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A Hybrid Contextual Approach to Wildland Fire
Detection Using Multispectral Imagery
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Abstract—We propose a hybrid contextual fire detection algo-
rithm for airborne and satellite thermal images. The proposed al-
gorithm essentially treats fire pixels as anomalies in images and
can be considered a special case of the more general clutter or
background suppression problem. It utilizes the local background
around a potential fire pixel and discriminates fire pixels based on
the squared Mahalanobis distance in multispectral feature space.
It also employs the normalized thermal index to identify back-
ground fire pixels that should be excluded from the calculation of
the statistical properties of the local background. The use of the
squared Mahalanobis distance naturally incorporates the covari-
ance of the multispectral image into the decision and requires the
setting of a single detection threshold. By contrast, previous contex-
tual algorithms only incorporate the statistical properties of indi-
vidual bands and require the manual setting of multiple thresholds.
Compared with the latest Moderate Resolution Imaging Spectro-
radiometer fire product (version 4), our algorithm improves user
accuracy and producer accuracy by 1.5% and 2.6% on average, re-
spectively, and up to 28% for some images. In addition, the novel
use of the squared Mahalanobis distance allows us to create fire
probability images that are useful for fire propagation modeling.
As an example, we demonstrate this use for the airborne data.

Index Terms—Anomaly detection, Mahalanobis distance, multi-
spectral images, wildland fire detection.

I. INTRODUCTION

THE effects of wildland fire are important at both local
scales where impacts to human safety and property be-

come critical and at regional or global scales where wildland
fire can have important climate and ecological effects via gas
and particle emissions [1]–[4] and changes to plant communi-
ties [5], [6]. Because of the dangerous environment posed by
wildland fires, active fire distribution and temporal variation is
perhaps best assessed on a local scale using airborne imaging
and on a global scale using satellite imaging. Further, the con-
tinued development of models for forecasting wildland fire be-
havior and propagation can benefit from the use of high-reso-
lution wildland fire images from an airborne platform as a data
source for initializing and nudging model predictions [7], [8].

The most common method for detecting fires relies on the de-
tection of the Planck emission from fire in the midwave infrared
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(MWIR) and the longwave infrared (LWIR) [9]–[12]. Both air-
borne [13]–[16] and satellite [10], [17], [18] remote sensing sys-
tems with the appropriate bands have been used to study wild-
land fire in the past several decades. Although visual analysis
has remained important for operational use [16], automated al-
gorithms have been developed for fire detection on a global scale
from satellite images and will need to be developed for real time
airborne applications such as fire propagation modeling. Some
users are interested in airborne data, since the ground spot di-
ameter (GSD) will be suitable for most operational fire detec-
tion work, for which fire locations need to be specified to within
tens of meters. To date, the most flexible approach to fire detec-
tion is represented by the contextual algorithms such as the one
used for the Moderate Resolution Imaging Spectroradiometer
(MODIS) fire product [10], [11]. Contextual algorithms con-
sider the local neighborhood of the pixel under examination to
cope with the variations in the background environmental tem-
perature that may occur across the large area viewed by satellite
systems. For high-resolution airborne data, the range of back-
ground temperature due to microclimates can introduce as much
variability as small fires. Existing contextual algorithms calcu-
late the statistical properties of a single MWIR band, a single
LWIR band, and then use a set of threshold tests of those bands
to identify fire pixels. These algorithms have several limita-
tions. First, for a specific sensor, these algorithms need man-
ually tuning of a series of thresholds according to the available
spectral bands. Second, these algorithms do not take advantage
of the important inter-band information of the multispectral data
that may be available for a given sensor.

We propose a hybrid contextual algorithm for fire detection
to overcome these limitations. The proposed algorithm is appli-
cable to multispectral near infrared, and thermal infrared data.
It still falls into the category of contextual algorithms, but it
distinguishes itself with the use of an improved technique for
defining the local neighborhood. More importantly, it uses the
well-known squared Mahalanobis distance operating in mul-
tispectral feature space to identify fire pixels. Implicit in the
squared Mahalanobis distance is a degree of directionality in
the feature space based on the covariance of the features for the
background noise. Our algorithm can be considered as a spe-
cial case of the more general clutter or background suppression
problem [19]. Our algorithm has several major advantages over
existing contextual algorithms.

1) It is based on the nonstationary mean nonstationary co-
variance image model [20], and can be easily applied to
different sensors that use different band sets. We demon-
strate the flexibility of our algorithm with images taken by
two different types of sensors: the MODIS sensors and our
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own Wildfire Airborne Sensor Project (WASP) sensor. By
contrast, existing algorithms typically only work for spe-
cific sensors because they employ many manually con-
structed rules that only deal with properties of individual
bands. As a result, a large number of algorithms have been
proposed for different sensors.

