual sensor to model 
the MODIS 1.6 micron channel as a function of the AVHW2 
channels. we can improve the cloud mask in the APP product. 
and subsequently improve the r e ~ e v a l s  of surface temperaturz 
and albedo in the product. In doing so we will be able 
to improve the accuracy in documenting seasonal and inter- 
annual variations in snow, ice sheet and sea ice conditions 
since 19s 1. 

I11 CREATING .a VIRTUAL SENSOR 

In this section we outline the procedure for creatinz a Virtual 
Sensor. At a minimum, we assume that for sensor SI we 
have measurements 21 (B1) from one image. and for another 
sensor S2 we assume that we have another image Z2(B3j. Tie 
procedure for creatlng a Vmual Sensor is as follows. assuming 
that we need to build a predictor for channel b k + 1  irecall that 
k is the number of bands in B1): 

1) Divide the data set 22(B2) into a training set and a 
test set. 

7) Find parameters 0 that minimize the 
squared error (or another suitable metnc) 
[E[r(2,03,),0)] - Z~(b~A~)]2. 

3 )  AppI!. r to the data from sensor SI to generate m 
estimate of E[r  ( Z1 (bkil) ~ Q)j.  This is the step where 
the estimation of the unknown spectral contribution 
occurs. 

4) Evaluate the results based on science bassci metrics arid 
other infermation known about the image. 

The procedure described above is standard in the data mining 
literature. From the remote sensing perspective. it is interesting 
to see the potentially systematic differences between the 
performance of the estimator on data from sensors 1 and 2. 

Note that this procedure will only work if sufficient in- 
formation exists to predict Z(B) given data Z(B1). One 
simple procedure for determining this is to look at the linear 
correlation between the spectra. The top panel or̂  Figure 2 
s h o w  the inter-channel linear correlation for the Esr-Seven 
channels of MODIS data. Larger squares indicate stronger 
linear correiation. Red squares indicate negative correlation 
and green squares indicate positix-e correlaiion. The 1ou.sr 
panel in this figure shows the results of computing the rnu- 
tual iniorznsrion between the pairs of channels. The mutual 
information between two random variables is given b!: 

- .~ ~~ - - ~- ~ 

Linear Correlation Matrix 

I I -  

1 2 3 4 5 6 7  
MODIS Channel # 

Mutual Information Matrix 

1 2 3 4 5 6 7  
MODIS Channel # 

Fig. 2. The upper pmrl of this f i g i n  shorvc the linear corre!ation h r u e r n  the 
first seven channels of the MODIS instrument for one point in time. The size 
of the square indicates the d e p e  of line= corre!aticn. Green color indiczttes 
2 posirix correlation. and red color indictes a n r g i v e  correhdcn. Sotice 

Sensor, hss a relatively L v a k  correlation with the other channels. The lower 
panel indicates the mumd infdrmzecon bctxcve-n :he s m e  XZODIS chv.ne!s. 
Notice that for this nonlinear measure of informstion, chmnrl 6 has niore 
relationship with the other channels. thus 3 v i n g  hope that a nonlinear model 
could be built to predict channel 6. 

rhat Ch;mnei 6, w h c h  is 3 &anfiri ~har :sc .sz; L:: to .-r,s!ace 2s<q; a \F-+d.;l 

This method gives a nonlinear measure of the relationship 
between the channels. Again. the larger the square. the greater 
the degree of relationship. In the case described in this paper. 
we will be building models in order to predict Channel 6. 
Kotice h a t  Channel 6 has sma!: linea; correiatizns with the 
o ~ ~ ~ ~ ~ ~ ~ n ~ ~ s ~ b u t - m o ~ e r a t e m u t r r 3 - i n f o r n a t i o n ~  - ~ - - ~~ -~ 

The next section describes three estimation methods that 
-+ve have used to build a \ h ~ a l  Sensor: a feed-formtard 
neural nenvork (also called a multilayer perceptron. (MLP)j. a 
Support Vector Machine (SVMj. and an SVvl  with a Mixture 
Density YIercer Kernel. 

n-. ST.ASDA,PD DATA MIYISG METHODS 
There are many machine learning methods that have been 

