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Abstract—This paper introduces a semisupervised classification
method that exploits both labeled and unlabeled samples for ad-
dressing ill-posed problems with support vector machines (SVMs).
The method is based on recent developments in statistical learn-
ing theory concerning transductive inference and in particular
transductive SVMs (TSVMs). TSVMs exploit specific iterative al-
gorithms which gradually search a reliable separating hyperplane
(in the kernel space) with a transductive process that incorporates
both labeled and unlabeled samples in the training phase. Based
on an analysis of the properties of the TSVMs presented in the lit-
erature, a novel modified TSVM classifier designed for addressing
ill-posed remote-sensing problems is proposed. In particular, the
proposed technique: 1) is based on a novel transductive procedure
that exploits a weighting strategy for unlabeled patterns, based
on a time-dependent criterion; 2) is able to mitigate the effects of
suboptimal model selection (which is unavoidable in the presence
of small-size training sets); and 3) can address multiclass cases.
Experimental results confirm the effectiveness of the proposed
method on a set of ill-posed remote-sensing classification problems
representing different operative conditions.

Index Terms—Ill-posed problems, labeled and unlabeled pat-
terns, machine learning, remote sensing, semisupervised classifi-
cation, support vector machines (SVMs), transductive inference.

I. INTRODUCTION

NE OF THE main critical issues in the application of su-

pervised classification methods to the analysis of remote-
sensing images is the definition of a proper training set for
learning of the classification algorithm. In this context, two
major problems should be considered: 1) a problem related to
the quantity of the available training patterns and 2) a problem
related to the quality of the available training samples.

As regards the quantity of the training patterns, often in
practical applications, the number of available ground-truth
samples is not sufficient to achieve a reliable estimate of the
classifier parameters in the learning phase of the algorithm.
In particular, if the number of training samples is relatively
small compared to the number of features (and thus of classifier
parameters to be estimated) [1], the well-known problem of
the curse of dimensionality (i.e., the Hughes phenomenon [2])
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arises. This results in the risk of overfitting the training data and
may involve poor generalization capabilities in the classifier.

As regards the quality of the training data, two major is-
sues are related to remote-sensing problems: 1) nonstationary
nature of the spectral signatures of the land-cover classes
in the spatial domain and 2) correlation among the training
pixels taken from the same area. The nonstationary behavior
of the spectral signatures in the spatial domain of the image
depends on different physical factors related to both ground and
atmospheric conditions. This behavior would require training
samples representing each land-cover class to be collected
from different portions of the scene, for a complete capturing
of the information present in different realizations of spectral
signatures of classes. However, since this is often unfeasible
in real applications, the incomplete representation of statistical
properties of the spectral signatures may affect the accuracy
of the classification system. Another critical problem is that
the training samples are often taken from the same site and
appear as neighboring pixels in remote-sensing images. As
the autocorrelation function of an image is not impulsive in
the spatial domain, this violates the required assumption of
independence among the samples included in the training set,
thus reducing the information conveyed to the classification
algorithm by the considered training patterns. Both the above
problems result in unrepresentative training sets that affect the
accuracy of the classification process.

The limited quantity and quality of the training samples in-
volve the definition of ill-posed classification problems [1], [3],
which cannot be solved properly with standard supervised
classification techniques. This is critical in many remote-
sensing applications, especially when considering hyperspec-
tral images acquired by last-generation sensors [4]. Two major
families of approaches have been investigated in the remote-
sensing community for addressing ill-posed problems: 1) use
of semisupervised learning methods that exploit both labeled
and unlabeled samples [1], [3], [5], [6] and 2) use of su-
pervised kernel-based methods, like inductive support vector
machines (ISVMs).

Concerning semisupervised methods, in remote-sensing lit-
erature, ill-posed classification problems were mainly ad-
dressed by semisupervised classifiers based on parametric or
semiparametric techniques that approximate the class distri-
butions by a specific statistical model [4], [5], [7]. In [5],
ill-posed problems were systematically investigated in remote-
sensing applications for the first time. In terms of Fisher in-
formation, Shahshahani and Landgrebe have proved that the
additional unlabeled samples are helpful for semisupervised
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classification in the context of a Gaussian maximum-likelihood
(GML) classifier, under a zero-bias assumption. In [7], by
assuming a Gaussian mixture model (GMM), Tadjudin and
Landgrebe used the iterative expectation—maximization (EM)
algorithm to estimate model parameters from both labeled and
unlabeled samples. In order to limit the negative influence of
semilabeled samples (which are unlabeled samples that ob-
tained the labels at the previous learning iteration [7]) to the
estimation of the parameters of a GML classifier, a weighting
strategy was introduced in [4], i.e., full weights were assigned
to the training samples, while reduced weights were set for the
semilabeled samples during the estimation phase of the EM
algorithm. However, a major problem is that the covariance
matrices are highly variable when the size of the training set
is small. To overcome this problem, an adaptive covariance
estimator was proposed in [4] to deal with ill-posed problems
in the classification of hyperspectral data. In the adaptive
quadratic process, the semilabeled samples are incorporated
in the training set to estimate the regularized covariance ma-
trices, so that the variance of these matrices can be smaller
compared to the conventional counterparts [7]. However, these
techniques cannot be used properly when reliable statistical
models cannot be defined for the class distributions (e.g., in the
case of the classification of multisource/multisensor images)
[8]. Nevertheless, studies on semisupervised learning with non-
parametric techniques are rarely reported in the classification of
remote-sensing images. In previous works [3], [8], the authors
addressed the ill-posed problem by a semisupervised learning
with nonparametric techniques. In particular, the use of an
ensemble of nonparametric classifiers with a semisupervised
learning was proposed, where each classifier (except for the
original one) was designed with both labeled and unlabeled
samples in the context of an iterative procedure. Then, as in
bagging [9], the results obtained from the members of the
ensemble were combined. In [8], the ill-posed problem was
addressed in the context of a nonparametric k-NN classifier,
based on an estimation procedure local to the specific portion
of the feature space of the analyzed pattern. Due to the diversity
of the selected semilabeled samples at different iterations, the
ensemble-driven k-NN approach proved successful in dealing
with ill-posed problems. In [3], bagging driven by the semi-
labeled samples was proposed in the context of an another
nonparametric algori thm based on multilayer perceptron neural
networks (MLPNNG5) [10]. In this case, the error backpropaga-
tion (EBP) learning algorithm optimized a cost function that
jointly considered all the available training samples as well as
the semilabeled patterns. To limit the possible negative effects
of the semilabeled samples, a weighting scheme was exploited
in the EBP algorithm to reduce the importance assigned to the
semilabeled patterns.