2) Our algorithm is relatively simple. It has only two param-
eters that can be easily tuned and includes no manually
constructed rules.

3) The use of the squared Mahalanobis distance in our algo-
rithm has the added advantage of providing a direct means
of deriving a fire probability value that is required for new
approaches to fire propagation modeling [8].

4) Our feature-based algorithm does not need calibrated ra-
diance as input. This extends the utility of the method to
operational sensors that may not have the laboratory ca-
pabilities for producing radiance calibrations.

The rest of the paper is organized as follows. We present
the theoretical background of our image model in Section II
and derive the squared Mahalanobis distance metric for iden-
tifying fire pixels in Section III. The details of our algorithm
are described in Section V. We compare our algorithm with the
MODIS product in Section VI and provide concluding remarks
in Section VII.

II. NONSTATIONARY MEAN, NON-STATIONARY

COVARIANCE IMAGE MODEL

The theoretical development of the statistical approach re-
lies on the formulation of a statistical model for the background
clutter from which the fires are to be discriminated. In this paper,
it is assumed that the background image is a nonstationary mean
nonstationary covariance Gaussian process [20]. The nonsta-
tionary mean describes the gross background structure of the
image and the nonstationary covariance characterizes detailed
variation of the image which is position sensitive. Other studies
have shown the feasibility of this approach, where images have
been modeled as consisting of approximately Gaussian inten-
sity fluctuates about a nonstationary mean with a nonstationary
covariance, especially for thermal images [21], [22]. A non-
stationary mean background can be estimated by blurring the
image using a low-pass filter, after masking background target
pixels (fire pixels in this case) so they are not included in the
calculation. We use the normalized thermal index (NTI) [12]
for determining background fire pixels to exclude them prior
to application of the low-pass filter (see Section V-B). Since
the covariance of the image varies slowly relative to the mean,
when the blurred image is subtracted from the original image,
the residual image in a local window, where the covariance re-
mains unchanged, can then be modeled as a Gaussian process
fluctuating around a mean of zero.

We tested this assumption with the MODIS data collected
on June 18, 2002 over the western U.S. (MODIS granule
ID: MOD021KM.A2 002169.1740.003.2002170040927.hdf).
Fig. 1(a) is a portion of band 20 (3.660–3.840 m) image of
the MODIS granule data mentioned above with the size of
450 400 pixels. Fig. 1(b) is the residual image created by first
using a 9 9 low-pass filter (i.e., sliding window average) to

Fig. 1. (a) MODIS band 20 image of Colorado, acquired on June 18, 2002.
(b) The residual image of the image in (a) after a 9� 9 sliding window mean
removal. (c) Histogram of the image in (a). (d) Histogram of the residual image
in (b).

generate a blurred version of the original image and then sub-
tracting the blurred image from the original image. It is shown
that one method to obtain an optimal kernel size is by mini-
mizing the third moment of the residual image among 3 3,
5 5, 7 7, 9 9, and 11 11 [23]. From our experiments the
kernel size has almost no effect on the end result, so it is not
critical to decide the kernel size for this step. We chose 9 9 so
that the kernel was sufficiently large to avoid situations where
a 3 3 kernel, for example, may have too many background
fire pixels to accurately determine the background mean. The
position sensitive mean of the original image is manifest in
the bimodal histogram shown in Fig. 1(c). In contrast, the
residual image has a histogram centered on zero, showing that
the background was effectively removed through the use of
the 9 9 low-pass filter Fig. 1(d). The residual image is still a
nonstationary process. The shape of the histogram, however,
is much closer to a Gaussian distribution. This image charac-
teristic is the motivation for the development of contextual fire
detection algorithms. To ensure that the covariance remains
unchanged, the statistics are calculated for a relatively small
region around the target pixel. The local background region
used to calculate the covariance is 31 31 pixels. Fig. 2(a)
presents the histogram of the residual image in a 31 31 pixel
window which is known to contain no fire. Fig. 2(b) shows the
associated normal probability plot. The histogram and normal
probability plot justify the use of Gaussian processes to model
images.

III. DERIVING THE SQUARED MAHALANOBIS DISTANCE

METRIC FOR FIRE DETECTION

The fire detection problem for multispectral images can be
described using a statistical approach as follows. Suppose one is
given an image of independent pixels, each pixel is composed
of features. The features can be spectral band radiance or
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(a) (b)

Fig. 2. (a) Histogram of a 31� 31 pixel subimage of the residual image in
Fig. 1(b). (b) Normal probability plot of the 31� 31 pixel subimage of the
residual image in Fig. 1(b).

some type of transformed data. The image can be expressed as
, where . We

may hypothesize that either the pixel consists of only noise
and the background signal (the null hypothesis ),

or that it also includes additional fire signal intensity (the
hypothesis). Assuming that the signals are additive, we have

(1)

Under hypothesis , the fraction of the pixel on fire equals
to 0; under hypothesis varies between 0 and 1.

