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On the Extension of Multidimensional Speckle Noise
Model From Single-Look to Multilook SAR Imagery

Carlos Lopez-Martinez, Member, IEEE, and Eric Pottier, Member, IEEE

Abstract—Speckle noise represents one of the major problems
when synthetic aperture radar (SAR) data are considered. Despite
the fact that speckle is caused by the scattering process itself, it
must be considered as a noise source due to the complexity of
the scattering process. The presence of speckle makes data inter-
pretation difficult, but it also affects the quantitative retrieval of
physical parameters. In the case of one-dimensional SAR systems,
speckle is completely determined by a multiplicative noise com-
ponent. Nevertheless, for multidimensional SAR systems, speckle
results from the combination of multiplicative and additive noise
components. This model has been first developed for single-look
data. The objective of this paper is to extend the single-look data
model to define a multilook multidimensional speckle noise model.
The asymptotic analysis of this extension, for a large number of
averaged samples, is also considered to assess the model prop-
erties. Details and validation of the multilook multidimensional
speckle noise model are provided both theoretically and by means
of experimental SAR data acquired by the experimental syn-
thetic aperture radar system, operated by the German Aerospace
Center.

Index Terms—Covariance matrix, interferometry, multidimen-
sional signal, noise modeling, polarimetry, quantitative remote
sensing, speckle noise, synthetic aperture radar (SAR).

I. INTRODUCTION

YNTHETIC aperture radars (SARs) have been success-

fully employed to observe, study, and characterize the
Earth’s surface [1]. Among the diverse features of these sys-
tems, it is of importance to mention the independence of
their imaging capabilities from weather conditions and from
the day-night cycle. Nevertheless, the importance of SAR
systems lies essentially on the potential to retrieve Earth-
surface information with a high spatial resolution. The dimen-
sion perpendicular to the platform movement is referred to
as range. In range, spatial resolution is achieved by classical
radar techniques based on the use of a large signal bandwidth
along with matched filtering techniques [1]. In azimuth, the
spatial resolution is obtained by means of the synthesis of a
very large virtual antenna, exploiting the Doppler effect caused
by the relative motion of the SAR system with respect to a
target of reference. The analysis of the Doppler effect needs a
coherent recording and processing of the scattered radar echoes,
producing, as a consequence, complex reflectivity images. This
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complex nature of SAR systems also yields speckle noise. The
scattering process itself produces speckle, but the complexity
of this scattering process makes it necessary to consider it
as a noise component corrupting the useful information con-
tained in the scattered signal [2], [3]. For one-dimensional
SAR systems, speckle is characterized by a multiplicative noise
component [2]-[5].

One-dimensional SAR systems have evolved in the last
decade toward multidimensional configurations, making quan-
titative remote sensing possible. Among the different possibili-
ties, the exploitation of the space or the polarimetric diversities,
giving rise to interferometric (InSAR) [6], [7], and polarimet-
ric (PolSAR) [8] systems, respectively, is the most employed
scheme. Multidimensional SAR systems are also affected by
speckle. However, it does not only affect SAR images but also
the correlation structure that characterizes the ensemble of SAR
images. In this case, speckle is due to the combination of mul-
tiplicative and additive noise components, which is determined
by the correlation structure of the data [9]. As shown in [9],
this model was able to describe speckle noise for single-look
multidimensional SAR data. This paper aims to extend this
single-look multidimensional speckle noise model to multilook
data. The availability of the single-look multidimensional noise
model and, specially, the identification of the complex additive
speckle noise component made possible the determination of
the importance of this noise source in coherence estimation, as
it is on the origin of the coherence bias for low coherences [10].
This model has also allowed to show that, when considering
PolSAR data, this additive speckle noise source is on the origin
of the biases associated to the information extracted by means
of those target decomposition theorems based on the eigen de-
composition of the covariance or coherency matrices [11], [12].
There exist several arguments which justify the extension to
the multilook SAR data case. The first one is found in the
fact that, sometimes, multidimensional SAR data are only
delivered in multilook format. The second motive supporting
such an extension is the necessity to determine the effects of
speckle noise upon the quantitative estimation of the physical
information from the data. From a wider point of view, an
extension could be employed to determine the effect of any
multidimensional speckle filtering algorithm on the information
estimation process.

This paper is divided into four main sections. Section II
introduces the necessary mathematical framework to ana-
lyze the problem of characterizing multilook multidimensional
speckle. Section III concentrates on the study of the multilook
multidimensional noise problem. Section III-A is devoted to
derive a multilook speckle noise model valid for interferometric
applications, which is employed to derive the multilook model
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in Section III-B, which is valid for any number of averaged
samples. An asymptotic analysis of the model for a large
number of averaged samples is also the object of this paper.
Section IV introduces a theoretical interpretation of the mul-
tilook multidimensional speckle noise model, which is vali-
dated on the experimental PolSAR data in Section V. Finally,
Section VI contains the main conclusion of this paper.

II. STATISTICAL CHARACTERIZATION OF
MULTIDIMENSIONAL SAR DATA

A multidimensional SAR system delivers a set of m
SAR images represented, for every data pixel, by the target
vector [14]

k=[S1,5,...,8m|F (1)

where S, fork =1,2,..

plex SAR images and T denotes the vector transposition. Single
baseline InSAR and along-track interferometry data are charac-
terized by m = 2; PoISAR data present a dimensionality equal
to m = 3 or m = 4, depending whether the data are acquired
in a monostatic or in a bistatic configuration, respectively.
Under these same conditions, polarimetric interferometric SAR
data (PolInSAR) can be characterized by m =6 or m = 8.
Higher dimensional SAR systems may be considered under
multibaseline [15], multifrequency [16], [17], or even multitime
acquisition schemes. In those cases in which the scattering
process is due to a point scattering mechanism, k represents
an m-dimensional deterministic variable [18]. However, when
k represents a distributed scattering mechanism, it must be
considered as an m-dimensional random vector [19], [20]. In
coherent imaging techniques, this unpredictable nature receives
the name of speckle noise [1], [4], [21].

The Earth’s surface presents a nonhomogeneous nature that
is translated to the SAR data. This wide diversity of possible
scenarios implies that the statistical behavior of k, in a general
case, cannot be embedded into a single multidimensional prob-
ability density function (pdf). Thus, in order to derive a simple
mathematical model, certain restrictions and simplifications
must be imposed in the scattering process resulting in k. There-
fore, a resolution cell of a distributed scatterer is modeled as a
set of elementary or point scatterers. Then, the scattered wave
emanating from a resolution cell is assumed to be the linear
superposition of the individual responses of the elementary
point scatterers. Under the hypothesis that the amplitude and
the phase of every elementary wave are mutually uncorrelated,
but also uncorrelated with all other elementary waves, and the
premise that these elementary phases are uniformly distributed,
the real and imaginary parts of every particular SAR image
Sy for k=1,2,...,m may be statistically characterized, on
the basis of the Central Limit Theorem, by uncorrelated zero-
mean Gaussian pdfs [2]. Thus, the vector k may be charac-
terized by a zero-mean multidimensional complex Gaussian
pdf [22], [23]

., m, represents each one of the com-

1

_pHE-1
[T exp(—k"C k) (2)

(k) =

where M refers to the transpose complex conjugation, |X| is
the determinant of the matrix X, and C consists of the m x m
semipositive semidefinite Hermitian covariance matrix

C = B{kk"}
E{58M)  E{ss4) E{5,81)
E{S:SH}  E{S,Sf} E{S,SH .
B{S,51) E{S,S0} - E{S,S1)

Since k is a zero-mean vector, the distribution presented in
(2) is completely determined by C, which contains all the
necessary information to characterize k.