With regard to the kernel-induced methods, such as the
ISVMs, recently, they have been applied promisingly to ill-
posed remote-sensing classification problems [3], [6], [8], [11],
[12]. The ISVMs are large-margin classifiers that define an opti-
mal separating hyperplane in a properly chosen kernel-induced
feature space. Due to Mercer’s conditions, this is implemented
by a convex optimization problem under nonlinear inequality
constraints. Hence, compared to the other methodologies such
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as the MLPNNSs [10], ISVMs have no local minima. Another
important property of the ISVMs is that there is a sparse
dual representation of the quadratic optimization problem due
to Karush—-Kuhn—-Tucker (KKT) conditions [13], [14]. Hence,
only a subset of the training samples (the ones associated with
the nonzero Lagrange multipliers, which are called support
vectors) contribute to the classification rule. In addition, for
the nonlinear case, the data can be projected into a higher
dimensional feature space with a nonlinear mapping function.
The mapping can be represented implicitly by kernel functions
in the sparse dual representation. As a consequence, the use of
kernels makes it possible to train a linear machine in the kernel-
induced feature space, potentially circumventing the high-
dimensional feature problem inherent in ill-posed problems
with the reduced nonzero (Lagrange) parameters [12], [15].
Moreover, for the nonseparable case, a loss function is exploited
to penalize the training errors, thus reducing the risk of over-
fitting. However, for small-size training sets (i.e., in ill-posed
problems), large deviations are possible for the empirical risk.
In addition, the small sample size can force the overfitting or
underfitting of the supervised learning. This may result in a low
classification accuracy as well as in poor generalization capa-
bilities. To address this problem, semisupervised SVMs (called
transductive SVMs (TSVMs) in [6], [16]), which exploits
both labeled and unlabeled samples, has been proposed in the
machine learning community [17]. Bennett and Demiriz [11]
used Ll-norm linear SVMs to implement semisupervised
SVMs showing little improvement when insufficient training
information is available. In [18], the author solved the quadratic
optimization problem for the implementation of the TSVMs
with an application to text classification. The effectiveness of
the TSVMs for text classification (in a high-dimensional feature
space) was supported by theoretical and experimental findings.
In the algorithm proposed by Joachims [18], an estimate of the
ratio between the unlabeled positive and negative samples for
the transductive learning should be known at the beginning.
However, in real cases, prior knowledge is usually not avail-
able. Accordingly, in [19], a progressive TSVM algorithm was
proposed to overcome the above drawback. In this algorithm,
the positive and negative samples are labeled in a pairwise
or pairwiselike way. From experimental results, Joachims [18]
and Chen et al. [19] showed substantial improvement in the
accuracy obtained with the TSVMs over that obtained with the
ISVMs, especially for small-size training sets (i.e., in ill-posed
classification problems). An important issue that should be
highlighted is that, like ISVMs, TSVMs are binary classifiers.
Nevertheless, at present, their generalization to the multiclass
problems has not yet been investigated. Although there is still
some debate about whether the transductive inference! can be
successful in the semisupervised classification [20], it has been
proved both empirically and theoretically [6], [11], [16], [18]

't is worth noting that, from a theoretical viewpoint, the concept of
transductive inference pioneered by Vapnik [6], [17] is closely related to
semisupervised learning. Semisupervised learning refers to the use of both
labeled and unlabeled data for training in the way to obtain classifiers defined
over the whole space. Transductive learning, instead, is in contrast to the
inductive inference: no general decision rule is inferred, but only the labels
of the unlabeled (or test) points are predicted.
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that TSVMs can be effective in handling problems where few
labeled data are available (small-size labeled dataset), while
the unlabeled data are easy to obtain (e.g., text categorization,
biological recognition, etc.).

In this paper, we propose a TSVM classifier specifically
designed for the analysis of ill-posed remote-sensing problems,
which merges the advantages of semisupervised methods with
those of kernel-based methods like the ISVMs. Besides intro-
ducing the TSVMs in the context of the remote-sensing data
classification, this contribution presents three main method-
ological novelties related to the proposed TSVM. In particular:

1) Itis based on an original iterative transductive procedure
that exploits a weighting strategy for the unlabeled pat-
terns, based on a time-dependent criterion.