If the background could be estimated, it can be subtracted
from the original image to create a residual image. In the
residual image, the two hypotheses are then simplified into the
noise only hypothesis and the fire plus noise hypothesis

(2)

(3)

Here is a noise only zero-mean process. A practical ex-
ample of this background subtraction step and the properties of
the residual image created are described in Section II.

Using the multivariate Gaussian model of the residual image
in the local window, the conditional probability for a pixel to be
under the null hypothesis is computed as

(4)

Here is the number of features and is the pixel under consid-
eration. is the unknown covariance matrix of the noise, which
can be estimated using the residual image in the local window
and (5).

(5)

is the maximum likelihood estimation of the unknown co-
variance matrix of noise under the null hypothesis (i.e., no
fire). In Section V-B, we will describe a method to remove back-
ground fire pixels in order to estimate the noise covariance ma-
trix for a local region.

We define the discriminant function as the likelihood
of with respect to , which is inversely proportional to the

TABLE I
MODIS BANDS USED IN THIS PAPER

squared Mahalanobis distance [24]. So the discrimi-
nant function can be expressed as follows:

fire pixel
background pixel

(6)

where is the parameter of our algorithm that we need to tune
manually using a small set of training images. Note that

is the squared Mahalanobis distance of the pixel being
tested from the mean of background.

IV. IMAGE DATA

We test our algorithm using both satellite images and air-
borne images. Images from the MODIS sensors are used to
characterize the performance of our algorithm on satellite data.
MODIS has midwave infrared spectral bands specifically de-
signed for fire detection and a number of other midwave and
longwave infrared spectral bands suitable for detection of tar-
gets with a temperature range consistent with wildland fires.
Fire detection with MODIS is enhanced with the aid of two mid-
wave bands (band 21 and band 22) that measure radiance at the
same spectral interval center at approximately 3.95 m. How-
ever, band 22 has a saturation brightness temperature of about
330 K, while band 21 has lower gain and saturates at a bright-
ness temperature of about 500 K. When band 22 is saturated,
the value in band 21 is used instead, essentially extending the
dynamic range of the system.

The airborne data is from the Wildfire Airborne Sensor
Project at the Rochester Institute of Technology. WASP has
been developed to provide a conceptual system for updating
the existing U.S. Department of Agriculture Forest Service
two band (MWIR and LWIR) Phoenix system for imaging
fires [16]. Briefly, the WASP system contains 14-bit digital
shortwave infrared (SWIR), MWIR, and LWIR cameras with
bands centered at 1.3, 3.25, and 8.6 m, respectively [15].

A. Feature Selection for the Modis Data

The MODIS bands used in our algorithm are listed in Table I.
Many of the infrared bands listed in Table I are intended for at-
mospheric observations and are nominally within atmospheric
absorption bands. However, we opt for including all of these 14
bands as features, because our algorithm can automatically ex-
ploit information in multiple bands and these bands typically
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TABLE II
TEST IMAGES

contain some signal from fire. We do not include band 27 and
band 36 in the feature set, because they are directly centered on
strong atmospheric absorption bands. We find no images that
exhibit fire signal in these two bands. All of the other bands are
either in atmospheric windows or on the edges of atmospheric
absorption bands and exhibit fire signal in enough cases to be
useful, depending mostly on ground altitude and relative hu-
midity. For example, for the Southern California images of Oc-
tober 28, 2003 shown in Fig. 6, the fires or parts of the fires
(the hottest areas) are readily discernable in all MODIS thermal
bands except 27 and 36. Incorporating these two bands only in-
troduces noise without providing any useful information. Our
experiments with and without these two bands show similar
performance, which again indicates that these two bands con-
tain little useful information. We therefore decide not to include
them in the feature set.

Our algorithm uses one additional feature, the normalized
thermal index, which is a transformation of the radiance data.
The NTI was mainly developed for the detection of volcano
eruptions, but its use for fire detection has also been discussed
[12]. The NTI explores the nature of the relationship between
temperature and radiance in the MWIR and LWIR based on dif-
ferences in the slope of the Planck blackbody curve between
these spectral regions. More specifically, the NTI is defined as

NTI (7)

where, is the radiance received in the MWIR band and
is the radiance received in the LWIR band. We use band

21 or band 22 for MWIR and band 32 for LWIR.
The MODIS images used in our experiments are listed in

Table II. The first four images are from widely spaced geo-
graphic areas. We use them to train our algorithm in order to
choose a proper value for the threshold in (6). The rest of the
images are used to test our algorithm for an extended variety
of environments. The results shown below in image format are
projected in order to provide geolocation information, but the
algorithm is actually applied to the MODIS swath data.