The Gaussian hypothesis (2) is unable to characterize com-
plex scenarios such as highly textured or urban areas [21],
where, among others, the multidimensional K-distribution
model has demonstrated to be able to accommodate data ran-
domness. These more elaborated models are based on increas-
ing the number of parameters necessary to describe the data
variability and on presenting more complex analytical expres-
sions to describe the data pdf. Although the Gaussian scattering
model has been shown to be valid in describing the data
resulting from a homogeneous clutter, its usefulness has also
been demonstrated in the diverse fields of SAR data processing:
data analysis [10], [12], [24], speckle filtering [25], [26], or
PoISAR data classification [27]-[29]. In addition, despite its
limitations in front of more complex distribution models, the
hypothesis of Gaussian distributed SAR images allowed the
analytical analysis of the data.

As k is a zero-mean vector, data characterization must be
performed by means of higher order moments. Consequently,
in the case of Gaussian scattering, this process is reduced
to estimate C. Under the hypothesis that the processes of k
are stationary, jointly stationary, and also ergodic (in mean),
the ensemble averages in (3) can be substituted with spatial
averages, resulting in the so-called sample covariance matrix

Z, = (kk'), = %Zkik}{ 4)
i=1

where n represents the number of samples, also called looks,
employed to estimate C and the symbol (-),, denotes the spa-
tial average. The sample covariance matrix Z,, is statistically
determined by the Wishart pdf [13], [22], [23]

=— " __etr(—nC'Z,) 5)
|C[" T (n)

pZn (Zn)

where etr(X) is the exponential of the trace of the matrix X
and the multivariate gamma function is defined as follows

Lp(n) =7 D2 T[T —i+1) (6)

i=1

where I'(x) is the gamma function. The Wishart pdf presented
in (5) is only valid for n > m. As observed in (2) and (5), the
Gaussian and the Wishart pdfs are determined by the covariance
matrix C. Hence, only second-order moments are necessary for
a complete characterization of multidimensional SAR data. A
very well-known result, in the case of the multivariate Gaussian
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pdf, states that a pth-order central product moment is zero if p
is odd and is equal to a sum of the products of the covariances
when p is even [30]. A generalization of this result shows that
the pth-order moments of the sample covariance matrix E{Z? }
are only a function of C [31].

A. Single-Look Multidimensional Speckle Noise Model

The covariance matrix estimation process is of central impor-
tance in multidimensional SAR imagery. In the remote sensing
literature, this process has always been considered from the
optic of multidimensional speckle noise reduction, with an in-
terest almost exclusively focused on PolSAR systems. Among
the vast literature on this subject, it is important to notice, for
instance, the works of Lopes and coauthors [5], [24], Shou and
Skriver [25], and others. In particular, the work developed by
Lee et al. [26] represents a cornerstone in polarimetric speckle
noise filtering. Nevertheless, all these approaches present a key
lack since, as mentioned, they are based on considering the
multidimensional speckle noise problem just from the filtering
point of view, neglecting somehow the modeling and the study
of the effects of the multidimensional speckle noise problem.
In [26], Lee et al. presented a first attempt to determine a
multidimensional speckle noise model, concluding that mul-
tidimensional speckle could not be modeled by a completely
additive or multiplicative noise source.

Since C must be estimated from a limited number of sam-
ples, this estimation shall present an error due to the presence
of speckle. One way to consider it is to think of the error
as being some kind of noise. This alternative has been first
considered and validated by the study in [9], resulting in the
single-look multidimensional speckle noise model. This model
was constructed based on the observation that all the covariance
matrix entries consist of the Hermitian product of a couple of
SAR images. As detailed in [9], the one-look Hermitian product
of two SAR images may be modeled as follows:

SiS; = YZnnm Ne exp(j o)
+ 9 (|p| - NCETL) eXp(jd)m) + w(nar +jnai> @)

where SiS;f, for i, j =1,2,...,m, represents the Hermitian
product of any two elements of k. The parameters 1, Z,,, N,
and ¢, depend on the particular Hermitian product S;5; for
i, 7 =1,2,...,m, in which precise definitions are presented
afterward in the text or they may be found in [9]. In (7), the
term 1| p| exp(jd. ) represents the useful signal component that
is contaminated by speckle. As one may observe, speckle is
characterized by two noise components. On the one hand, a
homogeneous real multiplicative noise source is denoted by n,,,
and characterized by

E{nnp} =1 var{n,} =1 (8

The second speckle noise component is a nonhomogeneous
complex additive noise source denoted by n,, + jn,; such that

E{nar}:E{nai}zl Var{nar}zvar{nai}: 1 (1_ ‘p‘2)1.32 .

2
€))

The combination of these noise sources is determined by
the complex correlation coefficient which characterizes the

Hermitian product S;S7 for 4, j = 1,2,...,m. For instance,
for i = j, ie., p=1exp(j0), (7) reduces to the classical
multiplicative speckle noise model employed to describe the
intensity of a particular SAR image.

The multiplicative speckle noise component can be trans-
formed straightforwardly into an additive noise such that

SiS; = |plexp(jou)

+ ¢chn(nm - 1) eXp(]¢L) + ¢(nar + jnai)- (10)
Taking into account (10) for all the elements constituting the
single-look sample covariance matrix allows considering this

matrix as

Z,|,—, =C+N, +N,. an
The matrix N,,, that represents the multiplicative components
of speckle, is constructed by considering the second additive
term of (10) for every element of the sample covariance matrix.
The matrix N, that accounts for the additive speckle noise
components, is equally constructed, but by means of the third
additive term of (10). N, presents the particularity that its diag-
onal elements are equal to zero. The multidimensional speckle
noise model (11) is coherent with the previous models for the
covariance matrix employed in the classical radar literature
[32]. Nevertheless, (11) extends the model presented in [32],
in such a way that it is able to identify a particular structure on
the noise, resulting into the multiplicative and additive speckle
noise components.

III. MULTILOOK MULTIDIMENSIONAL
SPECKLE NOISE MODEL

The main parameter characterizing the Hermitian product of
two SAR images SiS’;f, for i, 5 =1,2,...,m, is the complex
correlation coefficient

lpl exp(jdu) {55} ,i=1,2
P=1pP|eXP(JPz) = ’ Ly1=L44,...,M
VE{ISiP}E{]S;*} -

where |p| denotes the coherence and ¢,, represents the average
phase information. The average power in the two channels is
defined as v = (E{|S:|?}E{|S;|?})'/2. The measured phase
of the Hermitian product SZ-S;-‘, fori, j =1,2,...,m,in which
the average value is in fact ¢, is of capital importance since
its study allowed obtaining of the single-look multidimensional
speckle noise model (7). In the following, the same approach
presented in [9] is followed, but examining all the aspects which
result from considering multilook SAR data.

