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Abstract—In this paper, we present a novel automatic and
unsupervised change-detection approach specifically oriented to
the analysis of multitemporal single-channel single-polarization
synthetic aperture radar (SAR) images. This approach is based
on a closed-loop process made up of three main steps: 1) a novel
preprocessing based on a controlled adaptive iterative filtering;
2) a comparison between multitemporal images carried out ac-
cording to a standard log-ratio operator; and 3) a novel approach
to the automatic analysis of the log-ratio image for generating the
change-detection map. The first step aims at reducing the speckle
noise in a controlled way in order to maximize the discrimination
capability between changed and unchanged classes. In the second
step, the two filtered multitemporal images are compared to
generate a log-ratio image that contains explicit information on
changed areas. The third step produces the change-detection map
according to a thresholding procedure based on a reformulation of
the Kittler–Illingworth (KI) threshold selection criterion. In par-
ticular, the modified KI criterion is derived under the generalized
Gaussian assumption for modeling the distributions of changed
and unchanged classes. This parametric model was chosen because
it is capable of better fitting the conditional densities of classes
in the log-ratio image. In order to control the filtering step and,
accordingly, the effects of the filtering process on change-detec-
tion accuracy, we propose to identify automatically the optimal
number of despeckling filter iterations [Step 1)] by analyzing the
behavior of the modified KI criterion. This results in a completely
automatic and self-consistent change-detection approach that
avoids the use of empirical methods for the selection of the best
number of filtering iterations. Experiments carried out on two
sets of multitemporal images (characterized by different levels
of speckle noise) acquired by the European Remote Sensing 2
satellite SAR sensor confirm the effectiveness of the proposed un-
supervised approach, which results in change-detection accuracies
very similar to those that can be achieved by a manual supervised
thresholding.

Index Terms—Change detection, generalized Gaussian (GG) dis-
tribution, multitemporal synthetic aperture radar (SAR) images,
threshold selection.

I. INTRODUCTION

THE DETECTION of changes occurring on the earth sur-
face through the use of multitemporal remote sensing im-

ages is one of the most important applications of remote sensing
technology. This depends on the fact that, for many public and
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private institutions, the knowledge of the dynamics of either nat-
ural resources or man-made structures is a valuable source of in-
formation in decision making. In this context, satellite and air-
borne remote sensing sensors have proved particularly useful
in addressing change-detection applications related to environ-
mental monitoring [1], agricultural surveys [2], urban studies
[3], and forest monitoring [4].

Usually, change detection involves the analysis of two coreg-
istered remote sensing images acquired over the same geograph-
ical area at different times. Such an analysis is called unsu-
pervised when it aims at discriminating between two opposite
classes (which represent changed and unchanged areas) without
any prior knowledge about the scene (i.e., no ground truth is
available for modeling the classes). In the analysis of multitem-
poral remote sensing data acquired by (optical) multispectral
sensors, various automatic and unsupervised change-detection
methods have been developed and described in the literature.
Most are based on the so-called “difference image” (DI). The
most popular way of generating the DI is by change vector anal-
ysis (CVA) [5]. This technique exploits a simple vector subtrac-
tion operator to compare pixel-by-pixel the two multispectral
images under analysis. In some cases, depending on the spe-
cific type of changes to be identified, the comparison is made
on a subset of the spectral channels. The separation between
changed and unchanged classes is done on the magnitude of
the resulting spectral change vectors by means of empirical or
theoretical well-founded thresholding strategies [5]. In [6], two
automatic techniques based on the Bayes theory for the anal-
ysis of the DI are proposed. One allows an automatic selection
of the decision threshold maximizing the overall change-detec-
tion error under the assumption that pixels in the DI are spa-
tially independent. In the hypothesis of Gaussian distribution
for changed and unchanged classes, the estimation of the pa-
rameters of the Gaussian model is carried out using the ex-
pectation–maximization (EM) algorithm [7]. The other tech-
nique performs the analysis of the DI using a Markov random
field (MRF) approach that exploits the interpixel class depen-
dency in the spatial domain to improve the accuracy of the final
change-detection map according to the use of a regularization
term. This approach has been extended in [8] by adopting a
semiparametric technique that exploits the reduced Parzen es-
timation (RPE) technique for a better modeling of the density
functions associated with changed and unchanged pixels. In [9],
the observed multitemporal images are modeled as MRFs in
order to search for an optimal image of changes by means of the
maximum a posteriori probability (MAP) decision criterion and
the simulated annealing (SA) energy minimization procedure.
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In [10], a comparative study is presented on the effectiveness of
different thresholding algorithms developed for general pattern
recognition problems (i.e., Kittler and Illingworth’s, Huang and
Wang’s, and Otsu’s algorithms) when applied to change detec-
tion in multispectral remote sensing data.

Synthetic aperture radars have been less exploited than op-
tical sensors in the context of change detection. This is due
to the fact that SAR images suffers from the presence of the
speckle noise that makes it difficult to analyze such imagery,
and in particular to perform unsupervised discrimination be-
tween changed and unchanged classes. Despite the presence of
speckle noise, the use of SAR sensors in change detection is po-
tentially attractive from the operational viewpoint. These active
microwave sensors present the advantage that (unlike optical
ones) they are independent of atmospheric and sunlight condi-
tions. This means that they are capable of monitoring geograph-
ical areas regularly (even if covered by clouds) and also of con-
trolling polar regions even during the local winter period when
solar light is severely limited. This makes it possible to plan the
monitoring of a region (by repeat-pass imaging) with advance
timing defined according to end-user requirements (e.g., sea-
sonal and agricultural calendars).