B. Feature Selection for the WASP Data

For the WASP data, the feature set is the three infrared bands
centered at 1.3, 3.25, and 8.6 m, respectively, and NTI. The

first WASP image was collected on April 17, 2004 over a pre-
scribed burn in an oak-hickory forest in southern Ohio. The
second one was taken on October 24, 2003, during an outdoor
fire experiment in Rochester, NY.

V. IMPLEMENTATION DETAILS OF OUR ALGORITHM

In this section, we describe the detailed steps of our algo-
rithm, including: 1) a prescreen step to eliminate obviously non-
fire pixels; 2) a background characterization step to identify
background fire pixels that should be excluded from the calcu-
lation of local statistical properties; and 3) a fire pixel identifica-
tion step utilizing squared Mahalanobis distance to identify real
fire pixels.

A. Identify Potential Fire Pixels

The first step of our algorithm is similar to other contextual
fire detection algorithms [11]. To reduce the execution time of
the algorithm, a nonfire prescreen method is performed to iden-
tify obviously nonfire pixels. To prevent real fire pixels from
being classified as nonfire pixels, the thresholds in this step are
very liberal. A daytime pixel is identified as a potential fire pixel
only if the following two conditions are met. First, it must be sat-
isfied that

and

where and are the radiance in the 4- m band and 12- m
band, respectively; and are the average radiance of the
image in the two bands; and and are the means of the
radiance in the two bands in the local window. For most im-
ages, this simple criterion can screen out more than half of the
pixels to be processed. Moreover, it helps eliminate cloud and
sun glint pixels. Reflective surfaces may appear warm in the
4- m channel due to reflection but usually cool in the 12- m
channel, and clouds are usually cool in both the 4- m channel
and the 12- m channel. The second condition that a potential
fire pixel must meet is K, where is the bright-
ness temperature difference between the 4- m channel and the
12- m channel. This step is based on the significant increase
in radiance at 4 m relative to radiance at 12 m for the ac-
tive fire signature. Only those pixels that satisfy these two con-
ditions are processed by the rest of the steps of our algorithm.
The second condition of this prescreen step, however, is skipped
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for the WASP images, because the WASP data are raw digital
counts rather than radiance. The brightness temperature there-
fore cannot be calculated.

B. Background Characterization

The next step of our algorithm is to estimate the statistical
properties of the neighboring background pixels in the local
window centered on the potential fire pixel. The valid back-
ground pixels are those pixels in the local neighborhood that
have no fire signal.

Most existing contextual algorithms (e.g., the MODIS algo-
rithm) define background fire pixels as those with K
and K for daytime observations, or those with

K and K for night time obser-
vations. Unfortunately, this method performs dramatically dif-
ferent under different environments, because the thresholds are
fixed and cannot adapt automatically. To remedy this limitation,
we instead propose using the adaptive normalized thermal index
to identify background fire pixels. More specifically, pixels that
satisfy the following condition are flagged as background fire
pixels and not considered in the calculation of the background
statistics

NTI (8)

For MODIS images, we set the threshold ; for
WASP images, we set . The value of the NTI threshold
for WASP data is different from that for MODIS data because of
the difference in wavelength centers and bandpasses of the two
different sensors, and more importantly, because the WASP im-
ages use raw digital counts rather than radiance. We determine
these thresholds by examining images with known fire targets
and set the thresholds sufficiently high to avoid mistakenly ex-
cluding warm background pixels as background fires. Although
our use of NTI also requires the setting of a threshold, it is more
adaptive than existing methods because it utilizes a normalized
index and the threshold in NTI can be set with a big safety
margin such that the result is much less sensitive to different
environments when compared with existing methods.

Once the background fire pixels are masked, the multifeature
image is demeaned using a 9 9 high-pass filter. Note that the
background fire pixels are excluded when computing the local
mean. Then the valid neighboring background pixels in the local
window centered on the current potential fire pixel of interest are
used to calculate the covariance matrix of the residual image.
The window starts as a 31 31 pixel square region centered on
the potential fire pixel. The window size is increased, if nec-
essary, until at least 25% of the pixels in the window are valid
background pixels. This approach assumes that the correlation
between the fire pixel and the surrounding pixels decreases as
the distance from the fire pixel increases.

C. Real Fire Identification Test

After feature selection and background characterization, the
third step of our algorithm applies the maximum likelihood test
in (6) to identify fire pixels. The maximum likelihood test deter-
mines if the sample under examination is a background pixel by

testing whether the sample falls within a defined range of back-
ground variability, i.e., the squared Mahalanobis distance is less
than a defined threshold.

The fire identification test requires the manual setting of a
single threshold . Before examining a set of images to de-
termine the proper value for the threshold, we first need to de-
fine meaningful metrics that judge the quality of fire detection
algorithms.