A. Multilook Phasor Noise Model

Given the statistical model presented in (2), after consider-
ing the averaging process introduced at (4), the phase of the
Hermitian product of a pair of SAR images

<SlS;>n = zexp(j(b), Za] = 1727'-' (13)

,m
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is described by the pdf [23], [33]

L(n+1/2)(1—|pl*)"8  (1-|p*)" 1
p¢(¢):2ﬁf(n)(l—ﬁ2)"+1/2+ or o F 717172;52)
(14
where [ = |p|cos(¢ — ¢,) and oF;(a,b;c; z) represents the

Gauss hypergeometric function [34], [35]. The behavior of (14)
for a large n will be necessary later on for the asymptotic
analysis of the multilook speckle noise model considered in this
paper. After the calculations are detailed in Appendix A, (14) is
reduced to

B(L+sgn(B)vn (1-10*)"

27 (1 — B2)n+1/2’ |p| cos(¢) # 0

15)

pe(®) =

for a large n, where sgn(z) is the sign function. Lee ef al. [36]
have demonstrated that the phase pdf (14) determines that ¢
may be described by the noise model

d=¢s+v (16)

where ¢, represents the useful information term and v is a
zero-mean noise term, in which the variance depends on n
and |p|, but it is independent from ¢,. The validity of (16)
is restricted to [¢, — 7, ¢, + 7), since the expectation of ¢
does not correspond to ¢, in the interval [—7, ) [21]. This
restriction does not apply when ¢ is considered in the complex
instead of the real plane. As derived in [9], one can describe the
real and imaginary parts of the complex phasor as

)} = Ne cos(¢) + v cos(¢) — v sin(¢x)
¢)} = Nesin(¢s) + v] sin(¢z) + 15 cos(¢a)

R {exp(jo
S {exp(j

a7
(18)

where N, is the expected value of cos(v), v} and v/}, represent
two zero-mean random variables, and R{z} and 3{z} denote
the real and imaginary parts. The combination of these two
equations in the complex plane results in the following noise
model for the complex phasor exp(j¢):

exp(j¢) = (Ne + (V) + jvy)) exp(j¢an)- (19)

By considering ¢ as being characterized by (14), one can find

T(n+1/2)T(3/2) 3
o= S

1
mfzmﬁ (20)

where the details are in Appendix B. Fig. 1 depicts the evolution
of N, as a function of coherence for several values of n. The
asymptotic behavior of N, for a large n is contemplated in
Appendix C. For |p| # 0, the following asymptotic approxi-
mation for a large n applies for (20):

1
N.=1-—
=1-5+0()

lim N, =1.

n—oo

21

from where

(22)

1 T T
81
0.8 i
9
0.6 B
o
z 1
0.4
0.2 B
0 L 1 1 It 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ipl
Fig. 1. Parameter N, evaluated for different number of looks 7.

Variance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ipl

Fig. 2. Variances 0’5, and 03, evaluated for different number of looks n.
1 2

ogppmx refers here to the approximation introduced in (28). A normalization

=1, ¢ = Ois considered.

As observed, the limit does not depend on the coherence value.
Nevertheless, the point |p| =0 deserves a special attention
since in this case

lim N, =0.

n—oo

[p|=0

(23)

The analysis of the two noise terms in (17) and (18) is now
considered. Since by construction both noise sources are zero-
mean, they must be characterized by means of their variance
values. This calculation is detailed in Appendix D, from where
it results to

3
U—p)3&(2mLz mﬁ—NSQM

(25)

(V]
l\.')\»—‘ N)\»—l

1
(1_‘)0‘ ) 3F2 (2 n71727 |p|2>

where 3F5(a, b, ¢; d, e; 2) is a generalized hypergeometric func-
tion [34], [35]. The evaluation of (24) and (25) for different
number of looks is depicted in Fig. 2. As observed an increase
of n does not produce the variances 02, and a , to decrease

in the classical form, i.e., 1/n, as the phase 0] results from a
coherent filtering process, as shown by (4). In the case of the
generalized hypergeometric functions 3Fs(a, b, c;d, e; z), as
stated by Temme [37], the asymptotics of this type of functions
are quite difficult and hard to investigate. Nevertheless, it is
possible to take advantage of the definition of the variance
parameter by considering the asymptotic pdf of the Hermitian
product phase difference (15). As detailed in Appendix E, by
considering an infinite number of looks and |p| # 0, it can be
demonstrated that

(26)

lim 02, = lim o2, =0.
n—oo n—oo 2
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In the same appendix, it is shown that, as |p| — 0, the following

first-order approximation for 012/1 and ‘73; can be employed:

(L=1p)"+0(lp?), |pl—0. @D

DN | =

Despite (27) results from a first-order approximation of the
variances o2, and ¢, in the vicinity of |p| = 0, its results

are interestiﬁg in higillighting that this curve may also be
extended to the complete coherence range. Fig. 2 shows that
oy, and o, present similar values for the whole range of
coherences. Consequently, (24) and (25) can be approximated
by the following family of curves:

RN
N
RN

1

N =

(1—1p*)™ (28)

Il
Q

where « represents a constant value. The accuracy of this
approximation can be observed in Fig. 2, where the parameter
a = 0.685 has been employed. As observed, (28) offers a good
approximation of the actual values of the variances 031 and
‘73;’ allowing to identify, in a very simple way, the type of
dependence of these variances on the coherence |p| and on the
number of looks n.

The complex phasor noise model given by (19) admits an
additional simplification by defining two novel noise sources as
follows [38]:

(29)
(30)

Ve = V] cos(¢,) — vy sin(¢,)

vs =V sin(¢y) + vh cos(dy).

By construction, the two noise sources v, and v, present a
mean value equal to zero. Additionally, since the original noise
sources /4 and v} are uncorrelated, the variances of v, and
v result from the weighted average of the variances 031 and
03;’ as given by (29) and (30), according to the average phase
¢,. Nevertheless, this dependence on ¢, can be neglected if
the actual values of U?,C and O’,%S are approximated by any

value lying among 03, and 012,,. The best compromise for this
1 2

approximation is to consider JZC and 035 to follow the family
of curves of (28). Given this simplification, the noise model in
(19) may be considered as a complex additive noise model

exp(jgb) :NceXp(qum)Jr(VéJer;) 31
where all the useful information is contained in the first
term of (31).

B. Multilook Speckle Noise Model

The previous analysis of the speckle noise model for the
complex phasor exp(j¢) is of importance since it allows ob-
taining the final speckle noise model for multilook multidi-
mensional SAR data. As a preliminary conclusion, it may be
stated that the behavior of the speckle noise, understood at
this point as the variance characterizing the data, is determined
essentially by the statistics associated to the phase. The speckle

noise model for the Hermitian product of a pair of SAR images
may be obtained by introducing (17) and (18) into (13)

R{zexp(jp)} = 2N, cos(¢,) + 21 cos(¢,) — 214 sin(¢,)
(32)

& [z exp(i6)} = 2N, sin(e) + 2] sin(@e) + 2/ cos(a).
(33)

By analyzing each additive term of (32) and (33), it is possible
to characterize the speckle noise in the case of the Hermitian
product. In parallel, it is also interesting to observe how the
introduction of the Hermitian product amplitude z changes the
statistical and asymptotic behaviors of the different terms of
(17) and (18), compared to (32) and (33).