.sed in many different types of problems. %e give a brief 
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Fig. 3. An example of a MultiLayer Perceptron (MLP) 

review of the methods that we use in this paper 

A. Multi-Layer Perceptrons 
We first describe multilayer perceptrons, a type of neurd 

network [4]. The central idea of neural networks is to construct 
linear combinations of the inputs as derived features. and then 
model the target as a nonlinear function of these derived 
features. Neural networks are often depicted as a directed 
graph consisting of nodes and arcs. An example is shown in 
Figure 3. Each column of nodes is a layer. The leftmost layer 
is the input layer. The inputs of an example to be classified 
are entered into the input layer. The second layer is the hidden 
layer and the third layer is the output layer. Information flows 
from the input layer to the hidden layer and then to the output 
layer via a set of arcs (depicted in figure 3 as arrows). Note 
that the nodes within a layer are not directly connected. In our 
example, every node in one layer is connected to every node 
in the next layer, but this is not required in general. Also, a 
neural network can have more or less than one hidden layer 
and can have any number of nodes in each hidden layer. 

Each non-input node, its incoming arcs, and its single 
outgoing arc constitute a neuron. which is the basic com- 
putational element of a neural network. Each incoming arc 
multiplies the value coming from its origin node by the weight 
assigned to that arc and sends the result to the destination 
node. The destination node adds the values presented to it by 
all the incoming arcs, transforms it with a nonlinear activation 
function-(ioIje-&e-ed- later); and then s ~ n ~ ~ t h ~ r e s u ~ t ~ ~ l o n ~ .  
the outgoing arc. For example, the return value of a hidden 
node zj  in our example neural network is 

where 1-41 is the number of input units. UJ:.? is the weight 
on the arc in the kth layer of arcs that goes from unit i in the 

kth layer of nodes to unit j in the next layer (so w i i )  is the 
weight on the arc that goes from input unit i to hidden unit 
j) and g is a nonlinear activation function. A commonly used 
activation fuiiction is the sigmoid function: 

The return value of an output node y j  is 

where 2 is the number of hidden units. The outputs are 
clearly nonlinear functions of the inputs. 

Neural networks are trained to fit data by a process that 
is essentially nonlinear regression. Given each entry in the 
training dataset, the network’s current prediction is calculated. 
The difference between the true function value and the pre- 
diction is the error. The derivative of this error with respect to 
each weight in the network is calculated and the weights are 
adjusted accordingly to reduce the error. 

B. Support Vector Machines 
Support Vector Machines for classification and regression 

are described in detail in [3] ,  but here we briefly describe 
Support Vector Regression (SVR), which we use in this paper. 
In real-world problems, traditional linear regression cannot 
be expected to fit a set of points perfectly (Le., with zero 
error). For this reason, nonlinear regression is often used with 
the hope that a more powerful nonlinear model will achieve 
a -better fit--than a linear model. However, this power often 
comes with two drawbacks. One is that the space of parameters 
of a nonlinear model (such as the multilayer perceptrons 
discussed above) often have many local optima that are not 
globally optimal. Nonlinear regression algorithms such as 
backpropagation for kEPs  often find these local optima, which 
cail i e d t  in a irioilel that does not predict we!! on unseen &ta. 
The second drawback is that nonlinear model fitting is often 
overly sensitive to the locations of the training points, so that 
they overfit the training points and do not perform well on 
new data. 

SVR addresses these problems in three ways. The first way 
is to use an €-insensitive loss function. If y is the true response 
and f(x) is the predicted response for the input x, then the 
loss function is 

That is. if the error between the true response and the 
predicted response is less than some small e, then the error on 
that point is considered to be zero. For example, in figure 4, the 
solid line, which is the fitted line, is within t of all the points 
between the two dashed lines: therefore, the error is considered 
to be zero for those points. If E is set to the level of the 
typical noise that one can expect in the response variable, then 
support vector regression is less likely to expend effort fitting 
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for which the error is already less than E will end up with 
zero for their corresponding slack variables. Because this is 
a convex optimization problem. there is a unique globally 
optimal solution. 