2) It is able to mitigate the effects of a suboptimal model
selection (which is unavoidable in the presence of small-
size training sets).

3) Itis developed in the multiclass case.

In order to assess the effectiveness of the proposed technique,
many ill-posed classification problems have been defined using
a multispectral Landsat Thematic Mapper image acquired over
the Trentino area (Italy). The experimental results carried out on
ill-posed classification problems in different operative condi-
tions confirmed the effectiveness of the proposed TSVM, which
showed both an increased robustness and a higher classification
accuracy compared to standard ISVMs.

The rest of the paper is organized as follows. The next section
introduces the basis of the ISVMs and TSVMs, and presents
the proposed technique. Section III describes the datasets used
in the experiments and reports the experimental results. Finally,
Section IV draws the conclusion of this paper and discusses the
future developments.

II. TSVMS FOR SEMISUPERVISED CLASSIFICATION
A. Basis of Inductive and Transductive SVMs

Let the given training set X = (x;)7,, made up of n
labeled samples and the associated labels Y = ()] ¢, w1 €
{1,...,8,...,S}. The unlabeled set X* = (x¥)™_; consists
of m unlabeled samples and the corresponding predicted labels
Y* = (yi)m_,, obtained according to the classification model
after learning with the training set.

The standard ISVM is a linear inductive learning classi-
fier, where the data in the input space are separated by the

hyperplane

y(x):wT~x—|—b (1)

p(W) = — )

where w is a vector normal to the hyperplane, b is a constant
such that b/||w|| represents the distance of the hyperplane from
the origin, and 7" denotes the transpose of a vector [13]. Hence,
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the objective of the ISVM is to solve the quadratic optimization
problem in (2) with proper inequality constraints, i.e.,

w

pw) = min { 5 (w7 )}

subject to V7, : gy (w? - x; +b) > 1. 3)

To allow some training errors for generalization, the slack
variables &; and the associated regularization parameter C
(whose value is user defined) are introduced for the nonsepa-
rable cases

1 - -
w) =ming -w' - +C§
p(w) m}g}{Qw w llfl}
Vie, tu(wh ox +b) > 1§

4
V?:12£l>0. @

subject to {

Since direct handling of the inequality constraints is diffi-
cult, the Lagrange theory is usually exploited by introducing
Lagrange multipliers for the quadratic optimization problem,
which leads to the following alternative dual representation:

Lia)=) o - %Zzylyialai<xlvxi>
=1

=1 i=1

0<y<C, 1<Ii<n

27:1 yiog =0

where (x;,x;) is the inner product between the two feature
vectors and o' ; are the Lagrange multipliers. The training
samples associated with the nonzero multipliers (called support
vectors) contribute to defining the separating hyperplane. If
the data in the input space cannot be linearly separated, they
are projected into a higher dimensional feature space with a
nonlinear mapping function ¢(x), where the inner product be-
tween the two mapped feature vectors becomes (¢(x;), ¢(x;)).
In this case, if we replace the inner product in (5) with a kernel
function, we can avoid representing the feature vectors explic-
itly. The number of operations required to compute the inner
product by evaluating the kernel function is not necessarily
proportional to the number of features [14]. Hence, the use of
kernels in a sparse dual representation potentially circumvents
the high-dimensional feature problem with the reduced nonzero
(Lagrange) parameters. In addition, due to Mercer’s conditions
on the kernels, unlike in other machine learning techniques
based on neural networks (e.g., MLPNNs [10]), the positive
semidefinite kernel k(x;, x;) ensures that the objective function
is convex, and hence, there are no local minima in the cost
function of the ISVMs.

In the above framework, to alleviate the problem of the small-
size training set further, a transductive SVM approach has been
proposed in [17]. The TSVM technique is based on an iterative
algorithm [18], [19]. At the initial iteration, the standard ISVMs
are used to obtain an initial separating hyperplane based on
the training data alone (x;)} ;. Then, “pseudo” labels are
given to the unlabeled samples (x7,)"_;, which are thus called
semilabeled data. After that, transductive samples chosen from
the semilabeled patterns according to a given criterion are used

subject to { o)
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to define a hybrid training set made up of these same samples
and the original training samples in X. The resulting hybrid
training set is used at the following iterations to find a more
reliable discriminant hyperplane with respect to the distribution
of all the patterns of the image. This hyperplane separates
(X,Y) and (X*,Y*) with the maximal margin and is derived
as follows:

n d
. 1 . .
(Wi yi)) = min {QWT-WJrCZ&JrC Zéu}
ShSu =1 u=1
bi Vi iy (Wl (x)+b] >1-6,6>0 6
subject to d o T N P (6)
Vo 1yl [W (b(xu)—l—b} >1-¢&:,&>0.

In order to handle the nonseparable training and transductive
data, similarly to the ISVMs, the slack variables &; and £ and
the associated penalty values C' and C* of both the training and
transductive samples are introduced. d (d < m) is the number
of selected unlabeled samples for transductive learning (if d =
m, all the unlabeled samples are used for the transductive
learning, as in [18] and [19]). For ease of computation on the
quadratic optimization problem, the Lagrange theory is applied
to (6). Finally, similar to the ISVMs, the optimization problem
can be solved by maximizing the following function:

Lla, ", y*) = Zal + Z o,

n d
+2) > Gruwsoes,
=1 u=1
+ 33 Gipinioios
u=1j=1
0<a<C, 1<1I<n
subjectto{ 0 <o <C, 1<u<d (7)

d * %
Z?:l Yo + Zu:l yuau = 0

where Gj; = k(x,x;), Gy, = k(x;,x
are the Gram matrices.