In the context of SAR image analysis, the problem of un-
supervised change detection has been addressed focusing on
different aspects, including image despeckling, choice of the
comparison operator, and optimal threshold selection. In [11],
the authors show the usefulness of multitemporal SAR images
acquired over an annual cycle to monitor the changes occur-
ring on the land surface. The change-detection task is carried
out by a simple thresholding of the cumulative histogram
of the difference image on the basis of predefined threshold
values. In order to minimize the speckle effect, the authors
applied a 5 5 mean filter to the difference image. Because
of the multiplicative nature of speckle noise, it appears more
effective to use the ratio operator than the difference operator
to compare two SAR temporal images [12], [13]. A method
based on the generation of a logarithmic-scaled ratio image
from a couple of multitemporal SAR images, followed by an
adaptive filtering and a simple thresholding procedure applied
according to a “manual” selection of the decision threshold, is
presented in [14]. In [15], the original images are preprocessed
in different ways (i.e., block averaging, Gamma MAP filter,
image segmentation), and changes are identified by “manually”
thresholding the log-ratio image generated from the filtered
images according to a desired probability of false alarms.
In [16], the suitability of the principal component analysis
(PCA) method for change detection is investigated. Here the
filtering is carried out using the Gamma-Gamma MAP filter.
PCA is then applied in two different ways by combining: 1)
the original multitemporal despeckled images and 2) a set of
three images made up of intensity ratio, amplitude ratio, and
backscattering coefficient difference images. The authors
show that, in the first case, the changed class cannot be isolated
by PCA, whereas, in the second case, the first component
accounts for most of the temporal change. In [17], change
detection is carried out in order to identify forested areas that
underwent storm damage. The authors use a linear regression
model to estimate the radar backscattering amplitudes from
the inventoried stem volumes before the storm. Such estimates

were then compared with the radar backscattering amplitudes
measured after the storm using a statistical evaluation based
on the Student’s t-test to discriminate between wind-thrown
forests and unaffected forests. Dierking and Skriver [18] found
that, in multitemporal polarimetric SAR data, intensity images
are better suited for change-detection purposes than correla-
tion coefficient and phase difference between the copolarized
channels. In particular, they used the ratio operator to compare
the temporal images and a decision mechanism based on a
desired value of the probability of false alarms. In [19], four
different features (the temporal ratio, second-, and third-order
Log-cumulants, and a mixture parameter of two Gamma dis-
tributions) are extracted from a series of seven multitemporal
SAR images and studied for change-detection purposes. The
unsupervised discrimination between changed and unchanged
classes was carried out using the K-means clustering algorithm.
The experimental results show that the temporal ratio is well
suited to detect sharp changes such as flooded areas, while it
is not effective to monitor progressive or seasonal changes, for
which, on the other hand, the second-order log-cumulant and
the mixture level parameters seem useful.

In general, it appears clearly from the literature that the main
unsolved problem with change detection in SAR imagery is the
lack of accurate and reliable methods capable of performing
unsupervised change detection in a completely automatic way.
To overcome this problem, in this paper we propose a novel
automatic unsupervised change-detection approach specifically
oriented to the analysis of single-channel single-polariza-
tion SAR images. This approach, which is suitable for the
detection of distributed changes, is based on a closed-loop
process consisting of three main steps: 1) a novel controlled
preprocessing based on adaptive filtering; 2) a comparison
between multitemporal images; and 3) a novel technique for the
automatic analysis of the image resulting from the comparison.
The first step aims at reducing speckle noise in a controlled
manner in order to maximize the discrimination capability
between changed and unchanged classes. Filtering effects are
controlled by exploiting a performance index evaluated in
the third step. In the second step, the filtered multitemporal
images are compared through the ratio operator to generate a
ratio image represented in the logarithmic scale. In the third
step, changes are identified by analyzing the log-ratio image
according to a novel thresholding procedure. The latter is based
on the Kittler–Illingworth (KI) threshold selection criterion
originally developed under the Gaussian assumption for the
binarization of general-purpose images [20]. This criterion has
been adapted to the properties of the considered problem using
the generalized Gaussian (GG) assumption for modeling the
statistical distributions of changed and unchanged classes. In
addition, in order to take into account the effects of the filtering
process on change-detection accuracy, we propose to identify
the optimal number of filtering iterations (carried out in the
first step of the proposed approach) automatically by analyzing
the behavior of the modified KI criterion over the filtering iter-
ations. Such a performance index avoids the use of empirical
methods for the selection of the number of filtering iterations.

This paper is organized in six sections. Section II introduces
the general formulation of the problem and the basics of the pro-
posed approach. Section III describes the procedure developed
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Fig. 1. General block diagram of the proposed change-detection approach.

for automatic selection of the decision threshold in the log-ratio
image and for generating the final change-detection map. The
datasets used are presented in Section IV, which also contains a
description of the experiments. The results obtained for the first
and second datasets are reported in Section V. Finally, conclu-
sions are drawn in Section VI.

II. PROBLEM FORMULATION AND GENERAL DESCRIPTION

OF THE PROPOSED APPROACH

Let us consider two coregistered SAR intensity (or ampli-
tude) images and

acquired over the
same geographical area at two different times and , respec-
tively. We aim at generating a change-detection map that repre-
sents changes that occurred on the ground between the acqui-
sition dates of the two images and . The change-detec-
tion problem can be modeled as a binary classification problem
where each pixel is mapped into the set of pos-
sible labels ( and represent the unchanged and changed
classes, respectively). Let us assume that no ground truth is
available to estimate the statistical models associated with these
two classes. The proposed automatic and unsupervised change-
detection approach is made up of three main steps (see Fig. 1):
1) controlled preprocessing based on adaptive filtering; 2) com-
parison of the pair of multitemporal images; and 3) automatic
analysis of the log-ratio image. A detailed description of these
different steps is provided in Sections II-A–C.