The third way that SVR addresses the above problems is to 
map the data from the original data space into a much higher 
(possible infinite) dimensional feature space and calculate the 
support vector machine in that space. The idea is that the linear 
model in the feature space may correspond to a complicated 
nonlinear model in the original data'space. Clearly, one needs 
a practical way to deal with data that is mapped to such a 
high-dimensional space, which intuitively seems impossible. 
However, one is able to do this using the kernel trick. By 
introducing Lagrange multipliers and obtaining the dual of 
the previous optimization problem (see [3] for the details), 
one obtains the following: Fig. 4. Support Vector Machine for regession. The solid line is the line 

fitted to the points (represented as circles). The dashed lines are a distance E 
from the fitred line. The points within the dashed line are considered to have 
zero error by an e-insensitive loss function. 

rn m 

maximize,,,-ER - e x ( a ;  + ai) i "JQ: - o i ) y i  

6 &\-I - 2 1 i u 3  - J J -  -3 

i=l i=l the noise in the training data at the expense of generalization 

estimate the linear regression 
l m m  performance, Le., it is less likely to overfit. In particular, to _ _  v -i-(m* - rn.Il,-"* - *.)v. . V .  

subject to 0 5 cq, crt 5 C for all i E { 1,2,  . . . , m} 
. t= l  3=1 

f ( x )  = w - x + b 

one solves the optimization problem of minimizing 

where C is a user-determined constant that determines the 
mdeoff between the closeness of the fit (second term) and the 
level of regularization (first term). 

The second way support vector regression addresses the 
above problems is to allow some error beyond E for each 
training point but minimize the total such error over all the 
points. In figure 4, is t!!e additioaa! e r o r  for m e  prt iculz  
point. For m training points. define for i E { 1 , 2 ,  . . . , m} to 
be the slack variables that represent the additional allowable 
error if f(xi) -yi > E @e., <i = 0 otherwise) and to be the 
additional error if yi-f(xi) > E. In that case, the optimization 
problem is the following: 

rn 

and C(ai - a;) = 0. 
i= 1 

The resulting regression estimate is of the form 

m 

f(x) = C(af - ai)xi - xj + b. 
i=l 

Note that the inputs only appear as dot products in the above 
solution. Therefore, one can map the inputs into a very high or 
even infinite dimensional space H using a function @ : Rd -+ 
H and the dot product @(xi) . @(xj) will still be a scalar. 
Of course, @ would be too difficult to work with because 
of the high dimensionality of H .  However, there exist kernel 
fitnctions K(zi:  zj) = @(xi) . @ ( x j )  such that K is practical 
to work with even though the @ induced by that K is not. For 
example, the Gaussian kernel 

rn 

*- *-I 

gives nse to a 9 that is infinite-dimensional. However, we 
do not need to deal with 9 or even know what it is because 
the 9 ' s  only appear as dot products, which can be replaced 

- -_ subicctto__ ~ ~ by K .  Therefore. the new regression estimate after mapping 
the inputsfrom the data space to the feature space IS----- 

1 
2 

minimize -/lw1j2 + cE(tz +e;) 

- - -________ 
~ 

f(x4 -Yz I E + < ,  

Yi - f ( x z )  5 € + E ;  m 

f(x) = C(a; - ai)K(xi ,x j )  + b. 
i= I 

for all i E 1.2.. . . , m. In summary, the Support Vector Machine allows us to fit a 
nonlinear model to data without the local optima problem that 
other procedures suffer from. 

The kernel function can be viewed as a measure of s idar i ty  
between two data points. For example, with the Gaussian 

Note that the above optimization problem will involve 
minimizing the sum of the slack variables. Also, any points 



kernel. the value increases as the distance between the pair of 
points decreases. There is significant current research attempt- 
ing to determine which kernel functions are most appropriate 
for different types of probiems. One such novel kernel function 
is the Mixture Density Mercel Kernel (MDMK) which is 
discussed in the next section. 