Finally, after the Lagrange multipliers ; and o}, in the trans-
ductive process are fixed, the output of the TSVMs becomes

)andG* = k(x!,x%)

u? vl

Zalylk (x,x1) + Zauyu

b (8)

and the decision function can be obtained as follows:

y(x) =sgn[f(x)]. ©)

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 11, NOVEMBER 2006

B. Proposed TSVM

The proposed TSVM exploits the standard theoretical ap-
proach of the TSVMs presented in the previous subsection.
However, in designing the proposed TSVM, we address several
important issues in ill-posed remote-sensing problems that have
not been considered in the literature. The addressed issues are:
1) definition of a transductive procedure for the TSVMs char-
acterized by high stability; 2) analysis of the model-selection
problem without test/validation sets; and 3) solution of multi-
class problems in the transductive framework.

1) Proposed TSVM—Novel Transductive Procedure: Two
critical issues should be taken into account in the transductive
algorithm: a) definition of the procedure for the selection of
the transductive samples for the relearning of the classifier and
b) design of a function for tuning the regularization values
of the transductive samples. These issues are discussed in the
following.

a) Selection of transductive samples: As regards the
selection of transductive patterns, two points should be
considered: 1) select the samples with an expected accurate
labeling and 2) choose the “informative” samples. Due to the
fact that support vectors bear the richest information (i.e., they
are the only patterns that affect the position of the separating
hyperplane) among the “informative” samples (i.e., the ones
in the margin band), the unlabeled patterns closest to the
margin bounds have the highest probability to be correctly
classified. Therefore, in the algorithm, we design a selection
procedure considering a balanced number of transductive and
labeled samples based on the above observation. As it will
be pointed out in the following, given a multiclass problem,
an architecture made up of .S different binary TSVMs should
be used. Let us define N to be the number of positive and
negative margin support vectors (i.e., the ones that lie on the
margin bounds), respectively, for the sth binary subproblem
after the inductive learning phase. At each of the following
iterations, the A transductive samples closest to each margin
bound are chosen to define the positive/negative transductive
candidate sets U*. A reasonable balancing between the labeled
patterns and the unlabeled patterns introduced at the considered
iteration is needed. From a theoretical point of view, only
the unlabeled sample furthest from the hyperplane could be
selected from each side of the margin band at each iteration.
However, such a choice can make the whole process too slow
and, hence, impractical for real applications. For speeding up
the learning process without any significant loss of information,
in the proposed algorithm, we fix A = min{ N, N }. Thus, at
each iteration, the number of considered transductive patterns
is comparable to the number of original support vectors.
Moreover, to select the transductive samples in a small solution
space, a threshold criterion is exploited in order to consider the
density of the selected area. Here, the mean of the predicted
values y(x})(1 <u < A) of the transductive samples in both
candidate sets can be used to define the threshold values Tjtr
for the positive and negative sets. In order to alleviate the
problem of the unbalanced classes, a pairwise labeling strategy
is adopted in the selection of the transductive samples. After
fixing the threshold values, the candidate sets can be trimmed.
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TABLE 1
PROPOSED TRANSDUCTIVE PROCEDURE FOR A BINARY TSVM (THE SUBSCRIPT S IDENTIFIES A SPECIFIC
BINARY TSVM IN THE CONTEXT OF A MULTICLASS ARCHITECTURE)

Initialization: C5 @ «— 85, X© = x

Begin

o Fix A=min{N;",N;}

do

sets WE;

o Trim the transductive candidate sets:

. i=it1

while (i < G)
End

o Learning on training set X © (made up of original training samples)

o Select A transductive samples closest to both the margin bounds — define positive and negative candidate

« Compute the positive and negative threshold values T,f;:
Ty = DF - | f(%u) max, xu € UF, D =

T = D7 | (X)) Imax, X; € Y™, D™ =

Nt = card{xy|x, € v, [f(xa)| > T}:;}

N~ = card{x;[x; € U7, |f(x))| > Ty, }

if (N=N")
T =0t O = {xy,- Xy, Xy}, where f(x1) >0 > f(xy) > - > f(xw)
elseif (N=N")
U7 =07, 0 = {x1,- -, %), -, xw}, where f(x) > -+ > f(x;) > -+ > f(xn)
o Updating the training set: XD = xO y (w7 U Tf);
« Updating the unlabeled set: XD = @ _(@gr u oty
. -~ : C o) _ CE—0t® p | w0,
o Updating the regularization parameters of the transductive samples: Cs*" = =8—=2—14" + C™;

o Learning on training set X@ (made up of both original training samples and semilabeled samples);

23:1 f(Xu)
A

Yo F(x)
A

} = N =min(N*t,N™)

The transductive samples whose values are greater than or
equal to the threshold values are kept in the candidate sets, and
then, the minimum size between the positive and negative sets
(i.e., N =min{NT N~}) is chosen as the size of the final
candidate sets \I/f As a consequence, the set whose cardinality
is greater than N is appropriately pruned (see Table I). If ¢
denotes the number of the current iteration, at the next iteration
(i 4 1), the new training set becomes