A. Step 1: Controlled Preprocessing Based on
Adaptive Filtering

This first step aims at reducing speckle noise in a controlled
manner so as to maximize the discrimination capability between
the changed and unchanged classes represented in the SAR im-
ages. In general, a multilooking process (which consists of re-
ducing speckle noise during image formation at the expense of

spatial resolution) is applied to most of the SAR images. How-
ever, a further filtering step is usually required to make the im-
ages suitable for the desired analysis. To this purpose, various
filters have been proposed in the SAR literature, among which
we recall the Lee [21], the Kuan [22], the Frost [23], and the
MAP filters [24]. In this paper, we use the adaptive enhanced
Lee filter, which has proved effective for speckle reduction [25].
However, the proposed approach is general and can be used
with all kinds of adaptive speckle filters. The main problem with
SAR image filtering is related to the determination of the best
number of filtering iterations, which is often found empirically.
In this paper, we propose to control the filtering process by au-
tomatically finding the optimal number of filtering iterations
for the specific change-detection application considered. The
underlying idea consists of exploiting the KI criterion adopted
in the threshold selection procedure, as it is directly related to
error probability [10], [20]. This criterion is computed versus
the filtering iterations and used as an index of performance of
the filtered images in terms of change-detection error. The final
change-detection map is generated on the basis of the filtered
images that provide the smallest performance index value. We
refer the reader to Section III for a detailed description of this
step.

B. Step 2: Comparison of Multitemporal Images

When detecting changes in multispectral remote sensing im-
ages, the customary way of comparing a pair of multitemporal
images is to generate a difference image by applying a pixel-by-
pixel subtraction [image differencing (ID) technique]. However,
when SAR images are considered, changes are obtained by ana-
lyzing the image resulting from the application of the ratio oper-
ator to the considered couple of temporal SAR images [12]. It is
possible to prove that, under the symplifying asumption of sta-
tistical independence between the intensity images and ,
the distribution of the ratio image can be written as follows
[12]:

(1)

where is the equivalent number of looks (ENL). The ratio
operator shows two main advantages over the difference oper-
ator. The first is that the ratio image distribution depends only
on the relative change in average intensity be-
tween two dates and not on the intensity level of the pixels, in
contrast with the distribution of the difference image [12]. This
means that changes will be detected in the same manner both in
high and low intensity regions. The second advantage is that the
ratio operator is more robust to calibration errors than the differ-
ence operator. Since radiometric errors that usually occur during
the SAR processing phase are of the multiplicative type and are
exactly reproduced in repeat-pass imagery, they can be elimi-
nated using the ratio operator. Furthermore, it is worth noting
that, in the literature, the ratio image is usually expressed in a
logarithmic scale in order to compress the range of variation of
the ratio image and to better balance the values below and above
one. Based on these considerations, we adopt the log-ratio op-
erator in the proposed change-detection approach.
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C. Step 3: Automatic Analysis of the Log-Ratio Image

The purpose of analyzing the log-ratio image is to discrim-
inate between the two opposite classes and (associated
with changed and unchanged pixels, respectively). This problem
can be formulated in the context of the Bayesian decision theory.
The latter requires that for each pixel of the log-ratio image ,
both the conditional probability density functions (pdf),

and , and the prior probabilities and
of the classes and , respectively, should be esti-

mated. Such statistical quantities can be related to the pdf
associated with the log-ratio image using the total probability
theorem, i.e., looking at as a mixture of two density func-
tions associated with the classes and , i.e.,

(2)

A common simplification adopted in the literature to tackle
this binary discrimination problem is based on the pixel inde-
pendence assumption in the spatial domain. Accordingly, this
issue can be reduced to a binary thresholding problem, since
the two classes are defined over a one-dimensional feature do-
main. In this context, a general algorithm for threshold selection
is the one proposed by KI, which derives the decision threshold
according to an implicit parametric estimation of the statistical
model of the two classes under the Gaussian distribution as-
sumption [20]. Despite the fact that the KI algorithm is based
on biased estimates of the class distributions, its simplicity and
effectiveness make it particularly attractive for change-detection
applications. Accordingly, in this paper, we propose to adapt
this basic thresholding procedure to deal with the problem of
automatic threshold selection in the log-ratio SAR image as de-
scribed in Section III.

III. AUTOMATIC THRESHOLD SELECTION PROCEDURE

In this section, we describe the modified KI algorithm for the
estimation of the decision threshold between changed and un-
changed classes. Let be the his-
togram of the log-ratio SAR image (we assume that is
the only available information about the image). stands for
the number of possible gray levels. The histogram can
be considered an approximation of the actual probability den-
sity function of the mixture population describing the
changed and unchanged pixels. In this work, for simplicity, we
assume that changes occur only on one side of the histogram.
This assumption does not hold for all change-detection appli-
cations, but is often realistic for a large number of them (it is
worth noting that the proposed approach can be extended to the
case of changes occurring on both sides of the histogram). In the
KI algorithm, the selection of an appropriate decision threshold

is based on the optimization of a prede-
fined function that averages a cost function over
the histogram . The function measures the cost
of classifying pixels by comparing their gray-levels with the
threshold . The KI criterion function is given by

(3)

where

if
if

(4)

in which are the posterior probabilities
of the unchanged and changed classes, respectively, given the
gray level and a specific value of the threshold . The op-
timal threshold that minimizes the classification error is the one
that minimizes the following cost function:

(5)

Using the Bayes theorem, the posterior probability can be ex-
pressed in terms of the prior probability and the class-condi-
tional pdf, i.e.,

(6)
Depending on the model adopted to estimate the class-condi-
tional pdfs, different cost functions can be defined. In particular,
in this paper, two kinds of distributions are considered, namely
the Gaussian and the generalized Gaussian models. It is worth
noting that the reformulation of the KI threshold selection al-
gorithm according to the latter distribution model is one of the
novel methodological contributions presented in this work.