1) Evaluation Metric: Since we are working on a classifi-
cation problem, we consider it appropriate to use user accu-
racy and producer accuracy to judge the performance of fire
detection algorithms. Intuitively, user accuracy measures if the
reported fires are real fires, while producer accuracy measures
how many real fires are reported. These metrics are formally de-
fined as

user accuracy
#correctly reported fires

#total reported fires
(9)

producer accuracy
#correctly reported fires

#total fires that exist
(10)

It is important to note that these two metrics have to be used
together, because it is always possible to improve one by sacri-
ficing the other.

We decide not to use the popular false alarm rate metric,
because the probability of fire in real images is very low. For
example, suppose there are 10 fire pixels in a 450 400 pixel
image. If all these fire pixels along with 10 false alarm pixels are
detected, then the producer accuracy is % while
the false alarm rate will be %.
However, the user accuracy will be only %.
This example shows that, in the context of fire detection, the
magnitude of user accuracy is more revealing than that of the
false alarm rate.

Another subtle issue related to choosing a good metric for
fire detection is the way to handle a single large fire that spans
over multiple pixels. Most fire detection products report fires
pixel by pixel. Only comparing pixel by pixel results, however,
may lead to counterintuitive conclusions due to multiple detec-
tion from a large fire. For example, consider the case where a
single large fire occupying a group of 20 adjacent pixels along
with five discrete nonfire pixels are reported as fires by an al-
gorithm and there is also a known single pixel fire that was not
reported. The pixel method will have a user accuracy of 80%
and a producer accuracy of 95%. That is overly optimistic. At
the other extreme, one can treat a fire that spans over multiple
adjacent pixels as a single object when computing user accu-
racy and producer accuracy, regardless of the size of the fire.
With this method, the user accuracy and the producer accuracy
for the algorithm would be 16.7% and 50%, respectively. This
method, however, is too pessimistic in that it ignores the fact
that the algorithm successfully finds a big fire. Here we propose
counting the fires by fire regions but not by pixels, by using a
sublinear damping function .

For the metric to operate on a per fire region basis rather than a
per pixel basis, a means for determining connected fire pixels is
required. Because images of large fires may have some isolated
fire pixels, we first use dilation [25] to join isolated pixels into
nearby groups of fire pixels. We then counted the reported fire
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Fig. 3. User accuracy (bars) and producer accuracy (lines) of our algorithm
with respect to the squared Mahalanobis distance, with different damping
functions: f(n) = n (the black pair), f(n) = max(

p
n; 1) (the gray pair),

and f(n) = max(ln(n); 1) (the white pair).

pixels in the eight-connected region as fires, where
is a damping function.

In Fig. 3, we compare three different functions:
, and . The

image of the large Rodeo–Chedeski fire in Arizona and two
small fires in Mexico is used (the MODIS image 11). Since
we do not know the exact fire pixels in the image, we use the
fires reported by the MODIS fire product (obtained from EOS
Data Gateway) as the ground truth. We run our algorithm for
the image and report the user accuracy and producer accuracy
metrics as a function of the squared Mahalanobis distance
calculated in our algorithm [see (6)]. Fig. 3 shows that, as
a function of the squared Mahalanobis distance, the shapes
of the user accuracy and producer accuracy follow the same
trend for different functions, but the magnitude of the
metrics are more reasonable under and

than that under the base case where
. We opt for in the rest of our

study as it produces metrics that are slightly more consistent
with user intuition when we examine the fire images manually.

2) Threshold Determination: The detection threshold value
was obtained empirically by testing our algorithm on the first
four MODIS images listed in Table II, saving the rest of the
images to assess the performance of the algorithm.

The ground truth of fires in the images are obtained in two
ways. For images of locations in the U.S., the ground truth is ob-
tained through the online GeoMAC internet-based mapping tool
(http://geomac.usgs.gov/), which is designed for fire managers
to access online maps of fire locations and perimeters in the U.S.
For images of locations outside the United States, fires are iden-
tified by manual examination of the corresponding visible im-
ages at the resolution of 250 250 m. If smoke is observed in
the visible image, the corresponding pixel is considered as a real
fire pixel. We also considered the possibility of using high-res-
olution satellite images such as ASTER and Landsat images to
get the ground truth. Unfortunately, due to the high-resolution of
these images, we are unable to manually stitch together a large
number of these images to get the ground truth of one MODIS
image.

In Fig. 4, we vary the threshold in (6) and observe its im-
pact on user accuracy and producer accuracy. The test data are
the first four MODIS images. We find that is a value
that strikes a good balance between these two metrics. In the

(a)

(b)

Fig. 4. User accuracy and producer accuracy of our algorithm while varying
the threshold D in (6). The test data are the first four MODIS images in
Table II. D = 250 achieves a good balance between user accuracy and
producer accuracy.

rest of this paper, we use this threshold for all the other MODIS
images shown in Table II. We conduct a similar procedure for
the WASP images and find that is a good choice for the
WASP images.