X0 = X0y (v, uwy) (10
whereas the new unlabeled set is
X0 = X0 (g v . (11)

The procedure is iterated until convergence (see in the
following). Note that, if the label of a semilabeled pattern at
iteration (i + 1) is different from the one at iteration (i) (label
inconsistency), such a label is erased, and the pattern is reset
to the unlabeled state. In the proposed procedure, it is possible

to reconsider this pattern at the following iterations of the
transductive learning procedure.

b) Tuning regularization values of transductive samples:
In the learning process of the TSVMs, a proper choice for
the regularization parameters C' and C* represents a crucial
issue. The purpose of C' and C* is to control the number of
misclassified samples that belong to the original training set and
to the unlabeled set, respectively. On increasing their values, the
penalty associated with the errors on the training and transduc-
tive samples increases. In other words, the larger the regulariza-
tion parameter is, the higher is the influence of the associated
samples on the selection of the discriminant hyperplane. As
regards the transductive procedure, it has to be taken into
account that the statistical distribution of the transductive pat-
terns could be rather different compared to that of the original
training data (i.e., in ill-posed problems, the available labeled
samples are often not representative enough of the test data
distribution). Thus, they should be considered gradually in the
transductive process so as to avoid instabilities in the learning
process. For this reason, we adopted a weighting strategy
different from those proposed in [18] and [19]. For each sth
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binary subproblem, we propose to increase the regularization

parameter for the transductive patterns C in a quadratic way,

depending on the number of the iterations, as follows:

Crxmax _ C;‘(O)
S

Ccr) = o

24+ 0 (12)

where i is the 4th iteration of the transductive learning process,
29 is the initial value for the transductive samples, C'; ™2
is the maximum cost value of the transductive samples (this is
a user-defined parameter) and is related to that of the training
patterns (e.g., Ci™** = p - Cy, p < 1 being a constant), and G
(another user-defined value) is the growth rate, which, together
with the maximum regularization value, controls the asymptotic
convergence of the algorithm. Based on (10), we can define
an indexing table so as to identify the regularization values of
the transductive samples easily according to the number of the
iterations included in the training set. The learning phase stops
at the Gth iteration (i.e., i = G); therefore, we have C, (@)
C‘;k max.

It is worth noting that, as in all semisupervised methods,
also for the proposed TSVM it is not possible to guaran-
tee an increase of accuracy with respect to the ISVM in all
cases. If the initial accuracy is particularly low (i.e., most
of the semilabeled samples are incorrectly classified), it is
not possible to obtain good performances. In other words,
the correct convergence of learning depends on the defini-
tion of unlabeled samples considered and, implicitly, on the
“similarity” between the problems represented by the train-
ing patterns and the unlabeled samples. Nevertheless, this
effect is common to all semisupervised classification ap-
proaches and is not peculiar of the proposed method (see, for
example, [5]).

2) Proposed TSVM—Model Selection in Ill-Posed Problems:
It is widely known that a key factor in ISVMs is the choice of
the kernel function. When no prior knowledge is available (or
prior information is not reliable, as in ill-posed problems), the
best option seems to use spherical kernels [21], e.g., Gaussian
radial basis function (RBF) kernels defined as

oy Ix/ — x{||?
202

f

k(x,x;) = exp (13)

where f is a feature index. After choosing the kind of kernel
function, the values of the kernel parameters (i.e., the spread o
in the RBF kernels) and of the regularization parameter penaliz-
ing the training errors should be estimated in the training phase.
These parameters are called hyperparameters, and choosing
their best values (i.e., those that minimize the expected test
error) is called model selection. In order to improve the gen-
eralization capability of the ISVMs, the kernel parameters are
set identically in the multiclass problems for small-size training
sets, i.e., 01 = --- =05 = --- = 0g = 0. Due to the fact that
the regularization parameters work with a similar function as
does the prior probabilities of classes in the Bayesian formula-
tion [22], if we can incorporate prior knowledge in the selection
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of the regularization values, classification accuracy can be
improved significantly [22]. Considering problems with unbal-
anced prior probabilities of classes, it could be worthwhile to set
a specific regularization parameter C'; for each sth subproblem.
As in the selection of the parameters for the Fisher kernel in
[23], the regularization values C's are set to be proportional
to one minus the corresponding a priori probability P, of the
analyzed class s, i.e., Cs = F(1 — Ps), where F' is a scaling
factor. Hence, the model selection in the initial phase of the
proposed TSVM is reduced to the choice of two parameters:
oand F.