A. Threshold Selection Based on the Gaussian Model

The KI threshold selection algorithm requires a parametric
model to describe the statistical distributions of both changed
and unchanged classes. A simple and popular model that can
represent a possible candidate for this task is the Gaussian dis-
tribution. Though one can expect a mixture of two Gaussian dis-
tributions not to be precise in reconstructing the statistical be-
havior of the two classes in the log-ratio image, the Gaussian
model may reveal a first simple and reasonable approximation.
This is explained by the fact that the distribution of the log-ratio
image is expected to be close to a Gaussian distribution [14].

Under the assumption that the class-conditional distributions
follows a Gaussian statistical behavior,

the cost function to be optimized is the original one derived by
KI and is given by [20]

(7)

In this case, the parameters to be estimated are the prior proba-
bilities and , the means and , and the
variances and associated with the unchanged and
changed classes, respectively, for a given value of the threshold

. stands for the entropy associated with
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the binary set of classes . These parameters are
estimated according to the following system of equations [20]:

(8)

B. Threshold Selection Based on the Generalized
Gaussian Model

In order to improve the threshold selection process, a more
general parametric model capable of describing as better as
possible the statistical behaviors of changed and unchanged
classes in the log-ratio image must be used. Although theoret-
ically these distributions are expected to be close to Gaussian
functions, in practice the Gaussian approximation does not
accurately match the aforementioned conditional densities of
classes. For this reason, we considered an alternative model
that should satisfy two main properties: 1) flexibility and ro-
bustness (i.e., it should be capable of spanning a large variety
of statistical behaviors); 2) stability (i.e., it should not require
the estimation of an excessively large number of parameters).
Among the possible models, the generalized Gaussian (GG)
distribution is a particularly attractive candidate, since it can
approximate a large class of statistical distributions (e.g.,
impulsive, Laplacian, Gaussian, uniform distributions), and it
requires the estimation of only one more parameter compared
to the Gaussian model. The analytical expression of the GG
distribution considered in our approach for modeling the two
class-conditional pdfs is given by [26], [27]

(9)

where the positive constants and are given by

(10)

The terms , and are the mean, the variance, and the
shape parameters of the distribution, respectively, and is
the well-known Gamma function (i.e., ).
The shape parameter tunes the decay rate of the
density function. It is worth noting that yields the
Gaussian density function and corresponds to the Lapla-
cian density function. The two limit cases and
approach an impulsive function and uniform distribution, re-
spectively (Fig. 2). In order to compute the shape parameters

, we use the estimation technique described in [26].
According to this technique, the shape parameter related to the
unchanged class is estimated using the following steps (the
same procedure is adopted for the changed class).

Fig. 2. Expected behavior of the normalized GG distribution (m = 0, � = 1)
versus the value of the shape parameter �.

Step 1) Generation of a lookup table by computing the
so-called generalized Gaussian ratio function

given by

(11)

Step 2) Determination of the estimate for the modified
mean of the absolute values

(12)

Step 3) Computation of the ratio

(13)

Step 4) Identification of the solution to the equation
using the lookup table.

Following the same reasoning as for the Gaussian distribution,
it can be proved that the cost function to be optimized under the
GG distribution assumption is as follows (see Appendix):

(14)

C. Generation of the Final Change-Detection Map

As stated in Section II, depending on the intensity of the
speckle, an appropriate number of filtering iterations should be
applied to the original images to obtain an accurate change-de-
tection map. The determination of the optimal number of fil-
tering iterations is a critical issue since: 1) it should correspond
to a good tradeoff between noise reduction and degradation
of the spatial details present in the analyzed images; and 2) it
should be done in an unsupervised way. Generally, the number
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Fig. 3. Behavior of the performance index J(k) versus the number k of
filtering iterations.

of iterations is selected in the preprocessing phase either by
trial-and-error or according to empirical strategies. As no
training pixels are available to determine with precision the best
number of filtering iterations, we propose to control the effect
of the filtering process on the change-detection results by ana-
lyzing the behavior of the cost function . The exploitation
of this cost function is motivated by the fact that it is directly
related to the change-detection error probability. In particular,
we propose to use the minimum value obtained from
the cost function at each filtering iteration as a performance
index to monitor the filtering process, i.e., to find the number
of filtering iterations that results in the lowest change-detection
error in the proposed technique.