3) Fire Probability Image: Our algorithm can give a yes/no
answer to the question whether a given pixel is a fire pixel. In
addition, our novel use of squared Mahalanobis distance pro-
vides a direct means of deriving a fire probability image that is
required for new approaches to fire propagation modeling. We
denote by the probability that a pixel contain fire.
is only calculated for the potential fire pixels which passed the
prescreen step described in Section V-A. Those nonfire pixels
removed by the prescreen step are assigned 0% probability to
contain fire. The function should be a monotonic sublinear
function that grows as the squared Mahalanobis distance
of pixel increases. We define the probability function as

(11)

where is the threshold in (6). With this probability func-
tion , the probability that pixel contains a fire is 50%
if the squared Mahalanobis distance of the pixel equals the
threshold .

VI. EXPERIMENTAL RESULTS

A. Overall Performance

We first compare the overall performance of our algorithm
with that of the latest MODIS fire product (version 4) using the
MODIS test images in Table II. The ground truth to compute
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TABLE III
PERFORMANCE COMPARISON BETWEEN THE HYBRID ALGORITHM AND MODIS FIRE PRODUCT

Fig. 5. User accuracy versus producer accuracy of the hybrid algorithm
(diamonds) and MODIS fire product (hollow squares). The test images are
listed in Table II.

user accuracy and producer accuracy is from the GeoMAC data
for images of locations in U.S., or from visual inspection for
images of locations outside the U.S. The summary results are
shown in Table III. We will present the detailed results for in-
dividual images in Section VI-B. Fig. 5 is a visual presentation
of the results in Table III, i.e., the scatter plot of user accuracy
versus producer accuracy for the individual.

In Fig. 5, both our algorithm and the MODIS fire product
achieve a reasonable tradeoff between user accuracy and pro-
ducer accuracy. On average, the user accuracy and the producer
accuracy of our algorithm are about 1.5% and 2.6% higher than
those of the MODIS fire product, respectively. In addition to
this average performance improvement, more importantly, our
algorithm achieves a better balance between user accuracy and
producer accuracy for the images we tested. For the image of
New Guinea, the user accuracy of the MODIS fire product is
only 0.725; for the image of Yakutsk, the producer accuracy of
the MODIS fire product is only 0.7125. By contrast, the user ac-
curacy and the producer accuracy of our algorithm on all images
are consistently higher than 80%. This performance shows that
our simple algorithm with a single parameter is self-adaptive,
i.e., its performance is not very sensitive to the particular image
under test. This advantage of our algorithm over existing algo-
rithms should be attributed to the sound statistical foundation
behind our approach, and the new adaptive approach to identify
background fire pixels.

TABLE IV
PERFORMANCE OF THE HYBRID ALGORITHM WHEN VARYING THE

NUMBER OF MODIS CHANNELS USED AS FEATURES

The results presented above are from a configuration of our al-
gorithm that uses the feature set described in Section IV-A, i.e.,
the 14 channels in Table I and the NTI from (7). We also perform
experiments with other configurations of our algorithm using
a varying number (3–17) of features. The results are shown in
Table IV. For the three-channel configuration, we use bands 20,
21 or 22, and 32; for the five-channel configuration, we add
bands 23 and 31; for the six-channel configuration, we further
add NTI into the feature set; for the 9 channel configuration, we
further add bands 24, 25, and 33; for the 15-channel configu-
ration, we use the 14 channels in Table I and NTI ; and for the
17-channel configuration, we use all the 16 thermal bands of
MODIS data and NTI.

The producer accuracy in Table IV is insensitive to the
number of channels in use. The user accuracy improves slowly
as the number of channels increases but even three bands al-
ready achieves good user accuracy and producer accuracy. Note
that if we use only three bands in our algorithm, the MODIS
fire product’s user accuracy is slightly higher than that of our
algorithm, although in all cases our algorithm has slightly
higher producer accuracies. This is not surprising for us, since
the MODIS fire product encodes the knowledge that researchers
have accumulated over years to get rid of false alarms. On the
contrary, our method does not have any additional rules to
eliminate the false alarms. In Table IV, it is also shown that
when we use more than six bands, our algorithm achieves both
higher user accuracies and higher producer accuracies than the
MODIS fire product for the images we tested. In many cases,
the detected fires of the two algorithms appear to compliment
each other. We believe that significant performance improve-
ment over the state of the art can be obtained by combining the
strength of our algorithm and the knowledge accumulated in
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Fig. 6. Results of the hybrid algorithm and MODIS fire products. The red dots represent the fires detected (which are enlarged), while white crosses indicate
missed fires and white circles denote false alarms. (a) Result of the hybrid algorithm on image 12. (b) MODIS fire product of image 12. (c) Result of the hybrid
algorithm on image 13. (d) MODIS fire product of image 13. (e) Result of the hybrid algorithm on image 14. (f) MODIS fire product of image 14.

the MODIS algorithm, i.e., building a full fire detection system
that uses our algorithm as the core and then applies the rules in
the MODIS algorithm to eliminate false alarms.