C. Mixture Density Mercer Kernels 

The idea of using probabilistic kernels was discussed by 
Haussler in 1999 [Z] where he observes that if K(xi, x j )  2 0 
V (x i ,x j )  E X x X, and CXi Cxj K ( x i , x j )  = 1 then K is 
a probability distribution and is called a P-Kernel. He further 
observed that the Gibbs kernel K(x i , x j )  = P(xi )P(x j )  is 
also an admissible kernel function. 

Our idea is to use an ensemble of probabilistic mixture 
models as a similarity measure. Two data points will have a 
larger similarity if multiple models agree that they should be 
placed in the same cluster or mode of the distribution. Those 
points where there is disagreement will be given intermediate 
similarity measures. The shapes of the underlying mixture dis- 
tributions can significantly affect the similarity measurement 
of the two points. Experimental results uphold this intuition 
and show that in regions where there is "no question" about 
the membership of two points, the Mixture Density Kernel 
behaves identically to a standard mixture model. However, 
in regions of the input space where there is disagreement 
about the membership of two points, the behavior may be 
quite different than the standard model. Since each mixture 
density model in the ensemble can be encoded with domain 
knowledge by constructing informative priors, the Mixture 
Density Mercer Kernel (MDMK) will also encode domain 
knowledge. The MDMK is defined as follows: 

K(Xi,Xj) = @ T ( X i ) @ ( X j )  

The fcaiure s p x e  is thus de5ned explicitly as fi?!!ews: 

@(Xi) cc [ P I ( C  = llXi),PI(C = 2 j X i ) ,  . . . , 
PI(c= CIXi),PA(c= 1Ixz),...,PiVf(c= Clxi)] 

The first sum in the defining equation above sweeps through 
the M models in the ensemble, where each mixture model is 
a Maximum A Posteriori estimator of the underlying density 
trained by sampling (with replacement) the original data. We 
will discuss how to design these estimators in the next section. 
Cm defines the number of mixtures in the mth ensembie, and 
c y i s  the-cluster (or modej- tabel assigned by the model. The 
quantity Z(xi ,  x j )  is a normalization such that K ( x i ,  x i )  = 1 
for all i. The fact that the Mixture Density Kernel is a valid 
kernel function arises directly from the definition. 

The Mixture Density Kernel function can be interpreted as 
follows. Suppose that we have a hard classification strategy. 
where each data point is assigned to the most likely posterior 
class distribution. In this case the kernel function counts the the 
number of times the A4 mixtures agree that two points should 
be placed in the same cluster mode. In soft classification, 

Fig. 5. MODIS predictions from year 2000, days 140-153. This image shows 
the percent cloud cover in each image as well 3s the true positive and true 
negative rates for MLPs on these images. 

two data points are given an intermediate level of similarity 
(between 0 and 1) which will be less than or equal to the case 
where all models agree on their membership, in which case 
the entry would be unity. Further interpretation of the kernel 
function is possible by applying Bayes rule to the defining 
equation of the Mixture Density Kernel. Thus, we have: 

The second step above is valid under the assumption that the 
two data points are independent and identically distributed. 
This equation shows that the Mixture Density Kernel measures 
the ratio of the probability that two points arise from the same 
mode, compared with the unconditional joint distribution. If 
we simplify this equation further by assuming that the class 
distributions are uniform, the kernel tells us on average (across 
ensembles) the amount of information gained by knowing that 
two points are drawn fi-om the saiiic m d e  in 2 r n i x ~ ~ e  density. 

V. RESULTS 
To derive the results described in this section, we trained 

the three methods described above on a small subset of a 
MODIS image from day 140. We fmt selected those pixels 
for which channel 1 was at least 0.3, thereby removing pixels 
that are over open water and keeping the snowlice-covered 
areas. This turned out to be about half of this particular image 
(1.6 million pixels). Out of these pixels, we chose about 2500 
afxhem at  r a n d a d o r  ~.lrainine _In..alLcases,_the inputs were 
the five MODIS channels that correspond most closely to the 
five AVHRW2 channels (see the Appendix for tables with 
AVHRW2 and MODIS instrument specifications). That is, the 
inputs were channels 1, 2. 20, 31, and 32. The output to be 
predicted was channel 6. 