The statistical behavior of the first additive term of (32)
and (33) is determined by the statistics associated with the
Hermitian product amplitude z. As a result, the first- and
second-order moments of the first additive terms of (32) are

E{zN.cos(¢z)} = N cos(¢,)E{z}

3 n 1
—¥N, COS(¢w)F(2)nl;((n)+2)2

11
x Fy (2, 3 - mL |p|2> (34)

E {(ch Cos(qﬁx))Q} = N? cos? (¢, ) E{2*}
—uneoon) (0P + 1) 69

from where the variance can be derived. The first- and second-
order moments of the first additive term of (33) are just derived
by interchanging cos(¢,) with sin(¢,) in the previous two
equations. The asymptotic behavior for a large n of the second-
order moment does not need a further analysis of (35). This
is not the case for (34), where it is necessary to take into
account, on the one hand, the asymptotics of the parameter
N, and on the other hand, the asymptotics of the Hermitian
product amplitude z. For the former parameter, (21)—(23) apply,
whereas for the later, Tough ef al. [22], based on [39], derived
the following asymptotic expression for a large n:

Bz} = <p y 10l 'P'2)> .

36
2] 0

The previous expression is useful, in combination with (35),
in deriving a simple expression for the variance resulting from
(34) and (35). If the asymptotic behavior of IV, is not considered
and only the terms of order 1/n are retained in (36), it is
possible to write

(1+1p?) .

var { 2N, cos(¢z)} = 1> N2 cos®(¢,) o

(37
Fig. 3 shows the actual value of the variance derived from (34)
and (35) and the approximation provided by (37), which is
characterized by a high accuracy. Finally, by means of (22) and
(36), the following limit applies:

lim E {zN,cos(¢)} = ¥|p| cos(dz). (38)
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Fig. 3. var{zN. cos(¢z)} and approximated value for different number of

looks (y axis is in log scale). A normalization ¢ = 1, ¢ = 0 is considered.
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Fig. 4. Standard deviation versus mean values of the noise term n., for

different number of looks n. A fully multiplicative model (dashed line) is
included for comparison. A normalization ¢ = 1, ¢, = 0 is considered.

By means of (37)

lim var {zN. cos(¢,)} = 0.

lp|=0

(39)

The analysis of the relation between the mean and standard
deviation values permits the identification of possible noise
sources in the data. This analysis allowed identifying, in the
case of single-look data, a multiplicative noise source in the
first additive terms of (32) and (33) [9]. The introduction of
this noise term was possible owing to the effects due to the
parameter N, since the relation between the mean and standard
deviation values, in the case of the Hermitian product amplitude
z, does not correspond to a multiplicative noise mechanism.
The relation between the mean and standard deviation obtained
from (34) and (35) is depicted, for different values of the
number of looks n, in Fig. 4. In order to help the interpretability
of the different lines, the relation corresponding to a fully
multiplicative noise mechanism, averaged by n uncorrelated
samples and corresponding to a line with a slope equal to 1/+/n,
is also included as a dashed line. The first conclusion, which
must be extracted from Fig. 4, is that the multiplicative noise
component identified for single-look data cannot be considered
for multilook data. A fully multiplicative component would
underestimate data variance, especially for low and medium
coherences. By paying attention to (34), (35), and (37), one may
observe that the term 1) exp(j ¢, ) is multiplicative with respect
to all the other components. This behavior allows writing

2N exp(jo.) = 1 exp(joz)nm

where n,,, represents a multiplicative noise component which
must be understood as a generalization of the multiplicative
noise component in the case of single-look data [9]. As ob-
served in (40), the multiplicative nature of n,,, with respect to
Y exp(jo,) does not depend on any signal parameter. In [9],
this multiplicative nature was also extended to the expected

(40)

10 T T T T 81
I
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Fig. 5. Relation E2{n.,}/var{nm,} of the noise term n., for different
number of looks n (y axis is in log scale).

value of the power normalized amplitude, denoted as z,,. This
later extension is no longer possible in the multilook case, so
it is necessary to embed N.z, in n,, as its mean value. As a
result, n,, may be characterized as follows:

E{nm,} =N.z, 41

(1+1p?)

m :N2
var{n, } e 5

(42)
where Z,, = F{z} /1 and the approximation introduced in (37)
has been considered to derive (42), which could have also been
derived considering the actual value. Nevertheless, the high
accuracy of this approximation allows a simple expression for
the variance of n,,. In order to study the nature of the noise
component n,,, it is possible to extend the idea of equivalent
number of looks (ENL) employed to characterize the SAR
image intensity. By considering (41) and (42), the quotient
between E?{n,, } and var{n,,} is

E*{np} 5 z2

=2n L 43
var{nmt 2 0+ [o) @
which, for a large n, reduces to
E2 2
var{n, } (1+1p[?)

Fig. 5 represents (43) for several values of n. For single-look
data, (43) is almost constant in the whole coherence range, sup-
porting the conclusions extracted by the study in [9]. However,
as n increases, (43) depends on |p|, in such a way that the lower
the coherence, the lower is (43). For |p| = 1, which corresponds
to completely correlated SAR images, it is observed that (43) is
equal to n, but it is also interesting to note that E{n,,} =1
and var{n,, } = 1/n. Therefore, one can conclude that the first
additive terms of (32) and (33) reduce to the multiplicative
noise model for the SAR images intensity.

The second additive term of (32) contains the term v} =
cos(v) — N.. On the basis of the analysis presented in the
previous paragraph, one can show

E {zv] cos(¢,)} = E {(z cos(v) — N.E{z})} cos(¢,)
= '(/) COS(¢$)

x <|p|_Nc

11
xQFl(mn;l;/ﬂ) . (45)

L)L (n+3)
nIl'(n)
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Fig. 6. Mean value E{zv] } for different number of looks n. A normalization
¥ =1, ¢ = 01is considered.
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Fig. 7. Exact and approximated values of the standard deviation
Std.Dev.{zv] cos(¢z)} for different number of looks n. A normalization
Y =1, ¢, = 01is considered.

Again, the expectation of the second additive term of (33) is
obtained by interchanging cos(¢,;) with sin(¢,;) in the previous
equation. Fig. 6 depicts the behavior of (45) for different values
of n. Equation (45) presents such small values that they can
be neglected for medium and high coherences for n > 16. The
asymptotics of (45) can be easily found by considering (36),
giving rise to

lim E {21} cos(¢,)} = 0.

n—oo

(46)

The variance takes the following expression (47), shown at the
bottom of the page.

The previous variance expression results, as observed, are
extremely complicated. Thus, a simplification is of interest in
order to determine the effects of the different parameters, which
can be observed in detail in Figs. 7 and 8. Equation (47) is
approximated by the same family of curves for the variance of
the third additive term of (32) and (33)
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Fig. 8. Exact and approximated values of the standard deviation of the noise

terms for different number of looks n. A normalization ¢ = 1, ¢4 = 0 is
considered.

in which the accuracy with respect to the real variance value
can also be observed in Fig. 7. In the light of (48), it is easy to
demonstrate the following limit:

lim var {z1] cos(¢,)} = 0. (49)

The limits in (46) and (49) demonstrate that the second additive
term of (32) and (33) can be neglected for a large enough n.