These results demonstrate two good properties of our algo-
rithm. First, given a large number of bands, it can automati-
cally utilize the important bands and the overall performance is

mostly influenced by those bands. This property greatly simpli-
fies the tuning of the algorithm as we only need to set one global
detection threshold as opposed to one threshold for each
band. Second, as bands that have less information are added into
the feature set, our algorithm is able to automatically exploit the
additional information in those bands to eliminate false alarms,
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Fig. 7. Results of the hybrid algorithm and MODIS fire products. The red dots represent the fires detected (which are enlarged), while white crosses indicate
missed fires and white circles denote false alarms. (a) Result of the hybrid algorithm on image 15. (b) MODIS fire product of image 15.

as is indicated by the improvement in user accuracy. Both good
properties of our algorithm should be attributed to its sound sta-
tistical model that treats fire detection as a statistical anomaly
detection problem.

In order to test the flexibility of our algorithm, we also ap-
plied it to two airborne images taken by the WASP sensor. The
bands used in the WASP images are different from those used in
the MODIS images. For both WASP images, our algorithm suc-
cessfully finds all fires without any false alarms. We will present
visualized results for these images later. The successes of our al-
gorithm on images taken from different types of sensors demon-
strate that our algorithm is truly adaptive.

B. Performance for Individual Images

Next, we proceed to show the visualized results for individual
images (the MODIS test images 12–15, and the two WASP im-
ages) in Figs. 6–8. In all figures, the red dots, white crosses,
and white circles represent detected fires, missed fires, and false
alarms, respectively.

Fig. 6(a) and (b) shows result of the Mongolia image (image
12 in Table II produced by our algorithm and the MODIS fire
product, respectively. A careful visual examination of the corre-
sponding images in the 250-m visible image, midinfrared, and
long wave infrared bands reveals that our algorithm reports two
separate false alarms (indicated with white circles). The MODIS
fire product also reports two false alarms, but at different loca-
tions. In addition, it also misses a small fire, which is accompa-
nied by an obvious smoke plume in the 250-m visible image.

Fig. 6(c) and (d) shows results for an image of Southern Cal-
ifornia taken on October 28, 2003 (image 13 in Table II) when
large wild fires engulfing vast area of Southern California. There
are five groups of fires in the image. Below we describe them in
the order from top to bottom. The small single-pixel on the top
is reported by both our algorithm and the MODIS fire product.
Although we are unable to find information for this fire in the
GeoMAC (http://geomac.usgs.gov/) reported fire database, the

smoke plume for this fire can be clearly seen in the 250-m vis-
ible image. Therefore, we consider this fire to be a true fire for
both algorithms rather than a false alarm. The second group of
fires down from the top consist of the Piru Fire, the Verdale Fire,
and the Simi Incident Fire in the GeoMAC database. The third
group of fires down from the top is a combination of the Grand
Prix Fire, the Padus Fire, and the Old Fire. The fourth group of
fires down from the top (fires close to the white arrow) consist of
the Paradise Fire, and the Cedar Fire. Last, the small fire at the
bottom is reported by both algorithms. Because the location of
this fire is in Mexico, the GeoMAC database has no information
for this fire. However, we consider it as a true fire because there
is clearly visible smoke plume in the image. In Fig. 6(d), the
MODIS fire product reports two false alarms (indicated by the
white circles), neither of which has sufficiently high brightness
temperature in the 4- m channel to suggest the present of a true
fire. In addition, for these reported fire pixels, no smoke plumes
can be seen in the visible image. In Fig. 6(d), the MODIS fire
product also reports a small fire (marked by the white arrow)
that is absent in the result of our algorithm. The location of this
fire is on the edge of the burn scar of the Cedar Fire. It is hard
to judge whether this pixel contains a real fire since the area is
completely covered by heavy smoke possibly generated by the
adjacent big fires. Therefore, it may be a small extinguishing fire
or a recently burned patch that is still hot. Due to this difficulty,
we ignore this one-pixel fire in the comparison between our al-
gorithm and the MODIS fire product, i.e., not counting it when
calculating user accuracy and producer accuracy.

