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Abstract

In clearing terrains contamined or potentially contamined by landmines and /or
unexploded ordnances (UXOs), a quick wide-area surveillance is often required.
Nevertheless, the identification of dangerous areas (instead of the detection of
each subsurface object) can be enough for some scenarios/applications, allow-
ing a suitable level of security in a cost-saving way.

In such a framework, this paper describes a probabilistic approach for the
definition of risk maps. Starting from the measurement of the scattered elec-
tromagnetic field, the probability of occurrence of dangerous targets in an
investigated subsurface area is determined through a suitably defined classifier
based on a Support Vector Machine (SVM). To assess the effectiveness of the
proposed approach and to evaluate its robustness, selected numerical results

related to a two-dimensional geometry are presented.



1 Introduction

In the world, there are many areas contaminated (or potentially contamined) with
unexploded ordnance (UXO) and anti-tank/anti-personnel landmines. Published re-
ports indicate that the approximate number of UXOs is of about 110 millions in 70
countries [1]. Moreover, recent missions in Bosnia, Afghanistan and Iraq probably
(and unfortunately) will further increase such an estimate. To return these zones
to a civilian use, the ordnances should be obviously removed. However, in several
cases, the former bombing ranges have been unused for many years and the UXO
locations are partially known or completely unknown. Thus, a wide-area surveil-
lance is needed in order to circumscribe those regions where the dangerous targets
reside. Such a process is inevitably time-expensive and involves complex acquisition
procedures. Consequently, high costs (from few hundred dollars for acre in the case
of surface or shallow targets up to a couple of million dollars for subsurface objects)
occur. This is one of the main motivation of the growing research interest in devel-
oping unsupervised techniques able to effectively (in terms of time and resources)
repair landmine/UXO contaminated areas. Several solutions have been proposed
based on various methodological approaches (see, for instance, [2] and the references
cited therein), which consider different sensor modalities such as ground-sensors (e.g.,
magnetometers, electromagnetic radars, sensors based on electromagnetic induction,
etc.) or synthetic aperture radars. In general, these techniques are aimed at achiev-
ing the following goals: (a) correctly localizing a large number of dangerous targets,
thus ensuring the future security of cleaned areas; (b) reducing the false-alarm rate,

which strongly contributes to the costs of the clearing procedure; (c¢) reducing the



time devoted to the detection process, thus realizing a quick area surveillance.

In such a framework, electromagnetic approaches based on learning-by-examples
(LBE) techniques [3]-[5] have been recently proposed for the on-line’ detection of
subsurface objects. The detection process is recast as a regression problem where the
unknowns (i.e., the position as well as the geometric and dielectric characteristics
of the target) are directly evaluated from the data (i.e., the values of the scattered
field) by approximating the data-unknowns relation through an off-line data fitting
process (training phase). LBE regression-based approaches demonstrated their ef-
fectiveness in dealing with detection processes where a limited number of unknowns
is considered. However, because of the complexity of the underlying architecture,
some difficulties occur when a larger number of unknowns is taken into account. As
a consequence, LBE regression-based approaches turn out to be very effective for
the detection of a single (or few) buried object, whereas they are not-so-suitable
in dealing with the detection of multiple targets. On the other hand, it should be
pointed out that the identification of free-areas and an estimate of the concentration
of subsurface objects (instead of the localization of each buried scatterer) might be
enough in several situations. Then, the goal of a subsurface sensing technique could
be moved from the “object detection” to the “definition of a risk map”. Consequently,
a classification approach, instead of a regression one, should be employed.

In this paper, a classification approach based on a LBE technique is proposed for an
on-line sub-surface sensing. Starting from the knowledge of the scattered field values
collected above the surface, the method is aimed at defining a risk map of the domain

under test. By considering a SVM-based classifier, the proposed method estimates

L After the learning process (or training phase) performed once and off-line.



the a-posteriori probability of the presence of subsurface dangerous objects.