Finally, by considering (45) and (48), the statistical behavior
of the second additive term of (32) and (33) can be embedded
in an additive zero-mean noise component 741

ZVi exp(jor) = Y {(|p| — NeZn) + na1}exp(jo.)  (50)
such that
E{nal} =0 (€28
2 _ 1 o a164n
Orn =5 (L= 1oP)" (52)

The analysis of the third additive terms of (32) results less
complex than the other two terms, since they present a null
expected value. This last term depends on the component
vy = sin(v). On the basis of the results presented in [22], it
can be readily demonstrated that

E {2V} sin(¢,)} = sin(¢,)E {zsin(v)} =0

whereas the variance equals

(33)

var {z1} sin(@,)} = sin?(6,)E { (203 — E{=1})’}

var {zv] cos(¢,)} = ¥? 0052(¢x)% (1- ‘p‘z)l.&m (48) = Sin%@%)% (1—1p%). (54
var {2z cos(¢,)}=F {(zui -E {zz/l})z} cos?(¢,)
= (E {22 (cos(v) — NC)Q} — B2 {zv'l}) cos? (¢z)
1—|pf? +1 N? I(3)r (2
g eost(gn) | L)y e N2 ey oy, (234F§n)2 oo Fh
11 reEr 3 11 ’
(305 - m2lo?) - <|p|NCW2F1 (-5 -mt p2>> @)
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The equivalent results in case of (33) are obtained by inter-
changing sin(¢,) with cos(¢,) in the previous two equations.
As a result, the third additive term of (32) and (33) can be
modeled by a zero-mean additive noise component

20 exp(js) = Ynaz exp(jdy) (55)
such that
E{nag} =0 (56)
2 _ i _1pl2
= (1= 10P). 7

One can observe that the variance characterizing the additive
component n,o is almost equal to the one corresponding to 1,1
Fig. 8 presents also the behavior of the variance of n,2, where
one can notice the similarity of the variance of the two additive
noise mechanisms.

By considering (40), (50), and (55), the complex Hermitian
product of two SAR images, (32) and (33), may be modeled as
follows:

<SiS;>n =Y (nm+ (Ipl = NeZn) + (na1 + jna2)) exp(i¢z),

,7=1,2,....,m. (58)
This expression can be considered as exact in terms of vari-
ance, as no simplifications have been included in the model.
Nevertheless, since E{n,1} = 0and E{ng2} = 0, only the two
first additive terms of (58) provide useful information. This fact
suggest a simplification based on eliminating the dependence
of the complex term n,1 + jng2 on the phase term exp(jd, ).

The Hermitian product (S5;S7), presents two independent
parameters, i.e., its real and imaginary parts or its amplitude and
phase, depending on the selected parameterization. Nonethe-
less, (58) contains three random terms, which consequently are
not uncorrelated. Thus, it is necessary to analyze the covariance
between these three additive terms. The covariance of the first
and second additive terms of (32) and (33) can be expressed as
follows:

E {(zN.cos(¢z) — E {zN.cos(¢,)})
X (zv] cos(¢z) — E {zv) cos(¢)})}
= cos*(¢s) (NE {z2 cos(v)} — N.E{z}

x E{z(cos(v) — NC)}) (59)
which is an expression that may be derived from the previous
results. Fig. 9 details this covariance for several values on n.
From this figure, one can observe that this covariance term
presents small values and, additionally, it can be neglected for
analysis purposes for n > 9. The other two covariance terms
relate the first and the third additive terms

E {cos(¢,) (2N, — E{zN_})sin(¢;) (z2v4)} =0  (60)
and the second and third additive terms
E{cos(¢z) (2v] — E {21 })sin(¢s) (204)} = 0.  (61)

Covariance
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Fig. 9. Covariance term  E{(zNccos(¢z) — E{zN. cos(¢s)})

(2] cos(¢pz) — E{zv] cos(¢pz)})} for different number of looks n (y
axis is in log scale). A normalization 1) = 1, ¢ = 0 is considered.

C. Multilook Speckle Noise Model Simplification

The simplification of the multilook speckle noise model fol-
lows the simplification of the single-look speckle noise model.
As it can be observed, the complex term exp(j¢,) produces
a combination of the real and imaginary parts of the complex
additive noise component 141 + jng2

(62)
(63)

Nar = Na1 COS(Pz) — Ng2 sin(@y)

Nai = N1 SIN(Gz) + Na2 cOS(Py).

From the previous equations, one gets E{n,} =0 and
E{na;} = 0. In addition, the variance of the terms n,, and ny;
presents a clear dependence on the phase ¢, but the variance
of the terms n,; and n,s is close enough to neglect this
dependence by considering the following approximation:

9 9 1 oy 1.32yn
O = Ons = 5,7 (L= 1P17) (64)
The previous curve can be considered as an average value
of the variances of n,; and n,s, as detailed in Fig. 8 (solid
line). Hence, by introducing (62) and (63) into (58), one gets
the following multilook speckle noise model for the Hermitian
product of two SAR images:

<S¢S;>n = d)nm GXp(jQSx) + 7/} (‘p‘ - chn) exp(j(bx)

+w(nar +jnai)7 iaj:1727"'um‘ (65)
The previous model has been obtained based on the consider-
ation that n is the number of averaged samples. In case of real
SAR data, n should be substituted by the ENL of the filtered
data. As done for the single-look case, (65) can be rewritten as

follows:

<SiS;>n = lplexp(j¢z) + Y (nm — NeZn) exp(joz)

+w(nar +jnai)7 i7j:1727"'7m (66)
yielding to the multilook multidimensional speckle noise model
for the sample covariance matrix

Z, =C+N,, + N, (67)
where, again, the matrix N, is constructed straightforwardly
from the second additive term of (66) and N, from the third
one. Equation (67) represents the extension of the multidimen-
sional model (11) to the multilook data case.
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IV. ANALYSIS OF THE MULTILOOK MULTIDIMENSIONAL
SPECKLE NOISE MODEL

The detailed analysis of (65) follows, in a parallel way, the
analysis of the single-look speckle noise model already pre-
sented in [9]. Nevertheless, in what it follows, the emphasis will
be on the effects of the number of looks in the different terms
of (65) and especially on the multiplicative noise term 7.
First, (65) is particularized to consider the diagonal elements
of the sample covariance matrix in (4). In this case, it can be
considered that both SAR images present a complex correlation
coefficient equal to 1 exp(j0), which when introduced into (65)
results in

(SiS7), = Ynm, i=1,2,...,m (68)

where
E{n,} =1 (69)
var{n,} = % (70)

on the basis of (20), (41), and (42). The previous equations
correspond to the multiplicative speckle noise model for the
SAR images intensity. Thus, (65) may be considered as an
extension of the multilook multiplicative speckle noise model.