A. MODlS Results 
In testing the MODIS channel 6 prediction algorithms. 13 

MODIS images from the year 2000 were processed. -411 the 



Rg. 6.  MODIS prediaions from year 2000, day 149. (a) Cpper Lsft. Chxne! 
1. (5). LTpper Right. Prediction of an MLP. (c) Lower Left Predicion of sn 
SV,M with RBF kernel. (d). Lower Right Prediction of an SVM with MDMK 
kernel. The black ares  wirh straight boundaries are resjons containing no 

AVhFP channel i MLP 

Fig. 7 AVHRR predictions from year 2000. day 140. (a) Uppper Left. Channel 
1 (b). Upper Right. Prediction of an MLP. (c) Lower Left. Prediction of an 
SVSI with RBF kenel. (d]. Lower Right. Prediction of an SVM with .CIDhlK 
kernel. The black aress with snaight boundaries are regions conraining no 
d3ta. 

MODIS imagery were gridded to a 1.25 km Equal Area 
Scalable E m h  Grid (EASE-Grid) [SI). Figure 5 summarizes 
the amount of cloud cover for each day (defined using a 
rhreshoid of 0.3 on the MODIS channel 6 iiiagiages) togetkr 
with the true positive and true negative cloud cover retrieval 
rates by the MLP model. The true positive retrieval rate is 
defined 3s the number pixels predicted to have cloud cover 
that actually have cloud cover divided by the total number 
of pixels that actually have cloud cover. Similarly, the truz 
negative retrieval rate is the number of pixels predicted to not 
have cloud cover that actually do not have could cover divided 
by the total number of pixels that actually d o  not have cloud 
cover. The MLP appears io accurately mode! aieas tla: are of 
low reflectance -in the-MODIS  channel^ 6 (e.g_.no clouds) -3s 
seen by the high rate of true negative retrieval. The MLP model 
is slightly Iess successful in always correctly modelling the 
high reflectance (e.g. clouds), but the overall positive retrieval 
rate is still relatively high 170 to 90%). 

0". AV3RR I Z e d i J  

We now discuss our results on two AV%RR images. Fig- 
ure 7(a) shows the visibie (channel 1) top-of-the-atmosphere 
(TOA) re5ecTance 2 v z  -AAvm? 5 r  ?a;; I J G  3ver  :'.e Greep  

Fig. 5. AVHRR predictions from year 2000, day 150. (a) U p v r  Lefr. Chamel 
1. @I.  Upper Right. Prediction of an LlLP. (c) Lower Left. P:edicrion of an 
S\?l with RBF kernel. (d). Lower Right. Prediction of an SVM with MDRIK 
kernel. The blsck areas with stnight boundaries are reaons containing no 
dam. 

land ice sheet. Note also that not only is the ice sheet shown 
in the image, but also open water areas (black color) and sea 
ice. Clouds are evident by textural variations in the south, 

also appear brighter and some darker than the underlying snow. 
In Figure 7(b) through (d) the TOA reflectance predictions 
for a channel at 1.6 microns are shown. The MLP prediction 
(Figure 7ib)) indicates that the majority of the ice sheet is 
cloud free (very low reflectance at 1.6 microns) and the clouds 
that are seen as textural variations in the visible h a z e  show 
up as bright (higher reflectance) in the image. Most of the 
clouds are captured. although the few scattered clouds in the 
northwest part of the ice sheet are not detected. In addition. 
some of the clouds in t l e  centla! part of the ice sheet mi? he 
classified as "clear" if a threshold of 0.3 is selected. A more 
conservative threshold may be 0.2. which is currently used by 
the MODIS snow cover team to discriminate between clouds 
and snow. The S W l  RBF (Figure 7(c)) picks up the clouds 
as well (the brighter areas in the image). but this method also 
stltrts to distinguish between different snow types as evident 
by the slightly different reflectance values along the western 
margin of the ice sheet. Further discrimination of diEererit 
snow types is observed in the S W  -MDMK (Figure 7td)j 
image. Note however. in  both of these models. picking a 
threshold of 0.3 to decide whether or not the pixel is clear or 
cloudy may cause a r e s  of the ice sheet that are actually clear 
to be labeled as clouds. Thus. additional information would be 
needed in order to distinguish between atmospheric variations 
(i.e. clouds) and variations in the snow/ice conditions. Note 
also that. oft' the northwestern coast of the ice sheet, areas 
t h T a r E 5 Z Z i -  with- 50- cloud cover appear- as clouds- (higher 
reflectance) in the prediction models. 