The paper is organized as follows. The electromagnetic problem is formulated and
the SVM-based approach is outlined in Sections 2 and 3. For the numerical assess-
ment, a selected set of results is presented to assess the effectiveness of the proposed
approach (Sect. 4). Towards this end, a two-dimensional problem is dealt with.
Both noiseless and corrupted measurement data are considered to check the robust-
ness of the proposed approach. Finally, some conclusions and final remarks are

presented in Sect. 5.

2 Problem Formulation

Let us consider a typical two-dimensional buried-object scenario as shown in Fig.
1. The upper region presents the same characteristics of the vacuum (g, = 1.0,
o1 = 0.0). The lossy subsurface region, which models the soil, is characterized by
a conductivity oo and by a relative dielectric permittivity €, . Moreover, let us
assume that the investigation domain D; lies entirely in the subsurface medium,
Dy = {-2<az<iZ -L<y<Ll A set of targets (either dielectric or lossy)
are supposed to belong to D; and illuminated by 7' transmitters located at known
positions (zt,y:), t = 1,...,T above the air-ground interface. Let E, . be the so-
called “incident field”, i.e. the electric field distribution due to the transmitters in
the absence of buried scatterers. The “scattered field” E,_,, is collected by a set
of sensors placed at given positions (z,,y,), r = 1,..., R close to the air-ground

interface.

Under the hypotheses of an isotropic background medium and that the electromag-



netic sources be z-directed electric line currents, both incident and scattered electric
fields are also z-directed (E,,, = Einc(z,7)%, B, = EY (2,4)Z ). To define a
risk map, let us model the investigation domain through a two-dimensional lattice
of M rectangular cells of linear dimension /! and h whose center coordinates are
(Tm, Ym), m = 1,..., M. The state x., of the m-th cell can be either empty (if any
scatterer belongs to the cell) x,, = —1 or occupied x,,, = +1. Then, the prob-
lem can be formulated as follows: “starting from the scattered field measurements
ry,= {Es(?at(xr, yr);r=1,.., Rt =1, ...,T}, find the probability q,, that the m—th
cell is occupied (m = 1,...,M)". That is, determine the probability array @ , which

is a function & of the scattering data 'y,

Q=Pr{x=1Cy} =S (Ty) (1)

where Q@ = {gn, m=1,..,M} and X = {Xm, m=1,...,M}. Such a statement
defines a classification problem. A solution based on the SVM will be detailed in
the following by assuming the knowledge of a set of known examples (i.e., input-

output relations {(EE, m, Xm; m=1,..., M)(") in =1, ...,N} called training set).

3 SVM-based Classification Approach

The proposed SVM-based classification approach is formulated as a two-step proce-

dure

e Step 1: to determine a decision function ® that correctly classifies an input

pattern (I'j;, m) (not-necessarily belonging to the training set);



e Step 2: to map the decision function & {(I'y,, m)} into an a-posteriori proba-

bility Pr {X =1y }

3.1 Definition of the Decision Function

At this step, the status y,, of each cell of the lattice has to be determined. Math-
ematically, such a problem formulates in the definition of a suitable discriminant
function separating the two classes x = 1 and y = —1. Since these classes are
non-linearly separable, the definition of a non-linear (in terms of the original data
I',;) discriminant function is usually required. As a matter of fact, such a solution
is implemented when Artificial Neural Networks (ANN) are considered (see [6] and
the references cited therein).

Conversely, SVM defines a linear decision function corresponding to a hyperplane
that maximizes the separating margin between the classes. Such a linear data-
fitting is not carried out in the original input space R {Lz}, but in a higher di-
mensional space N {p (L)} (called feature space) where the original examples are
mapped through a non-linear operator ¢ (e). The nonlinear SVM classifier so ob-

tained is defined as

é(f(EEa m)) ZM'Q(EE’ m)+b m=1,..M (2)

where w and b are the parameters of ® to be determined during the training phase.
The hyperplane so-defined causes the largest separation between the decision func-

tion values for the “borderline” training examples from the two classes. Mathemati-



cally, such a hyperplane can be found by minimizing the following cost function
Lo
Q(w) = 5 [l (3)

subject to the separability constraints

w'w(ﬁg),m)—kbzl for ng)zl m=1,.. M

a (4)
w E(Eg),m)—kbg—l for X$,2‘)=—1 n=1,....N
However, since the training data in the feature space are generally non-completely