The effects of the multiplicative speckle noise component
N, must be analyzed according to |p|, but also with respect to
the multiplicative term ¢ exp(j¢, ). By considering the mean
value of n,,, i.e., (41), but also the variance in (42), one can
observe that the influence of this noise term is proportional to
|p|, in such a way that the higher the coherence, the higher
is the influence, disappearing for the particular value |p| = 0.
In the same way, one can observe that the higher the num-
ber of looks n, the lower is the variance of the term n,,.
A second effect which needs to be carefully considered is
the repercussion of the multiplicative term 1 exp(j¢, ). For
a fixed value of |p|, (43) [or the asymptotic simplification in
(44)] determines the slope of the curve relating the mean and
variance. Therefore, the lower the coherence, the lower is the
ratio E%{n,,}/var{n,,}. This fact means that this slope will
increase for decreasing coherences. As detailed in the previous
section, a fully multiplicative noise mechanism would not be
able to take into account all the variance of the first additive
terms of (32) and (33). Finally, the modulation by the complex
phase term exp(j@. ) is analyzed. The real and imaginary parts
of the first additive terms of (32) and (33) are modulated
by cos(¢,) and sin(¢,), respectively. Since the multiplicative
noise term n,, affects only the amplitude of the Hermitian
product, this dependence means that the noise source n,, is
also modulated by them. Thus, depending on the value of the
phase ¢, it also determines the influence of the multiplicative
speckle term in the final Hermitian product. This dependence
on ¢, has important consequences, especially in interferometric
applications. In such a case, it is possible to conclude that the
topographic information can determine the nature and effects of
speckle noise in the Hermitian product of the two SAR images.

The second term to analyze in (65) is the complex additive
term 1(ng1 + jngz). Since the terms n,. and n,; present
a mean equal to zero, the sole effect is introduced through
a variance term. By considering the variance expressions in

—

Add. term
W(‘p‘ - chn) = W(nar + jnai)

Mult. term
W exp( )

Fig. 10. Data processing scheme to separate the multiplicative (Mult.)
and additive (Add.) terms of the Hermitian product of two complex SAR
images S; S;-‘.

(52) and (57), one can deduce that the higher the coherence,
the lower is the influence of these additive noise terms. It is
also worth to notice that this dependence is contrary to the
dependence of the term n,, on |p|. The term ¥ (nq1 + jnq2)
disappears completely for |p| = 1, as the mean and variance
values are equal to zero. Finally, this complex additive term is
not influenced by the phase ¢, if one considers the noise model
given at (65). Nevertheless, as previously demonstrated, if one
considers the actual variance values, a small dependence ¢, can
be observed.

Considering all the previous study, it is possible to conclude
that the final nature of the speckle noise, in the case of the
Hermitian product of two SAR images, is determined by the
complex quantity p. In a simple way, it can be affirmed that for
low coherences, the variance of the real and imaginary parts of
the Hermitian product of two SAR images can be explained
by the complex additive speckle noise term ¥ (ng1 + jngs).
However, the variance at high coherences is basically due to the
multiplicative term n,,. In this situation, it is also important to
take into account the dependence on the phase ¢, as this phase
modulates the influence of n,,, in such a way that, in some
cases, depending on ¢, the data variance for high coherence
is due to the additive term 1 (ng,1 + jng2).

V. EXPERIMENTAL RESULTS

The analysis of the model proposed in (58) or (65) makes
it necessary to divide the Hermitian product into the different
components of the model. In what it follows, (65) is considered.
In this case, the first additive term, due to its dependence on
the noise component n,,, will be referred as the multiplicative
term of the noise model. Hence, the other two additive terms
will be called, consequently, the additive term of the model.
In Section III, it has been demonstrated that speckle noise,
in the case of the Hermitian product of two SAR images, is
governed by the complex correlation coefficient characterizing
the product. Therefore, this parameter must be estimated to
split the Hermitian product into the two previous terms. The
way they are obtained is drawn in Fig. 10. On the basis of the
estimated complex correlation coefficient p, the multiplicative
term is obtained by multiplying the amplitude of the Hermitian
product by N., whereas the additive term is generated by
subtracting this multiplicative term from the Hermitian product.
Based on the processing scheme depicted in Fig. 10, the multi-
look speckle noise model has been tested on an experimental
small-baseline L-band PolSAR dataset. These data have been



314 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 2, FEBRUARY 2007

©

Fig. 11.

acquired by the ESAR sensor, operated by German Aerospace
Center (DLR), over the Traunstein area located in southern
Germany. Fig. 11(a) and (b) presents the amplitudes of the Sy,
and S, channels, where agricultural and forested zones can be
identified, and an urban area in located on the top of the image.
Fig. 11(c) and (d) presents the complex correlation coefficient
of Shh S Z”.

The dispersion diagram is an interesting tool allowing the
analysis of noise mechanisms present in experimental data. This
tool plots the standard deviation as a function of the data mean,
both calculated in a given area considered as homogeneous
and normally in the range of about ten pixels wide. The final
dispersion diagram is obtained by plotting the pairs standard
deviation versus the mean of the whole dataset, considering also
their density.

Fig. 12 represents the different dispersion diagrams derived
from the multilook speckle noise model (65), corresponding to
the quantity R{(SwnS},)s1} of the Traunstein dataset, assum-
ing a multilook of 81 pixels, obtained by 9 x 9 pixel window.
The figure rows represent the dispersion diagrams for different
coherence ranges, whereas columns correspond to the different
terms of (65): the total dispersion diagram of R{(Swn S}, )81}
and the dispersion diagrams of the corresponding multiplicative
and additive terms (see Fig. 10). Additionally, the solid lines in
Fig. 12 represent a multiplicative relation among the standard
deviation and the mean, i.e., a line with a slope equal to 1/4/n,
where in this case n = 81. Dashed lines in the first and second
columns indicate a multiplicative relation, in which the slope is
determined by the relation presented in (43).

In a general outline, it can be considered that low correlation
data are affected by the additive speckle noise component,
whereas for high-correlation data, speckle is characterized by
a multiplicative noise mechanism. Nevertheless, this obser-
vation needs from an in-depth analysis. By paying attention
to the multiplicative speckle term column, one can observe
the variation of the multiplicative term slope as a function of
coherence. For low coherences, the line slope does not agree

@

ESAR Traunstein PoISAR dataset. Coherence parameters are obtained with a 7 X 7 square window. (a) | Spy|. (b) |Suu |- (€) |p]- (d) ¢z.

with 1/+/n but with a lower one. The value of the exact slope
matches with the one determined by (43) since the higher
densities (represented in black) are on this line. Thus, one
can conclude that data coherence determines the nature of the
multiplicative speckle mechanism. It is important to highlight
that this special mechanism, due to the small dependence on |p|
(see Fig. 5), has been revealed by the data averaging process.
The additive speckle component, on the other hand, does not
present any variation with respect to the single-look data case,
except for the reduction in a value 1//n of the standard
deviation value.