Fig. 6(e) and (f) shows an image covering a portion of New
South Wales, Australia (image 14 in Table II). In November
2002, warm and dry weather led to at least 55 separate wild
fires burning across New South Wales. In the image taken on
November 7, we can see 16 separate fires indicated by heavy
smokes in the image. Our algorithm misses a small fire but re-
ports no false alarms. All fires reported by our algorithm are
accompanied by discernible smoke in the visible image. The
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Fig. 8. Results of the hybrid algorithm on test images. The red dots represent fires detected by the hybrid algorithm (the red dots are enlarged to be seen).
(a) Result of the Hybrid algorithm on the WASP image of a prescribed fire in Ohio (b) The fire probability image produced by the Hybrid algorithm. (c) Result of
the Hybrid algorithm on the WASP image of Spencerport area with prescribed fires.

MODIS fire product misses the same fire that our algorithm
misses. In addition, it also reports a false alarm, for which no
discernable smoke plume can be seen in the high-resolution vis-
ible image.

Fig. 7(a) and (b) shows an image of Yakutsk, in Russia (image
15 in Table II). Several big fires with heavy smoke plumes as
well as many small and cool fires were burning when the image
was taken on September 15, 2002. The region in this image
is very cold. The average brightness temperature of this image
(including fire pixels) is only 302 K. Our algorithm misses six
small, cool fires, and mistakenly reports three false alarms. By
contrast, the MODIS fire product introduces no false alarms but
misses 25 small fires that can be clearly identified by the visible
smoke plumes in the image.

Our algorithm automatically identifies background pixels
using a statistical approach. Because of this flexibility, it can
work with images produced by different thermal sensors with
different band sets. We demonstrate this capability of our algo-
rithm on two WASP images that we collected over prescribed
fires.

Fig. 8(a) is a WASP image captured on April 17, 2004 over
a prescribed fire in an oak-hickory forest in southern Ohio. The

WASP sensor has a ground spot diameter of 3 m and was flown
at a 3048-m altitude. The red dots in Fig. 8(a) are detected
fires, which precisely match the fire location of this experi-
ment. Fig. 8(b) presents the result in Fig. 8(a) in a different
manner. Our algorithm’s confidence level of fire presenting in
a given pixel is represented by different colors (see the left of
the image), with black and red representing probability zero and
one, respectively. The probability is calculated from (11). In this
figure, our algorithm clearly separates background pixels from
fire pixels, with a smooth transition probability from 0 to 1 at
the edge of the fire. In addition to the yes/no answer that our al-
gorithm provides, this probability figure provides additional in-
formation on the confidence level of our algorithm. Since no fire
detection algorithm can be perfect for all situations, this confi-
dence information can be very helpful in guiding users to make
action decision.

Fig. 8(c) is the result of our algorithm on another WASP
image, which was taken on October 24, 2003 during a prescribed
outdoor fire experiment. The image is obtained at the altitude of
1219 m, and the corresponding pixel size is 1.2 1.2 m. Ten
fire targets of different sizes and created with different kinds
of fuel were set up. Our algorithm successfully detected all the
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fires without any false alarm. These results again indicate that
our algorithm does not depend on specific band sets, and can be
easily transplanted to different thermal sensors. We do not in-
clude the fire probability image for this WASP image. Because
the fire targets in this image are very small (most of them are
subpixel targets), these one pixel fire targets in the probability
image are invisible without enlargement.

VII. CONCLUSION

In this paper, we proposed a hybrid contextual fire detec-
tion algorithm that leverages the well-developed contextual
approach to address variation in image background. Our
algorithm uses a multivariate distance metric (the squared
Mahalanobis distance) operating in the feature space to dis-
criminate fire pixels. This feature-based approach allows us
to incorporate a larger number of spectral bands and trans-
formations such as the normalized thermal index. Compared
with the latest MODIS fire product (version 4), our algorithm
improves both user accuracy and producer accuracy by 1.5%
and 2.6% on average, respectively, and up to 28% for some
images. In many cases, the fires detected by the two algorithms
appear to complement each other, suggesting that combining
the algorithms may be useful. We leave this as a subject of
future research.

Our algorithm has several major advantages over existing
contextual algorithms. First, our algorithm is adaptive and flex-
ible. The results shown in Table IV indicate that our algorithm
can still work well when some bands are not available due to
sensor problems or other causes by using the predetermined
threshold for different feature number. Further, it can be easily
applied to different sensors that use different band sets, as is
demonstrated by the excellent performance with images taken
by the MODIS sensors and our own WASP sensor. Second,
our algorithm is relatively simple. It includes no manually con-
structed rules and relies on only two insensitive parameters (one
for identifying background fire pixels and the other one for de-
tecting real fires) that can be tuned easily through a very small
training set (four images). Third, our feature-based algorithm
does not need the calibrated radiance as the input, extending the
utility of the method to operational sensors that may not have the
laboratory capabilities for producing radiance calibrations. Fi-
nally, our novel use of the squared Mahalanobis distance metric
provides a means for producing a pixel by pixel fire probability
image, which can be an important input to statistical methods
for fire propagation estimation.
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