separable by a hyperplane, slack variables (denoted by 5((23)) are introduced to relax

the separability constraints in (4) as follows

S
S

@%% )+b>1 &n, for xwW=1 m=1,...,M

(FSE); )+b<§(n) ~1 for xM=-1n=1.,N

S
S

Accordingly, the cost function in (3) modifies

Il 5, 3 o Sl
Q) =+ AN TEm Al S e (6)
m=1 n=1 m=1 n=1

where N(}Ln) and N(;n) indicate the number of training examples for which XS}) =1
and ng) = —1, respectively; A\, = and \_ = —z%— [7]. The user-
defined hyperparameter C' controls the trade-off between the empirical risk (i.e.,
the training errors) and the model complexity (the first term in (6)) to avoid the

overfitting. In that case, the decision boundary too precisely corresponds to the

training data. Thereby, the method is unable to deal with data outside the training



set [8].
To minimize (6), it can be observed that a necessary condition is that w is a linear

combination of the mapped vectors ¢ (Eg), m)

w = f: EN: {alPe (T8, m) } (7)

m=1 n=1

where aﬁ,’f) >0,n=1,...,N,m=1,..., M are Lagrange multipliers to be determined.

Moreover, from the Karush-Khun-Tucker conditions at the optimality [9], b turns

out to be expressed as follows

i [ - el (1 m) e (1 ) )

N, being the number of patterns (Eg), m) for which a,(ﬁf) # 0 (called support
vectors).

Substituting (7) and (8) in (2) yields

o (f (EE) ) m) = Z%:l Zivzl {ar(:)ngl)G (E%’), Lg, m)}
L Ene Ty [ -2 {aRe(ry, 1, m)}}

NS’U

9)

where © (E%), Eg), m) = (Eg), m) “p (Eg), m) is a suitable kernel function?.
Then, the decision function is completely determined when the Lagrange multipliers

are specified. Towards this end, the constrained optimization problem formulated

2For a detailed discussion (out-of-the scope of this paper), the interested reader may refer to
[10]



in (6) and (5) is reformulated in a more practical dual form

mate {Qpua (@)} =

10)
(SN S [0 @) (), () (p(m) p0) (
ma’xa{Zn Zp Zm [ 2X X (—E‘ =FE )] _ Zn lzm 1Oém }

subject to 320 ™M lam)x(") 0, oip) € [0, A_] if Y = —1 and o\ € [0, Ay]

otherwise.
Finally, since Qpyq (@) is a convex and quadratic function of the unknown param-
(n)

eters auy’, it is solved numerically by means of a standard quadratic programming

technique (e.g., the Platt’s SMO algorithm for classification [11]).

3.2 Mapping of the Decision Function into the A-Posteriori

Probability

Concerning standard classification, the SVM classifier labels an input pattern ac-

cording to the following rule [12]

Xm = Sign {43 (¢ (Tg, m))} m=1,...,. M (11)

Unlike standard approaches, the proposed method is aimed at defining an a-posteriori
probability. Consequently, some modifications to the standard SVM-based classifi-
cation approach are needed. Towards this aim, a set of efficient solutions has been
recently proposed (see, for instance, [10],[13]-[15]) either based on a direct training
of the SVM with a logistic link function and a regularized maximum likelihood score

or based on a-posterior fitting probability process.

10



The first class of approaches usually leads to non-sparse kernel machines and requires
a significant modification of the SVM structure. In this paper, the a-posteriori
probability fitting method [15] is adopted since the use of a parametric model allows
a direct fitting of the a-posteriori probability Pr { x=1[Cg } More in detail, such

a model approximates the a-posterior: probability through a sigmoid function

Pr{xm = 1|(Cp m)} = ! m=1,..M (12

1+ exp {’y(i) (¢(Cg, m)) + 5}

where v and ¢ are unknown parameters.