Let and be the two SAR images obtained after fil-
tering times the original SAR images and , respectively.
Let be the log-ratio SAR image generated by applying a
proper operator to and , and the minimum value
of the cost function obtained for the log-ratio image . As
shown in Fig. 3, the values of the performance index are
expected to be higher before starting the despeckling process.
This is due to statistical overlapping between changed and un-
changed classes in the log-ratio image. In fact, the presence of
speckle renders the separation between the two classes difficult.
We expect that a decrease in the values of is obtained after
the filtering operation, since changed and unchanged classes in-
crease their separability, and consequently they can be modeled
more accurately. However, by increasing the number of filtering
iterations too much, two undesired effects can be caused: 1) ge-
ometrical details can become degraded (small areas of the same
class may be completely lost); 2) an overlap can be created be-
tween the two classes along their spatial boundaries. This situ-
ation leads to an increase in the value of . Consequently,
we expect that an appropriate tradeoff between speckle reduc-
tion and detail preservation can be obtained on the basis of the
minimization of the performance index. This process is carried
out in a completely unsupervised way. It is worth noting that the
proposed approach can be used with any adaptive speckle filter.
The adoption of filters with different effectiveness will result in
the identification of different numbers of “optimal” iterations
and therefore in a different tradeoff between accuracy in homo-
geneous areas and the preservation of geometrical details.

The final change-detection map is generated according to the
following iterative procedure, which includes evaluating the op-
timal number of preprocessing filtering iterations:

Step 1) Initialize and set (maximum number
of filtering iterations);

Step 2) Generate and by filtering and ,
respectively;

Fig. 4. Multitemporal images relating to the city of Pavia used in the
experiments. (a) Image acquired on October 20, 2000, immediately after the
flooding. (b) Image acquired on October 28, 2000 (in this image, most of the
flooded areas disappeared). (c) Map of changed areas (ground truth) used as
reference in the experiments.

Step 3) Compute the log-ratio image ;
Step 4) Evaluate the cost function and save the

corresponding minimum value as the performance
index ;

Step 5) If , set and go to Step 2);
Step 6) Identify the best number of filtering iterations

as the one corresponding to the minimum value of
;

Step 7) Threshold the log-ratio image to generate the
final change-detection map.

IV. DATASET DESCRIPTION AND EXPERIMENT DESIGN

In order to assess the effectiveness of the proposed approach,
two datasets with different characteristics and speckle noise
levels were considered in the experiments. The first data set
represents a region surrounding the city of Pavia, Italy, while
the second represents an area near the city of Bern, Switzerland.
Detailed descriptions of these datasets and of the experimental
activity are provided in the following.

A. Pavia Dataset

The first dataset used in the experiments is made up of a sec-
tion (730 730 pixels) of two SAR images acquired by the Eu-
ropean Remote Sensing 2 satellite SAR sensor. From the two
images of the city of Pavia acquired on October 20 and 28, 2000,
it is possible to analyze which parts of the area were affected by
the flooding that occurred just before the first acquisition date.
The ENL of the two images computed according to [28] is 2.64
and 3.43, respectively. This means that the images related to this
area are strongly corrupted by speckle noise. Accordingly, this
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Fig. 5. Multitemporal images relating to the city of Bern used in the
experiments. (a) Image acquired in April 1999 before the flooding. (b) Image
acquired in May 1999 after the flooding. (c) Map of changed areas (ground
truth) used as reference in the experiments.

is a proper dataset for assessing the effectiveness of the itera-
tive controlled filtering technique integrated in the proposed ap-
proach. The images and the ground truth are shown in Fig. 4.

B. Bern Dataset

The second dataset represents a section (301 301 pixels) of
two SAR images acquired by the European Remote Sensing 2
satellite SAR sensor over an area near the city of Bern, Switzer-
land, in April and May 1999, respectively. The ENL of the two
small images considered is 10.89 and 9.26, respectively. These
high ENL values are explained by the fact that each of the two
images was obtained by averaging a pair of Tandem SAR im-
ages taken with different viewing angles and by resampling and
geocoding the five-look images. Between the two acquisition
dates, the river Aare flooded parts of the cities of Thun and Bern
and the airport of Bern entirely. Therefore, the Aare valley be-
tween Bern and Thun was selected as a test site for detecting
flooded areas. The images and the available ground truth (which
is obtained by integrating prior information with photo interpre-
tation) are shown in Fig. 5.

C. Description of the Experiments

In order to assess the effectiveness of the proposed change-
detection approach, four main experiments have been carried
out aimed at analyzing: 1) the effects of filtering on the class
distributions; 2) the suitability of the Gaussian and generalized
Gaussian functions for modeling the statistical distributions of
the changed and unchanged classes; 3) the effectiveness of the

Fig. 6. Log-ratio images relating to the Pavia dataset generated from (a)
original images and (b) filtered images (seven iterations).

automatic threshold selection procedure; 4) the usefulness of the
iterative controlled filtering technique.

The first experiment was aimed at evaluating the behavior
of the distributions of changed and unchanged classes in the
log-ratio images generated from original and filtered images,
respectively. In particular, we analyzed the effects of filtering
on the statistical distributions of these classes. The analysis of
the distributions of changed and unchanged classes in the log-
ratio images was carried out in a supervised way, i.e., using the
available ground truth. The filtered images were obtained by an
iterative application of the adaptive enhanced Lee filter to the
original images using a window size of 3 3 pixels.

In the second experiment, we assessed the appropriateness of
the Gaussian and GG models to estimate the pdfs of changed
and unchanged classes studied in the previous experiment. In
particular, we used the statistical Kolmogorov–Smirnov (KS)
test to evaluate quantitatively the effectiveness of these models
in approximating the distributions of the two considered classes
before and after despeckling. It is worth noting that the KS test is
based on a comparison of the cumulative distributions resulting
from the data and the analyzed model. It consists of computing
a significance level (probability) , defined according to the
maximum value of the absolute difference between the two cu-
mulative distribution functions. A small value indicates that
the estimated model is not suitable to describe the data statistics.