Figure 8ia)-(d) shows the same results as discussed above 
but for day 150. The visible image (Figure S(a)) suggests that 
the entire western margin of the ice sheet is cloudy as well 
as the north centraYeastern part of the ice sheet. The MLP 
(figure S(\b)) captures some of the scattered c:o& aioiig 
the western margin of the ice sheet. but misses quite a few 
of them. especially in the southern part. Similarly. in the 
northeastern pan  of the ice sheer. the J E P  is nor c a p r i n g  

centla! scd  ccrths.iester:: p s  cf t'.P ice sheet. Some clouds 
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all the clouds observed in the visible image. The SVM RBF 
(Figure S(c)) model does a better job in detecting the clouds in 
the northeastern region of Greenland as well as along the west 
coast. The SVM MDMK model further detects some clouds 
that are missed in the SVM RBF model (e.g. along the south- 
west edge of Greenland) and also begins to highlight more of 
the different snowlice types. 

These two different examples help to illustrate that simulat- 
ing a 1.6 micron sensor channel does not necessarily capture 
all the clouds. In general, snow has very low reflectance at 
1.6 microns, whereas clouds have high reflectance. Thus. we 
would expect snow cover to be bright in the visible channel 
and dark in at 1.6 microns. However, cloud reflectance at 1.6 
microns depends in part on the cloud type and may be bright 
or less bright (e.g. gray). 

In the day 140 example, the MLP prediction does capture 
most all of the clouds observed in the visible image. For this 
day, the 1.6 micron is a good cloud classifier. On day 150 
however, the MLP prediction does not perform quite as well. 
Even though it may still accurately predict the TOA reflectance 
at 1.6 microns. some clouds are missed. 

Snow Cover 
Vegetation Index 

Earth Radiation Budget 
Surface Water Boundaries 

Vegetation Index 
Water Vaoor Correction 

0.725 to 1.00 

3.55 to 3.93 

VI. CONCLUSION 

In this paper we have presented the development of data 
mining algorithms to estimate unobserved spectra. We call this 
estimation “Virtual Sensors.” We presented some results on a 
particular instantiation of Virtual Sensors: the estimation of 
MODIS channel 6 for AVHRR. Our motivation for choosing 
this particular problem is to aid in the discrimination of 
clouds from snow and ice. This is a challenging problem that 
is essential to so!ve in order to map the cryosphere .using 
visible and thermal imagery. Clouds often have similar spectral 
reflectance as snow and similar temperatures. Most cloud 
detection aIgorithms operationally employ a series of spectral 
tests to determine if a pixel is clear or cloudy. Having a channel 
centered around 1.6 microns has significantly improved the 
ability to discriminate between clouds and snow using new 
sensors such as MODIS and AVHW3.  Unfortunately, a vast 
amount of data have been collected before these sensors 
existed that did not have a channel designed to detect clouds 
over snow and ice-covered surfaces. These data sets have large 
importance for climate studies since they provide over 20 
years worth of observations. Thus, being able to improve the 
cloud masking abilities of these previous sensors will allow for 
improved monitoring of several cryospheric variables, such as 
surface albedo, surface temperature, snow and ice cover. 

In the above analysis, we used calibrated TOA reflectances 
from-the-MODIS and -AVHRR instruments: -These-ref€ectance 
values are dependent upon the specific viewing and illumina- 
tion geometry of the orbit considered. This may or may not 
lead to some errors since snow and clouds do not reflect the 
incoming solar radiation isotropically. The magnitude of this 
effect remains to be determined. However, given the robustness 
of the method, the mgular \miability of the reflectance may 
fall into the “noise” of the data so that our methods can 
be applied prior to using methods to correct fur the angular 
variability of the TOA reflectance. 