Due to the small-size labeled dataset available in ill-posed
problems, it is obvious that the holdout, bootstrap, and
n-cross-validation methods cannot be used for model selection.
Therefore, the only two reasonable choices are the leave-one-
out and resubstitution methods. Leave-one-out is a special
case of cross validation. If the available labeled samples are
N, N models have to be built. In each case, a training subset,
containing all of the available originally labeled patterns but
one, is generated (i.e., the test set is represented by the only
pattern that is not employed during the learning phase), thus
making the procedure slow. Moreover, leave-one-out can be-
come particularly critical in the presence of strongly minoritary
classes, especially when the information classes are represented
by very few patterns (in the limit case in which only one pattern
is available for a class, it cannot be applied). For these reasons,
in the considered problem, kernel parameters and the scaling
factor should be selected on the basis of the training error
(resubstitution error). From a theoretical viewpoint, this can
lead to a poor generalization capability in inductive learning.
Nevertheless, the proposed transductive process is able to
mitigate the overfitting problems by a proper exploitation
of the unlabeled patterns, which results in the selection of a
reliable separating hyperplane. It is worth noting that, even if
the distributions of the originally labeled dataset and of the
semilabeled dataset are slightly different, it is reasonable to
expect that they represent a similar problem (if this assumption
is not satisfied, the reliability of the semisupervised approach
decreases). Hence, even if the transductive approach cannot
optimize the model on the unlabeled patterns (the model
selection is carried out on the training samples), it is able to
adapt the model to all the available data. In other words, in
the transductive process, the support vectors that define the
discriminant function change with respect to those identified in
the inductive learning carried out on the training samples, thus
fitting the model to all the available samples.

3) Proposed TSVM—Multiclass Problems: Let us consider
a multiclass problem defined by a set Q = {wy,...,wgs} made
up of S information classes. As in standard ISVMs, the TSVMs
inherit the multiclass problem. Therefore, the transductive
process too has to be based on a structured architecture made up
of binary classifiers. However, there is an important difference
between ISVMs and TSVMs, which leads to a fundamental
constraint when considering multiclass architectures. The con-
straint is that in the learning procedure of the binary TSVMs it
must be possible to give a proper classification label to all the
unlabeled samples. This is discussed in the following.
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Fig. 1. OAA architecture for addressing multiclass problems with the pro-
posed TSVM approach.

Let each binary TSVM of the multiclass architecture solve
a subproblem, where each pattern must belong to one of two
classes 24 and Q)p, defined as proper subsets of the original set
of labels 2. The transductive approach imposes that, for each
binary TSVM of the multiclass architecture, there must be an
exhaustive representation of all possible labels. In other words,
the following simple but important constraint must be fulfilled:

QAU =Q. (14)

If (14) is not satisfied, it means that there are unlabeled patterns
that the system is not capable of classifying correctly. In order
to take this constraint into account, we propose to adopt a one-
against-all (OAA) multiclass strategy that involves a parallel
architecture made up of S different TSVMs (one for each class),
as shown in Fig. 1. The sth TSVM solves a binary problem
defined by one information class (e.g., {ws} € Q) against all
the others (e.g., @ — {ws}). In other words we have that

QA = {ws} QB =0 - {ws}.

It is clear that, with this strategy, all the binary TSVMs of
the multiclass architecture satisfy (14). The “winner-takes-all”
(WTA) rule is used to make the final decision. For a generic
pattern x, the winning class is the one that corresponds to the
TSVM with the highest output, i.e.,

5)

X € Wy &= ws = arg max {fi(x)} (16)
where f;(x) represents the output of the ith TSVM [see (8)].

It is worth noting that, in the literature, there are also other
multiclass combination schemes that are adopted with standard
ISVMs. For example, the one-against-one (OAO) strategy is
widely used and has proved to be more effective than the
OAA strategy in many classification problems. However, the
OAO scheme cannot be used with the TSVMs. In fact, this
scheme involves .S - (S — 1)/2 binary classifiers, which model
all possible pairwise classification problems. Each element of
the multiclass architecture carries out a classification in which
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Fig. 2. Band 5 of the multispectral Landsat-5 Thematic Mapper image used
in the experiments.

TABLE 1II
NUMBER OF PATTERNS FOR THE DIFFERENT TRAINING SETS (AVERAGE
COMPUTED OVER THE TEN REALIZATIONS) AND THE
TEST SET USED IN THE EXPERIMENTS

Training Set
Classes Test Set
Original | Size 100 | Size 50 | Size 40 | Size 30 | Size 20 | Size 10
Conifers 1704 38 19 15 11 7 3 1155
Forest 1154 25 12 10 8 5 2 681
Grass 883 20 9 8 6 4 2 336
Water 140 3 2 1 1 1 1 84
Urban Area 234 5 3 2 2 1 1 104
Rocks 419 9 5 4 2 2 1 113
Overall 4549 100 50 40 30 20 10 2473

two information classes w; € Q and w; € (i # j) are ana-
lyzed against each other. Consequently, for the generic binary
classifier, we have that

QA = {wi}7 j 7é i.
It is clear that all the members of this multiclass architecture
violate the constraint in (14) (i.e., Qa U Qg # Q); therefore,
the OAO strategy cannot be used in the transductive framework.

O = {w;} 17)

III. EXPERIMENTAL RESULTS
A. Dataset Description

This section reports on the experimental results obtained by
the proposed TSVM in the semisupervised classification of
small-size training sets. The considered initial dataset is made
up of a Landsat 5 Thematic Mapper image. The selected test site
is a section (657 x 613) of a scene showing Lake Ledro in the
Trentino region (a mountain area in the north of Italy). Fig. 2
shows channel 5 of the investigated image. For this dataset, a
large number of labeled samples were defined from ground-
reference data. The labeled samples were divided into a training
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Fig. 3.
(c) size 30, (d) size 40, (e) size 50, and (f) size 100.