In the third experiment, the effectiveness of the proposed
automatic approach to unsupervised threshold selection is as-
sessed in terms of false alarms (i.e., unchanged pixels wrongly
classified as changed), detected changes (i.e., changed pixels
correctly classified as changed), and overall error (i.e., false and
missed alarms). The results obtained on the different log-ratio
images (generated from the two multitemporal original images
with different values of , i.e., different filtering iterations) by
selecting the threshold automatically with the assumptions of
both Gaussian and GG distributions were compared with those
yielded by the minimum error threshold selected according to
a supervised manual trial-and-error procedure (MTEP). To this
end, the minimum-error threshold was derived by performing
a nonautomatic evaluation of the overall change-detection er-
rors versus all the possible values of the decision threshold; then
the threshold value that yielded the minimum overall error was
chosen.

Finally, the fourth experiment is intended to assess the suit-
ability of the cost function as a performance index for the
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Fig. 7. Distributions of changed and unchanged classes in the log-ratio
images of the Pavia dataset generated from (a) original images and (b) filtered
images (seven iterations). Thanks to the zoom of the histogram, it is possible to
observe the distribution of the changed class (faint line) whose prior probability
is significantly lower than that of the unchanged class (thick line).

selection of the best number of filtering iterations required to
generate the change-detection map with the least overall error.

V. EXPERIMENTAL RESULTS

A. Results Obtained on the Pavia Dataset

In the first experiment, we analyzed the distributions of the
changed and unchanged classes in the log-ratio images gener-
ated from the original and filtered images (Fig. 6), respectively.
Fig. 7 shows these distributions extracted according to the use
of the ground-truth information. As expected from the estimated
ENL (i.e., 2.64 and 3.43), in this dataset changed and unchanged
classes in the log-ratio image generated from the original multi-
temporal images [Fig. 6(a)] were almost completely overlapped
[Fig. 7(a)]. This depends on the fact that these images are highly
corrupted by speckle noise, which makes it difficult and unre-
liable to use any unsupervised change-detection method based
on the analysis of the log-ratio image (it is not possible to dis-
tinguish the two classes with a simple thresholding procedure).
In order to separate these two classes, several filtering iterations
were applied to the original images. As an example, Fig. 7(b)
and Table I show the significant improvement in separation be-
tween the two considered classes in the log-ratio image obtained
after filtering the original images seven times [see Fig. 6(b)].

In the second experiment, the Gaussian and the GG para-
metric distributions of the changed and unchanged classes
were estimated using the available ground truth. Both models

TABLE I
MEAN AND STANDARD DEVIATION VALUES RELATED TO CHANGED AND

UNCHANGED CLASSES COMPUTED USING THE AVAILABLE GROUND TRUTH ON

THE LOG-RATIO IMAGES GENERATED FROM THE ORIGINAL AND FILTERED

MULTITEMPORAL IMAGES (SEVEN FILTERING ITERATIONS) (PAVIA DATASET)

Fig. 8. Comparison between the Gaussian and GG models for approximating
the distributions associated with changed and unchanged classes in the log-ratio
images of the Pavia dataset generated from (a) original images and (b) filtered
images (seven filtering iterations). In both figures, the zoom shows the two
models together with the true distribution of the changed class.

required the estimation of the mean and variance values. In
addition, in the case of the GG model, it was necessary to
estimate the shape parameter according to the procedure
described in Section III-B. It is worth recalling that the use of
ground truth is aimed at driving the statistical analysis of the
changed and unchanged classes in the first two experiments in
order to: 1) understand the effect of filtering on class distribu-
tions; and 2) to evaluate the goodness-of-fit of each of the two
investigated parametric models. However, the change-detection
process described in the next two experiments is carried out in a
completely unsupervised way (i.e., assuming that no reference
data are available). As one can see from Fig. 8(a), the two
models did not provide an accurate description of the two
classes before despeckling. This is confirmed by the KS test,
which resulted in small values for both functions. On the
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Fig. 9. Change-detection results (reported in number of pixels) obtained with
the automatic threshold selection procedure (under the Gaussian and the GG
assumptions) and the reference MTEP versus the number of filtering iterations
(Pavia dataset). (a) Overall error. (b) False alarms. (c) Detected changes.

other hand, as expected, a better approximation was obtained
after filtering the original images seven times [Fig. 8(b)]. In this
case, the two considered models resulted in different approxi-
mations of the class distributions. According to the values,
better approximations were obtained under the GG assumption
(especially for the unchanged class), confirming the better
fitting properties of this model compared to the Gaussian.

In the third experiment, the thresholding of the log-ratio
image generated from the original multitemporal images re-
sulted in high overall errors for both models (i.e., 10 028 and
9981 misclassified pixels for the Gaussian and GG distribu-
tions, respectively). This is explained by the almost complete
overlap between the two class distributions in the log-ratio
image, as observed in the first experiment. By contrast, by
filtering the original images several times, the change-detection
accuracy improved significantly. This is illustrated in Fig. 9,
which shows the behavior of the overall error, false alarms,
and detected changes versus the number of filtering iterations.
Compared with what was obtained with the Gaussian model, the
change-detection accuracies achieved under the GG assumption
were closer to those obtained by the reference MTEP. This is
explained by the limited capability of the Gaussian distribution
to model the changed and unchanged classes in the log-ratio
image; this confirmed the results obtained by the KS test in the
previous experiment. According to Fig. 9, for both distributions
the optimal change-detection result in terms of overall error
was obtained after filtering the original multitemporal images
seven times.