4 
5 

We plan to extend our work on the problem of estimating 
MODIS channel 6. for AVHRR images in several directions. 
In order to see how quickly our methods can learn a good 
qualiry model, we trained on very littie data. ‘%e plan to train 
on additional data over different times of year to understand 
how much improvement is possible. We plan to develop 
more scalable algorithms that will allow us to train on large 
amounts of data in a practical arnounL of time. For example, 
active learning algorithms only process examples on which the 
current model’s predictions are significantly in error and do not 
waste effort on the remaining examples the way traditional 
machine learning algorithms do. Online learning algorithms 
process training examples only once rather than repeatedly 
cycling through them the way traditional algorithms do. We 
also plan to perform a more detailed analysis of the results 
over more images from different years and different times 
of year in order to better understand the situations in which 
different data mining algorithms are most effective. This may 
lead to the development of a hybrid scheme (ensemble) that 
performs better than any one method. Our algorithms currently 
only train on and generate predictions for individual pixels in 
individual images. Spatial correlation and temporal correlation 
will be accounted for in our future work. 

We also plan to go beyond the particular problem of pre- 
dictiiig channel 6 to predicting other channels a d  quantities 
that are of scientific importance. We will attempt to quantify 
cross-channel information through further mutual information 
studies. 

Therm’al Mapping 
10.3 to 11.3 Thermal Mapping 
11.5 to 12.5 Water Vapor Correction 

APPENDIX 1 
INSTRUMENT SPECIFICATIONS 

Tables I1 and III contain specifications of the AVHRW2 and 
MODIS instruments, respectively. 

TABLE I 
AVHRRI2 INSTRUMENT SPECIFICATIOIYS 

Purpose 
Cloud Cover 

Channel Number 1 Wavelength I 
1 1 0.58 to 0.68 I 

Thermal Mapping 
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TABLE I1 
MCDIS INSTRCMEXT SPECIFICATIONS 

1 Band 1 Bandwidth 1 Pnrnary Use 
1 1 1 620 - 670 1 LandiCloudArrosols 

Water Vapor 

i Boundaries 
2 1 811 - 876 I LandCloudAerosols 

I 

Boundaries 
3 1  459 - 479 I LandiCloudAerosols 

Water Vapor 

Properties 
4 I 545 - 565 I LandCloudlAerosols 

I 

properties 
5 1  1230 - 1250 I LandlCloudAerosols 

Temperature 

I Properties I 
1628 - 1652 ’ I LandlCloudlAerosols I 

I 
6 1  

23 

24 

Properties 
7 1  2105 - 2155 1 LandlCloudlAerosoIs 

Temperature 
4.020 - 4.080 SurfadCloud 

Temperature 
4.133 - 4.498 Atmosuheric 

Phytoplankton/ 

Phvtoolankton/ 

28 

29 
30 
31 
32 
33 
34 
35 

- .  
Biogeochemisny 

10 1 483 - 493 I Ocean Color/ 

Water Vapor 
Cirrus Clouds 
Water Vapor 

7.175 - 7.475 

8.400 - 8.700 Cloud Properties 
9.580 - 9.880 Ozone 

lG.780 - li.280 ’ SurfaceiCloud Temperame 
11.770 - 12.270 SurfaCeiCloud Temperature 
13.185 - 13.485 
13.485 - 13.785 
13.785 - 14.085 

Cloud Top Altitude 
Cloud Top Altitude 
Cloud Top Altitude 

Bioieoihemistry 
673 - 683 I Ocean Color/ 

‘ I  
14 1 

I I I Phvtoulankton/ I 
- I  

Biogeochemistry 
15 I 743 - 753 1 Ocean Color/ 

I I Water Vapor I 
20 I 3.660 - 3.840 1 S urfacelCloud I 

Temperature 
22 I 3.929 - 3.989 I SurfacelCloud I 

Temperature 
25 1 4.482 - 4.549 1 Amospheric 

Temperature I 
-26 I I1360 -3.390 1- C i s  Clouds --- r-- ~ - 

Water Vapor 
1 27 1 6.535 - 6.895 I Cirrus Clouds 