and a test sets. In order to simulate ill-posed classification
problems, a random subsampling strategy was applied to the
training set (see Table II). In the greater detail, from 4549 orig-
inal training patterns, experiments with 10, 20, 30, 40, 50, and
100 training samples were designed. For each size, ten different
realizations of the training data were defined according to the
application of a random procedure, with the assumption that
there is at least one sample for each class. It is worth noting
that, from a pattern recognition viewpoint, this is equivalent
to evaluating the performances of the proposed method on
60 training sets made up of different samples and with differ-
ent sizes. Therefore, this validation procedure is reliable and
statistically stable. In all the datasets, seven features (i.e., all
the spectral channels) and six land-cover classes (i.e., conifers,
forest, grass, water, urban area, and rocks) were considered in
the analysis. Hence, we are clearly in the presence of an ill-
posed complex classification problem. In order to assess the
effectiveness of the proposed TSVM approach, we considered
the 2473 available test samples as unlabeled patterns, so that,
after an initial classification, the transductive samples can be
extracted from this set to be incorporated in the training set
for transductive learning. Accuracy assessment was carried out
on all 2473 samples. However, these samples have not been
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Overall accuracies (in percent) provided by the standard ISVMs and the proposed TSVMs versus the size of the training sets. (a) Size 10, (b) size 20,

considered for model selection (the labels are assumed to be
unavailable).

B. Model Selection

For all the experiments reported in this paper, we used
Gaussian RBF kernels, as they proved effective in ill-posed
classification problems [21]. However, the approach is general,
and any other kernel function can be adopted. Datasets were
normalized so that each feature is rescaled between zero and
one. According to the analysis presented in Section II, in all
experiments, we considered an OAA multiclass architecture
[12], [24]. Model selection was carried out on the labeled
datasets in the inductive learning phase, according to a grid-
searching method. Due to the very small number of training
samples, only a coarse grid-searching method was applied. The
values considered for the kernel width were 0.125, 0.25, 0.5,
1, 2, 4, 8, 16, 32, and 64, while the scaling factors for the
regularization parameters were 1, 2, 4, 8, 16, 32, 64, 128, and
256. In all trials, the transductive positive and negative samples
were selected according to the process described in Table 1.
To gradually consider the influence of transductive samples,
the initial values of their regularization parameters were set to
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0 = C5/(10 - G), where G is the growth rate in (10) and is
user defined. At subsequent iterations, the values were automat-
ically tuned in terms of the corresponding classification confi-
dence and labeling consistency [see (10)]. We fixed C}™?* =
(1/2)Cs. In our experiments, we observed that small values
of G are sufficient to obtain high accuracy. In particular, the
highest accuracies were obtained by setting G = 5 or G = 10,
depending on the specific training set considered. It is worth
noting that, from a computational viewpoint, each iteration
requires a time equivalent to that of an inductive learning
of the SVMs (this time slightly increases by increasing the
number of semilabeled samples). In other words, small values
of the growth-rate parameter considered in our experiments
correspond to an increase of overall computational time that is
approximately linearly proportional to G (the increased size of
the training set does not significantly affect the learning time).
As a consequence, the increase of the computational load with
respect to standard ISVMs can be considered reasonable in light
of the very complex problem considered. In order to compare
the accuracies provided by the proposed TSVMs with those
obtained by the standard ISVMs, in all the experiments, the
parameter values for the training samples in the transductive
process were kept the same as in the initial step.

C. Results

As described in Section III-B, the proposed algorithm was
applied to all the small-size datasets, with a model selection
carried out by the grid search on the training samples [25].
Fig. 3 shows the overall accuracy obtained by the proposed
TSVM and the standard ISVM on the reference test set for
all ten realizations of the training sets made up of 10, 20, 30,
40, 50, and 100 samples. On analyzing the diagrams, it can be
observed that, on average, the proposed TSVM significantly
increased overall classification accuracy with respect to the
ISVM. Considering the best case [i.e., the set 9 defined by 30
training patterns, Fig. 3(b)], the overall accuracy obtained on
the test set using only the initial training samples was 66.72%,
while the accuracy provided by the proposed approach was
81.76% (the accuracy sharply increased by 15.04%). Other
significant cases are sets 3 and 7 that are made up of ten training
samples [see Fig. 3(a)], where the initial overall accuracies
were 71.73% and 68.86%, while the accuracies provided by
the proposed approach were 84.07% and 80.11%, respectively
(the accuracies increased significantly by 12.33% and 11.24%,
respectively). Table III shows the increase in the overall accu-
racy provided by the proposed TSVM compared to the standard
ISVM for all ten realizations with different training set sizes.
From an analysis of the table, it can be observed that the overall
accuracy of almost all the datasets increased significantly (ex-
cept for set 4, with 30 samples, and set 6, with 100 samples).

In order to analyze the effectiveness of the proposed TSVM
further, Fig. 4 shows the statistical properties of the results pro-
vided by the proposed TSVM and the standard ISVM in terms
of average overall accuracy and standard deviation over the ten
realizations for each training size. In addition, the gap of the
average accuracy and standard deviation between the proposed
TSVM and standard ISVM is reported. It is worth noting that
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TABLE III
AVERAGE INCREASE OF THE OVERALL ACCURACY PROVIDED BY THE
PROPOSED TSVM, WITH RESPECT TO STANDARD ISVM FOR ALL
TEN REALIZATIONS OF THE TRAINING SETS MADE UP OF
10, 20, 30, 40, 50, AND 100 SAMPLES. THE AVERAGE
INCREASE IN THE ACCURACY (AVERAGE) AND THE
STANDARD DEVIATION (STDDEV) FOR THE TEN
REALIZATIONS OF EACH DIFFERENT
SIZE ARE ALSO REPORTED