The previous analysis has shown the dependence of the
filtered speckle noise on the coherence characterizing the
Hermitian product of two SAR images. The next analysis, on
the contrary, focuses on the study of the multilook speckle noise
for data processed with two different values of the number
of averaged samples n, given a fixed coherence value. This
paper concentrates on an 8251-pixel homogeneous area of the
Traunstein site, characterized by an average sample coherence
of |p| =0.57+0.11 and an average phase of ¢, = 1.09 +
0.28 rad. PolSAR data have been filtered by a 3 x 3 (nine-look)
and a9 x 9 (81-look) pixel windows. These results are depicted
in Fig. 13, where the power normalized mean and standard
deviation values of the multiplicative and additive speckle com-
ponents of the quantities R{(SpnS%,)n} and S{(SunS;, )n}
are shown as a function of coherence. Solid lines represent the
theoretical values of the different parameters as a function of
coherence, whereas in the case of the standard deviation plots,
dashed lines represent the approximation introduced in (64).
The first conclusion that can be extracted after observing Fig. 13
is that averaged data fully agree with the theoretical values
obtained in Section III. Comparing the different plots referring
to the mean values of the multiplicative and additive speckle
components, it can be observed that they do not vary with n, as
expected. Nevertheless, the modulation induced by the phase
¢, is clearly noticeable, especially in the plots of the mean
values of the multiplicative speckle noise term. In addition, as
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Fig. 12. Dispersion diagrams of the 81-look term 3{ (S, S;;, )81} corresponding to the Traunstein dataset. Dashed lines represents a line with a slope equal to
1/9, whereas solid lines have a slope equal to 2nz2 /(1 + |p|?). The z axis represents the mean value and the y axis the standard deviation.

detailed theoretically in Fig. 6, the mean value of the additive
terms can be neglected, even for nine-look data. The effect
of the multilook process is, however, evident in the case of
the standard deviation plots, where as expected, 81-look data
present lower standard deviation values than nine-look data for
both the multiplicative and additive speckle noise components.
In the same way as the mean values, the standard deviation
values of the multiplicative speckle component are affected by

the modulation induced by the phase term ¢,.. This modulation
is also visible in the case of the additive speckle term as the
difference between the solid and dashed lines. This modulation
of the phase term ¢, is especially important in interferometric
applications, since in this case, it may contain topographic
information. Therefore, the topography of the terrain may deter-
mine the final nature of the speckle noise as it acts on the com-
bination of the multiplicative and additive speckle components.
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Fig. 13. Density plots for the mean and standard deviation of the different terms of the multilook speckle noise model for the Traunstein dataset in an area where
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Another important effect of this phase modulation is observed if
one compares the plots of R{ (S, S5, )n} and S{(SunS;,)n}-
By considering first the term R{(SL,S:,)»}, the standard
deviation values corresponding to the additive term are slightly
higher than those of the multiplicative speckle term, allowing
the conclusion that speckle shall be dominated by additive
behavior. Nevertheless, this is not th e case for S{(Sn,S%,)n},
where the multiplicative speckle term presents larger values.

VI. CONCLUSION

This paper presents an extension of the single-look multi-
dimensional speckle noise model to the multilook data case.
The extension itself has also been considered in the asymptotic
case, with respect to the number of looks, demonstrating the
coherence and validity of the proposed speckle noise model.

With respect to the single-look multidimensional speckle
noise model case, the introduction of the averaging process
has made necessary the inclusion of some variations on
the original model. These variations affect essentially the
multiplicative speckle noise source. The averaging process
prevents, as demonstrated, to consider a fully multiplicative
noise source, although this multiplicative nature is still present
with respect to the parameter ¢ exp(j¢). Despite these changes,
the philosophy of the original single-look multidimensional
speckle noise model is still present in the multilook speckle
noise model. In the multilook case and for the Hermitian
product of two SAR images, the speckle noise is due to the
combination of a real multiplicative and a complex additive
speckle noise components. The combination of these com-
ponents is determined by the complex correlation coefficient
characterizing the Hermitian product. Speckle noise presents an
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additive nature for low coherences, whereas it is multiplicative
for high ones. In the extreme case of coherence equal to one, the
proposed model reduces to the classical multiplicative speckle
noise model for the SAR images intensity. It is important to
highlight the dependence of this combination on the phase in-
formation. This influence provokes differences among the real
and imaginary parts of the speckle noise. The most interesting
conclusion here concerns interferometric applications, since the
final combination of the speckle shall depend on the terrain
topography, as this topography determines the value of the
phase information.

APPENDIX A
PHASE DIFFERENCE ASYMPTOTIC DISTRIBUTION

The phase pdf in (14) contains two terms whose asymptotic
behavior for a large n is next analyzed. Without loss of gen-
erality, this development will consider ¢, = 0. The asymptotic
behavior of the first term

P(n+1/2) (1-|oP)" 8
2y (n)(1 = G272

Pp1(¢) = (A1)

follows from the asymptotic behavior of the ratio of gamma
functions. The ratio of the gamma functions in (A1) presents
the following asymptotic series expansion [40]:

1 5 21
=VJ|1- - —
\f( 8J+128J2+1024J3 32768J4+ )
(A2)

T(J+1/2)
T(J)

in which the asymptotic behavior for a large J is determined
by the first term, since the rest of the terms are, at least, of the
order 1/J. Introducing (A2) into (A1), for a large n

Vi (1—1p?)" B

p¢,1(¢) = 27 (1 — ﬁ2)n+1/2‘

(A3)

The analysis of the second term

1_ 2 n 1
7( 2|7f| ) o <N,1a2§ﬂ2>

is needed from the asymptotic analysis of the Gauss hyper-
geometric function F}(a,b;c;z). Using the transformation
formula of hypergeometric functions [34]

Po.2(0) = (A4)

F(e)l'(a—c+1) b

F b . — brj
2Fale bies ) = e e (e —9)

1
X o Fy (b,b—c+1;a+b—c+1;1—z>

T(c)T(a—c+1) ,

For@ vy 0T

1
><2F1<1—b,c—b;a—b+l;> (A5)
z

one can write (A5) as follows:

(1=1p[%)" 1 3 .3 1
F 1 . 7.1_7
o e\ bty g

3  T'(n+1/2)
(1—B2)"+172 " T(n) } (A6)

Pe2(d)=

+

Now, it is necessary to determine the behavior of (A6) for a
large n when the other parameters, especially /3, are considered
fixed. When (8 is not close to zero, i.e., |p| #0 and ¢ #
m(w/2) for m € Z, the hypergeometric function in (A6) can
be expanded in the standard power series, whether or not it is
convergent, to obtain the asymptotic expansion for a large n.
Nevertheless, since this term is at least of the order 1/n, the

general behavior is determined by the term (1 — 5%) "1/,
Thus, by introducing (A6) into (A4), for a large n
Vi (1= [p]*)" /12
Ps,2(¢) = ( ) |pl cos(¢) # 0. (A7)

2ﬁ(1 _ ﬁ2)n+1/2 ’
As aresult, by considering the expressions of (A3) and (A7), the
asymptotic behavior of the Hermitian product phase difference
is obtained, as expressed in (15).