To estimate the optimal values for the parameters of the sigmoid function, a fitting
process is performed. A subset of the input patterns of the training set is chosen
{(EE, m, Xm; m =1, ...,M)(s) is=1,..., S}, where &%) = & (g (Eg), m)) Then,

the following cost function is defined

Tir.0} =

_ Xm —Xm m
Zs:l Zm:l { 2 log |:1+ezp(fyzf>£§)—|—6):| + ( 2 ) log |:1+ewp('yf1\>5,sb)+6):| }

and successively minimized according to the numerical procedure proposed in [15].

4 Numerical Results

In this section, the results of a set of numerical examples are analyzed to assess the
effectiveness, but also current limitations, of the proposed approach.
With reference to the geometry shown in Fig. 1, the following geometric and dielec-

tric parameters are considered. The relative permittivity and the conductivity of the
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homogeneous subsurface region are ,5 = 4.0 and 0y = 1 x 1073 .S/m, respectively.
The investigation domain D; is a 2.0 A X 2.0 A region and it was discretized in a
two-dimensional lattice of M = 36 square cells. The buried objects, modeling UXOs
or landmines, are lossless circular cylinders of diameter d.; = % and characterized
by a relative permittivity €.; = 5.0. Concerning the measurement system, R = 16
ideal receivers are equally spaced along an observation line 2.0 A\-long and parallel
to the air-ground interface at a distance h, = 0.6 A from the surface. The probing
source (t = 1) is located at z; = 0.0 and y, = L \.

The measurement data were synthetically computed by using a finite-element-based
simulator and a PML truncation technique [17]. As far as the training set is con-
cerned, various examples N = N@ 4+ NG (N® and N® being the numbers of
patterns related to two and three-targets configurations, respectively) were consid-
ered. In particular, N®® = 35 and N® = 34. Moreover, these patterns have been
also used during the validation test aimed at defining the a-posterior: fitting model.
The optimal values of the fitting parameters turned out to be v = —0.533 and
0 =1.272.

Concerning the SVM structure, Gaussian kernel functions were adopted and their
parameters selected according to [16].

In order to analytically evaluate the effectiveness of the classification method in

correctly locating the dangerous areas, a dangerous-area-location error ¢ is then

defined

(xcil — 5cil)2 - (ycil - gcil)2
¢= \/ ;) (14)

where (Zei, Yeir) and (Tei, Yeur) are the actual and estimated coordinates of the center

12



of a dangerous zone, respectively. Being

5y T o Pr O =1Ep)} 5 S fumPrOm =1I)) g

SYOAPr (m =1 105)} ZM(“ (Pr (xm =1Tp)}

where M(;) indicates the number of connected cells where Pr (x, =1|Cg) # 0.

Moreover, the extension of the estimated dangerous zone A is defined as follows
ZM(J') { PmPr(xm=1Lg) } 2
~ m=1 | mazm{Pr(xm=1LCg)}

A=
ZM(]) { PT‘(Xm:l‘EE) }
m=1 | mazm{Pr(xm=1Lg)}

(16)

where py, = \/(xm - icil)Q — (Ym — gcil)Q-

Within the numerical validation, the first experiment deals with a test set of P =
69 patterns (related to examples different from those of the training phase and
concerned with two- and three-scatterers configurations, P®) = 35 and P®) = 34)
and noiseless conditions. Figs. 2 and 3 show the risk maps obtained for two examples
of the test set. The first example (Fig. 2) refers to a two-targets configuration where
the scatterers are located at (z Sl) = -2, ycZ = 2) and (z; 2) = ygl) 2 ). In such
a case, the values of the error figures turn out to be equal to ¢V = 0.291 and
¢® = 0.389. Moreover, the highest values of the occurrence probability are very
close to the actual positions of the scatterers. As far as the dimensions of the two

dangerous zones (the objects being not-adjacent) are concerned, they are slightly

(2)
=2.023 and 200 = 2.760, A() = A®) = 1)?).

over-estimated (
The second example (Fig. 3) is related to a three-scatterers configuration. The

objects are adjacent and lie at the bottom of the investigation domain: (:vgl) = -2,

vl = =8N (el = vl = =5 V), and (o) = 3,y = —§ V). As expected,

when the targets are buried far from the surface, the localization of the “dangerous

13



zones” is more difficult. In spite of this, the approach is still able to localize these
areas with an acceptable degree of accuracy (g(l) = 0.359, ¢® = 0.385, and ¢® =
0.502).