In the fourth experiment, we assessed the effectiveness of the
proposed procedure for the unsupervised identification of the
best filtering iteration number. This procedure is equivalent to
selecting the optimal change-detection map using the cost func-
tion (computed over the number of filtering iterations) as
a performance index. Fig. 10 clearly shows that according to
the value of , the best change-detection accuracy for both
considered models was estimated with seven filtering iterations.
This corresponds to what was observed in a supervised way
in the previous experiment, i.e., the change-detection map with

Fig. 10. Behavior of the cost function J(k) versus number of filtering
iterations (Pavia dataset).

TABLE II
RESULTS ACHIEVED BY THE PROPOSED APPROACH (UNDER THE GAUSSIAN

AND GG ASSUMPTIONS) AND THE MTEP (PAVIA DATASET)

Fig. 11. Final change-detection maps obtained from the analysis of the
log-ratio image relating to the Pavia dataset by (a) the proposed approach under
the GG assumption and (b) MTEP.

the minimum overall error is achieved after applying seven it-
erations of the filter to the original images. In this case, as re-
ported in Table II, the threshold value under the Gaussian as-
sumption was equal to 114 (corresponding to an overall error
of 6423 pixels, 3950 false alarms, and 6512 changed pixels
correctly detected), while it was 111 under the GG assump-
tion (corresponding to an overall error of 5550 pixels, 2116
false alarms, and 5235 changed pixels correctly detected). The
threshold value obtained by the nonautomatic MTEP was 110
(corresponding to an overall error of 5483 pixels, 1568 false
alarms, and 4751 changed pixels correctly detected). This quan-
titative comparison confirms the effectiveness of the proposed
approach based on the GG parametric model. This is also shown
by the change-detection maps (Fig. 11) obtained both by the
proposed approach and by the MTEP, which are very similar to
each other and very close to the ground-truth map depicted in
Fig. 4(c).

B. Results Obtained on the Bern Dataset

Unlike the previous dataset, the multitemporal Bern SAR
images are characterized by high ENL values. This represents
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Fig. 12. Log-ratio images of the Bern dataset generated from (a) original
images and (b) filtered images (one filtering iteration).

Fig. 13. Distributions of changed and unchanged classes in the log-ratio
images of the Bern dataset generated from (a) original images and (b) filtered
images (one filtering iteration). Thanks to the zoom of the histogram, it is
possible to observe the distribution of the changed class (faint line), whose prior
probability significantly lower than that of the unchanged class (thick line).

a completely different benchmark to assess the effectiveness
of the proposed approach (and in particular of the controlled
adaptive iterative filtering procedure presented, since the im-
ages given as input to our system are already affected by a low
noise level).

In the first experiment related to the analysis of the distribu-
tions of changed and unchanged classes in the log-ratio image
(see Fig. 12), the changed class resulted in the presence of two
modes very close together [see Fig. 13(a)]. This is explained
by the fact that the flooding occurred mainly on two different
ground covers characterized by different backscattering values.

Fig. 14. Comparison between the Gaussian and the GG models to approximate
the distributions associated with changed and unchanged classes in the log-ratio
images of the Bern dataset generated from (a) original images and (b) filtered
images (one iteration). In both figures, the zoom shows the two models together
with the true distribution of the changed class.

In this case, according to the higher ENL values characterizing
the two images, the changed and unchanged classes in the data
given as input to the proposed system overlap less than in the
Pavia dataset. However, as shown in Fig. 13(b), the applica-
tion of one iteration of the enhanced Lee filter improved class
separability further by decreasing the overlap that characterizes
two-class conditional distributions.

In the second experiment, as shown in Fig. 14, the Gaussian
and GG models resulted in different approximations of the dis-
tribution of changed and unchanged classes in the log-ratio im-
ages obtained without and with filtering. Similarly to what found
in the Pavia dataset, the values confirm the superiority of
the GG model over the Gaussian.

In the third experiment, we first ran the procedure for auto-
matic threshold selection on the log-ratio image generated from
original multitemporal images. The obtained change detection
overall errors were equal to 715 and 776 pixels, for the GG and
the Gaussian distributions, respectively. We then applied this
procedure to a set of log-ratio images generated from the filtered
images by varying the number of filtering iterations from 1 to
4 (we did not vary the number of iterations much, as the ENL
of the original images was already high). The obtained results
were significantly different for the two models. The behaviors of
the overall error, false alarms, and detected changes versus the
number of filtering iterations are shown in Fig. 15. As can be
seen, unlike the Gaussian case, the change-detection accuracy
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Fig. 15. Change-detection results (reported in number of pixels) obtained with
the automatic threshold selection procedure (under the Gaussian and the GG
assumptions) and the reference MTEP versus the number of filtering iterations
(Bern dataset). (a) Overall error. (b) False alarms. (c) Detected changes.

Fig. 16. Behavior of the cost function J(k) versus number of filtering
iterations (Bern dataset).

TABLE III
RESULTS ACHIEVED BY THE PROPOSED APPROACH (UNDER THE GAUSSIAN

AND GG ASSUMPTIONS) AND THE MTEP (BERN DATASET)

obtained under the GG model was close to that obtained with the
optimal manual trial-and-error procedure (MTEP). This again
confirms the superiority of the more general GG model over the
Gaussian.