APPENDIX B
EXPRESSIONS OF N, AND Ny

By considering ¢ as described by the distribution in (14),
N, is obtained as follows:

N. = [ cos@p(@)do. B1)

By introducing (14) into (Bl), the following two integrals
result:

™

3= (1= 1P)" [ eostoars (n.1:5 |p|2co¥) i ®2)

—T

T'(n+ 1/2)

2y/m(n)

TL COS
(1— Iol?) |p|/ TR )W do. (B3)

In (B2), the sign of the kernel is determined by the cosine func-
tion since the Gauss hypergeometric function is an even positive
function with respect to ¢. This argument allows demonstrating
that (B2) is equal to zero. The integral in (B3) needs, however,
to be calculated to derive the analytical expression of N.. By
introducing the change of variable z = cos?(¢), (B3) results in

LeEL2) ey

Ne == /T(m)

3 dr. (B4)

1
X /a:% 1 —x *% (1 — |p|2x)7n7
0
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By using 3.197(3) in [34, p. 314], the previous integral results in

I'(n+1/2)(3/2)

Ne= T )

, 13
(1-19)" ok (et 5, 51210
(B5)

which can be further simplified using the following identity
among Gauss hypergeometric functions:

oFi(a,b;¢;2) = (1 — 2) "% Fi(c — a,c — bjc; 2).  (B6)
Introducing (B6) into (BS), the final expression of the para-
meter N, (20) is obtained.

The parameter Ny, defined as

Mz/mwmww

is obtained similarly. As in the case of (B2), it is possible to
observe that p,(¢) is an even positive function with respect to
¢. Since the sine function determines the sign of the integral
kernel of (B7), it is straightforward to demonstrate that Ny = 0.

(B7)

APPENDIX C
ASYMPTOTIC CHARACTERIZATION OF N,

Given (20), the following limit is analyzed:

r 1/2)I'(3/2 3 1
i T (3 L), e

n—oo

Taking into account the asymptotic behavior of the ratio of
Gamma functions expressed in (A2)

T'(n+1/2)

T(n) Vi

(C2)

for a large n. The asymptotic analysis of the Gauss hyper-
geometric function in (C1) is based on the results presented
by Temme [41], who considers the asymptotic expansion of a
particular family biorthogonal polynomials pairs, denoted by
{P,,Q,} on the unit circle. In particular, the polynomial P,
presents the analytical expression

P.(z;a,08) = 9F1(—n,a+ 8+ 1;2a+ 1;1 — 2).  (C3)
Under the conditions that a + 3 > 1, the parameter z ranges in
compact subsets of C/{0} and (n + 1) In(1 — |p|?) < 0, where
the identity 1 — |p|? = z has been considered, (C3) presents the
following nonuniform expansion:

I'(2a+1)

n .
T(a—B) [(n+ 1) - 2)] ;

P.(za,0)=

n— 00.
(C4)
As a result, if (C2) and (C4) are considered in (C1), the limit

presented in (21) results. Due to the limitations imposed by
(C4), the previous limit is not valid when |p| = 0. Nevertheless,

the analysis of the point |p| = 0 results straightforward from
(C1). Taking into account that o F1(3/2 — n,1/2;2;0) = 1

. T(n+1/2)T(3/2) 3 1 )
1 F{=-—n,=;2 =
dim, T(n) pl2Fy | 5 = ns 552 ol
(C5)
APPENDIX D
EXPRESSIONS OF 02, AND 02,
1 2
Since the variance 03, can be expressed as follows:
1
0 =E {(cos(¢) - NC)Q} (D1)

its analytical expression must obtained by means of the follow-
ing integral:

s

/ cos?(¢)ps(¢)dep (D2)
which results in the following two integrals:
I'(n+1/ 2) cos?
— = (1= 1p*)" Ip] / d¢ (D3)
2ﬁf(n) —|pI2 cos2 n+3

o (1-16)" [oos2@nar(n.1: sl cos()Jao. D

—T

Using the same arguments employed in Appendix B, it is
possible to observe that (D3) is zero. The integral in (D4)
is solved by means of 7.512(12) in [34, p. 807]. Then, by
introducing the solution of (D4) and the expression of N, (20)
into (D1), the variance 031 presents the expression detailed in

(24). The variance 0‘3, is obtained by means of the integral
2

™

on = / sin®(¢)pg (¢)d¢

-

(D5)

which, when solved using the same procedure as in (D4), results
into the expression presented by (25).

APPENDIX E
ASYMPTOTIC CHARACTERIZATION OF ag, AND 03,
1 2

In this case, the problem to tackle is to determine the asymp-
totics of the variances o2 2, and o? v As stated, a direct evaluation
of the exact expresswnslof these parameters, (24) and (25), is
quite difficult due to the extreme complexity of the process.
Therefore, the process used to determine the asymptotics of 02,
and a ; shall be based on considering their definitions on the
basis of the asymptotic distribution of the Hermitian product
phase difference presented in (15)

The asymptotic variance o : is derived as defined in (D2),
where the asymptotic pdf in (15) is considered. The integral
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1
oI (n+2, VT

) 1 1 1 1
2; = 2): 1-— 2”{F(2,; +1;1—>+ n(l— )}
L R Ve A G B ) VRH 0= o) A 2l )

is solved by means of 3.197(3) by Gradshteyn and Ryzhik
[34, p. 314], giving as a result

2T (3
E{eostto)} = Y2 (- o) 3
2

X o F} (n+;,2;2;|p|2), n — oco. (El)

By comparing (E1) with the real expression in (15), one can
observe that it has been simplified in the sense that the former
depends only on a Gauss hypergeometric function. Conse-
quently, the next step is to study the asymptotics of the Gauss
hypergeometric function in (E1). In this case, the transforma-
tion formula of the hypergeometric functions in (A5) is again
considered. After some simplifications, it is possible to write
(E2), as shown at the top of the page, where the definition of the
Gauss hypergeometric function has been considered to simplify
the second additive term. As observed, the asymptotics of (E2)
is determined by this second additive term, since as observed,
the first one is of the order 1/n3/2. As a result

1

— 7271\,0\2’ n — o0.

E{cos’(¢)} =1 (E3)
Assuming the asymptotic behavior of the parameter N, and
(E3), one can easily obtain the limit in (26).

The asymptotics of 05/ are obtained by the same pro-
2
cedure as 03,. The solution of the integral in (D5), by

considering (15’), is

3
£ {sn(e)) = Y2 (1 oy r(3)

2
1 5
x o Fy (n+ 5,1; > |P|2) ;

(E4)

n — oQ.

As observed, there are only subtle differences with respect to
(E1), which, on the contrary, change completely the asymptotic
behavior. Using the same transformation formula of hypergeo-
metric functions in (AS), one gets

1.5 Pl (3 (L—1pP)"
o6 (o b o) = o (3) {0
g ligilel VT2 I (2) v/nlp|?

1 1 1 (1—1p?)
x o (1,—;n;1 - ) +
2 pl?)  2n |p?

where, again, the asymptotic behavior is determined by the
second additive term. In this case, the first additive term is
proportional to (1 — |p|?)"™ /n'/2. Consequently

E {sin®(9)} = %7(1 |_p||§| )

(ES)

(E6)

which easily show the limit detailed in (26).

In order to determine the asymptotic behavior of (24) and
(25) in |p| = 0, the following generalized power series of the
generalized hypergeometric function is taken into account [40]:

3Fy(a,b,c;d,e;z) x 1+ O(z), z — 0. (E7)

As a result, a first-order approximation of 0'3, and 0’3/ in the
1 2
vicinity |p| = 0 is obtained, as observed in (27).
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