For completeness, by considering the whole test-set, the statistics of the dangerous-
area-location error ¢ are given in the first column of Tab. L.

The second numerical experiment considers a more critical scenario where a single
target is supposed to be located in the investigation domain (P(") = 36). It should be
pointed out that such a configuration does not belong to the training set. Concerning
the effectiveness of the approach in dealing with this kind of test set, the localization
statistics are reported in Tab. I. As expected, the error figure increases as compared
to the first experiment and the average value changes from av, {g(p)}| Ezpl = 0.312

to avy {g(P)}|Ewp_2 = 0.385.

As an example, the risk map for a sample of the test set (z}) = ) = —2) is shown

in Fig. 4 (1 = 0.364 and {1 = 4.718).

Finally, to evaluate the robustness of the proposed approach, a noisy environment
was considered. Corrupted measurement data were simulated by adding an uniform
Gaussian noise to synthetic data [5] of the test set used in the first experiment.
The risk maps for the two-targets configuration (where the actual scatterers are
located as in Fig. 2) and for different signal-to-noise ratios (SN Rs) are shown in
Fig. 5 as representative examples. It can be observed that, when SNR > 20dB the

“contamined zones” are quite correctly detected and located (¢ = 0.383,

(1)
‘SNR:35 dB

= 0.462 and ¢ = 0.389, ¢ = (0.464). Other-

¢2) ‘ (1) | 2) |
SNR=35dB SNR=20dB SNR=20dB

wise, the performance of the approach reduces = 0.526, ¢

(s )] _
SNR=10dB SNR=10dB
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0.580) even though the highest values of the occurrence probability are situated in
correspondence with and close to the target positions.

As far as the prediction of the extension of the dangerous zones is concerned, Tab.
IT shows that the effectiveness of the approach reduces with the increasing of the
SNR. This causes an over-estimate of the dangerous areas.

Finally, for completeness, the results of an exhaustive analysis on the whole data set

are reported in terms of statistical values of the localization error (Tab. I).

5 Conclusions

In this paper, a classification approach for the real-time sub-surface sensing of mul-
tiple buried targets has been proposed. A suitable SVM-based strategy has been
developed for determining the probability of occurrence of buried targets and to
define a “risk map” of the investigation domain.

The effectiveness of the approach has been preliminarily assessed by considering a
two-dimensional geometry and noiseless as well as noisy conditions. The obtained
results confirmed the ability of the method in detecting and locating multiple targets
as well as in estimating the extension of the dangerous zones.

Future works, current under development, will be devoted to fully exploit the key-

features of the approach and to deal with three-dimensional scenarios.
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Figure Captions

e Figure 1 - Problem geometry.

e Figure 2 - Noiseless data. Risk map for the two-targets scenario ((3321) = —% A,

2 2
yézl) - %) and ( gzl) = ygzl) - %)\))

e Figure 3 - Noiseless data. Risk map for the three-targets scenario ((z'}) = -2,

1 2) 3 3
vl = =% N, (il = 3, vl = =5 ), and (23 = 3,03 = 3 V).

e Figure 4 - Noiseless data. Risk map for the single-target scenario (:ESI) = ygl) =

).

>

e Figure 5 - Noisy data. Risk maps for the two-targets scenario ((3321) = —% A,
yl) = 2) and (22 =y = 3 ))) when (a) SNR =35dB, (b) SNR = 20dB,

and (¢) SNR=10dB.
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Table Captions

e Table T - Numerical Experiment No. 1: Statistics of the dangerous-area-

localization error, <.

e Table II - Numerical Experiment No. 3: Estimate of the error in evaluating

the area of the dangerous zone.
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Figure 1 - A. Massa et al., “A Classification Approach ...”
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Figure 2 - A. Massa et al., “A Classification Approach ...”
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Figure 3 - A. Massa et al., “A Classification Approach ...”
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Figure 4 - A. Massa et al., “A Classification Approach ...”
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