Datasets | Size 10 | Size 20 | Size 30 | Size 40 | Size 50 | Size 100
1 10.68 7.64 2.67 0.89 3.76 3.19
2 4.73 5.18 3.36 4.21 7.60 1.01
3 12.33 9.66 3.68 2.18 4.0 4.73
4 3.64 7.89 0.49 8.86 5.90 0.08
5 10.23 3.11 3.11 1.86 2.63 0.67
6 10.76 3.03 6.19 1.90 5.54 -0.20
7 11.24 11.16 6.19 9.50 1.05 1.94
8 9.26 6.07 3.80 1.17 2.26 2.14
9 3.84 8.57 15.04 1.94 3.32 0.53
10 7.84 9.10 9.66 3.40 1.33 0.49

AVERAGE 8.46 7.14 5.32 3.59 3.74 1.46

STDDEV 3.26 2.74 4.34 3.11 2.10 1.55

the overall accuracy obtained with the large-size training set
(which consists of 4549 samples) is reported in Fig. 4(a) as
the upper bound accuracy (up-bound) and is equal to 95.15%.
The average overall accuracies obtained by the proposed TSVM
increased those obtained by the standard ISVM significantly
[see Fig. 4(a) and (b)]. Moreover, on analyzing Fig. 4(d), it
can be seen that, with the training sets of different sizes, the
standard deviations of the overall accuracies obtained over
the ten realizations with the proposed TSVM (which are in a
range between 0.82 and 5.4) were significantly lower than those
obtained with the ISVM (which are in a range between 2.23
and 8.14). This confirms that the transductive inference im-
proves the generalization capability of the classifier, besides
increasing classification accuracy and stability. This can be ex-
plained by arguing that, when learning is done with very few
training samples, it is not possible to find a good hyperplane to
classify the entire image, while the use of both the transductive
and the training samples can lead to the identification of a
more reliable discriminant function. It is worth noting that the
gap between the proposed approach and the ISVM decreases
when increasing the number of training samples. This is due
to the fact that, when the size of the training set increases, the
representativeness of the training samples increases, resulting
in a limited effect of transductive samples in defining the hyper-
plane that well represents the general classification problem. As
a final remark, it is important to observe that in all the consid-
ered cases, the TSVMs cannot reach the upper bound of the test
accuracy obtained with learning on the original 4549 training
patterns. This is a reasonable result, since, by using only
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unlabeled samples, the transductive process cannot recover all
the information found in a complete representative training set.

IV. DISCUSSION AND CONCLUSION

In this paper, ill-posed classification problems have been ad-
dressed in the framework of SVMs and semisupervised learning
techniques (which exploit both labeled and unlabeled samples
in the definition of the discriminant function). In particular,
we introduced TSVMs in the classification of remote-sensing
images, which are based on specific learning algorithms that
define the separating hyperplane according to a transductive
process that integrates the unlabeled samples together with the
training samples. With respect to the TSVMs presented in the
literature, the proposed method also presents three main novel-
ties: 1) design of a novel transductive procedure that exploits
a time-dependent weighting strategy for unlabeled patterns;
2) mitigation of the effects of a suboptimal model selection
(which is unavoidable in the presence of small-size training
sets); and 3) generalization of binary TSVMs to the multiclass
problems. It is worth noting that the proposed TSVM approach
should be related to other semisupervised methods studied
in the remote-sensing literature [4], [S], [7]. As regards the
methods presented in [4], [5], and [7], the SVMs play the role
of the GML to separate the positive and negative samples,
while the transductive inference plays a role similar to that
of the EM algorithm to progressively search more reliable
discriminant functions with the additional unlabeled samples.
However, unlike in the GML semisupervised classifier based
on the EM algorithm, in the TSVM algorithm, the transductive
samples are selected on the basis of a geometric analysis of
the feature space, and only support-vector-like samples that
contain the richest information are included in the training set.
In addition, the regularization parameters of the semilabeled
samples can be defined properly and incorporated directly in

the transductive learning. This can better control the influence
of the transductive samples in the semisupervised classification.

It is important to point out that, in order to address ill-posed
classification problems, the free parameters to be estimated
should be as few as possible. In our algorithm, the model
selection is reduced to choosing four parameters, i.e., the ker-
nel parameter, the regularization parameter for the originally
labeled samples (C'), the scaling factor for the regularization
values of the training samples ("), and the growth rate (G) for
the weights of the transductive patterns. However, as proved in
the experimental results, the choice of G is not critical.

From the analysis of the experimental results obtained on
the several simulated small-size datasets extracted from a real
remote-sensing image, we can state that the proposed TSVM
results both in high classification accuracy and very good
stability.

As a future development of this work, we plan to apply the
proposed TSVM to real hyperspectral remote-sensing images,
which usually define ill-posed classification problems. This
extension seems very promising, given the effectiveness of the
ISVMs in the hyperspectral classification problems (already
proved in previous works [12], [15]) and the advantages offered
by semisupervised transductive learning described in this paper.
An additional issue to be investigated is the problem that the
use of the transductive samples (which could be misclassified)
jointly with the original training samples for quadratic opti-
mization may result in a nonconvex cost function made up of
different “local minima” [26]. This problem could be alleviated
by considering different optimization strategies.
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