In the fourth experiment, the unsupervised identification of
the optimal number of filtering iterations based on the perfor-
mance index confirmed what was observed in the previous
dataset. In fact, according to the behavior of (Fig. 16), the
best number of filtering iterations was equal to one. This result
corresponds to what was found by the trial-and-error procedure
in the previous experiment. It is worth noting that this points out
the accuracy and sensitivity of the proposed controlled adaptive
filtering procedure, which proved to be very effective also in
presence of images affected by a low noise level. In this case,
as reported in Table III, the threshold value obtained under the
Gaussian assumption was equal to 109 (corresponding to an
overall error of 803 pixels, 755 false alarms, and 1057 changed

Fig. 17. Final change-detection maps obtained from the analysis of the
log-ratio image relating to the Bern dataset by (a) the proposed approach under
the GG assumption and (b) MTEP.

pixels correctly detected), while it was 115 under the GG as-
sumption (corresponding to an overall error of 360 pixels, 277
false alarms, and 1022 changed pixels correctly detected). On
the other hand, the threshold value obtained by the MTEP was

(corresponding to an overall error of 252 pixels, 93
false alarms, and 946 changed pixels correctly detected). These
results reveal that the proposed automatic change-detection ap-
proach achieved accuracies very close to those exhibited by the
supervised MTEP, which of course provides the best possible
results. The final change-detection maps obtained by these two
methods are shown in Fig. 17. A visual comparison of these two
maps shows that they are very similar to each other and close to
the ground-truth image [Fig. 5(c)].

VI. DISCUSSION AND CONCLUSION

In this paper, a novel unsupervised change-detection ap-
proach specifically oriented to the analysis of single-channel
single-polarization multitemporal SAR images has been pre-
sented. This approach is based on an automatic analysis of
the log-ratio image (generated from filtered multitemporal
SAR images) carried out by proposing an extension of the
KI threshold selection algorithm. Two novel methodological
contributions characterize this work compared to traditional
unsupervised change-detection techniques: 1) the optimal
threshold value is determined in a completely automatic way;
and 2) the optimal number of despeckling filtering iterations
(with respect to the expected change-detection error) applied to
the original images in the preprocessing step is estimated au-
tomatically. As regards the first contribution, the KI algorithm
(which was originally developed for the Gaussian case) has
been extended to SAR images by reformulating it under the
GG assumption for the changed and unchanged classes. This
model is attractive, because it can approximate a large variety
of statistical distributions at the cost of only one additional
parameter to be estimated (i.e., the shape parameter). The
second contribution consists of exploiting the KI criterion to
estimate the optimal number of filtering iterations that results
in the highest expected change-detection accuracy.

The experimental results obtained on two different multitem-
poral SAR images confirmed the effectiveness of the proposed
approach. In particular, as expected, the GG distribution model
proved to be more suitable than the Gaussian one to fit the distri-
butions of unchanged and changed classes. In addition, with the
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presented controlled adaptive iterative filtering procedure, it was
possible to identify in an unsupervised and automatic way the
“optimal” number of iterations to be considered in the despeck-
ling phase (it is worth noting that the term “optimal” is used
with respect to the considered statistical model implemented in
the adopted change-detection approach). This avoids the prob-
lems associated with the wrong number of iterations of the fil-
tering process, which may affect the accuracy of the change-de-
tection process (after a given iteration number, the iterative fil-
tering process may decrease the accuracy of the change-detec-
tion process by significantly losing details present in the im-
ages). The aforementioned procedure proved suitable in two sit-
uations characterized by low and high ENL values in the original
multitemporal SAR images. The results in terms of overall error,
false alarms, and detected changes confirmed that the proposed
approach can achieve performances very close to the optimal
ones exhibited by the reference supervised MTEP.

It is worth noting that the proposed approach can be used with
any adaptive speckle filter. The adoption of filters with different
effectiveness will result in the identification of different num-
bers of “optimal” iterations and therefore in a different tradeoff
between accuracy in homogeneous areas and the preservation
of geometrical details.

On the one hand, the main advantages of the proposed ap-
proach are: 1) its computational simplicity (the most time-con-
suming phase is related to speckle filtering); 2) its stability (i.e.,
it does not depend on initial conditions); and 3) its generality
with respect to the typology of changes occurred on the ground
(thanks to the fact that it uses a flexible statistical model such as
GG distribution). Another interesting feature is the possibility
of generalizing it in order to identify one or more thresholds in
the log-ratio image, depending on the presence of one or more
change typologies between the two acquisition dates (e.g., pres-
ence of changes on both sides of the histogram of the log-ratio
image). On the other hand, its main drawbacks are that: 1) it
does not take full advantage of all the information present in
the speckle (the iterative filtering also reduces the amount of
information present in the speckle); 2) it is more focused on
the thresholding task rather than on the correct estimation of
changed and unchanged class statistics (whose implicit estima-
tions prove to be biased). The latter issue does not allow to ex-
ploit more sophisticated decision strategies, such as those based
on the use of spatial contextual information, for the definition
of the change-detection map [6], [8]. This aspect will be studied
as a future development of this work.

APPENDIX

In this appendix, we derive (14), which expresses the KI
selection criterion assuming a GG distribution model for the
changed and unchanged classes. Under this assumption, the
cost function defined by the KI algorithm is given by

if

if .
(15)

Equation (15) can be rewritten as follows:

if

if .
(16)

Substituting (16) in (3), we obtain (17), shown at the bottom of
the page. Substituting and

in (17) and removing the common multiplica-
tive factor, we obtain the following final form of the cost func-
tion for threshold selection:

(18)

where is the entropy associated with the binary set of
classes , which is defined as follows:

(19)

(17)
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