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ABSTRACT

Electrical Logging -While-Drilling(LWD) tools are an important part of oil and
gas exploration to indicate the formation conductivity(resistivity) at different depths.
The earth formation is exhibited as electric anisotropy with a fully 3 x 3 tensor. Nu-
merical methods have been developed to analyze the reponses of the LWD tool in the
3-D anisotropic media. As a rule, a finite-difference time-domain(FDTD) method is
flexible and efficient to model the geometry of the LWD tool in the geophysical forma-
tion. However, a basic finite-difference time-domain algorithm is limited to isotropic
media. We discuss a 3-D cylindrical finite-difference time-domain algorithm with the
fully anisotropy conductivity. The FDTD algorithm is validated by showing good
agreement with the analytical results. We simulate the responses of the LWD tool
in a 3-layer formation with an anisotropic dipping bed by using the 3-D anisotropic

FDTD method.

11



Dedicated to my family and friends

1ii



ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Fernando L. Teixeira for his endless
patience. I could not accpmplish my first goal at OSU without his guidance. Thanks
to Prof. Prabhakar Pathak for his teaching and assistance. In addition, I thank my

family and friends to encourage and trust me.

iv



VITA

April 7, 1975 ..o Born - Seoul, Korea.

February, 1998 ......... ... . it B.S. Electrical Engineering,
DanKook University.

February, 2000 ........... ... i, M.S. Electical Engineering,

Microwave and Antenna Laboratory
DanKook University.

2002-Present . ...c.ovvviiniiiii e Electrical Engineering,
The Ohio State University.

FIELDS OF STUDY

Major Field: Electrical Engineering



TABLE OF CONTENTS

Abstract . . . . . . L e
Dedication . . . . . . . . . .. e
Acknowledgments . . . . . .. ..
Vita . . . e
List of Figures . . . . . . . . . . . .
Chapters:
1. Introduction . . . . . . . . . . ..
1.1 Electrical Well Logging Tools . . . . . ... ... ... .......
1.2 Organization of This Thesis . . . . ... ... ... ... ... ...
2. Anisotropicmedia . . . . .. ...
2.1 Conductivity Tensor . . . . . . . . . . . . e
3. Nonuniform Cylindrical FDTD . . . . .. ... ... ... ... .....
3.1 The FDTD Algorithm in Cylindrical Coordinates. . . . . . .. ..
3.2 Periodic Boundary Condition in ¢ Coordinates . . . ... ... ..
3.3 Non-uniform grid in p direction . . . . . . .. .. ... 0L,
3.4 Numerical Stability . . . . . ... ... ... ... ... . ...

vi

Page
ii
iii

iv

viii



4., Extension . . . . . . .. 22

4.1 Two Equations-Two Unknown Method . . . . . . .. ... .. ... 22

4.2 Ramped Sine Excitations . . .. ... ... ... ... . ...... 23

4.3 Cylindrical 3-D PML formulation . . . . . ... ... ... ... .. 24

5. Numerical Simulations . . . . .. .. .. ... .. ... .. L. 29

5.1 Logging-While-Drilling(LWD) Tool . . . . . . ... ... ... ... 29

5.2 Apparent Resistivity . . . . . .. ..o 0oL 31

5.3 Discretization . . . . . ... oo 33

5.4 Numerical Results . . . . .. .. ... .. ... ... ... ..., 34

5.4.1 Apparent Resistivity . . . . ... ... oo 000 34

5.4.2 Borehole Effect . . . . . ... ... o000 37

5.4.3 Anisotropic Dipping Bed (True Vertical Thickness) . . . . . 43

5.4.4 Anisotropic Dipping Bed (Actual Thickness) . . . . . .. .. 53

6. Summary and Conclusions . . . . . . .. . ... oo 60
Appendices:

A. Reference Result: LWD tool in infinitely thick bed with uniform conductivity 62

Bibliography . . . . . . . . 65

vii



LIST OF FIGURES

Figure Page
1.1 Basic configuration of LWD tool . . . . . . . . ... . ... ... ... 3
2.1 Relation between the logging tool reference and the anisotropy coordi-

2.2

3.1

3.2

3.3

5.1

5.2

5.3

5.4

5.5

5.6

nates . . . . ... e e 6
Azimuth relation between the logging tool and the anisotropy coordinates 7

Location of the electromagnetic field components on the cylindrical

FDTD lattice . . . . . . . . 12
The periodic boundary condition in ¢ direction . . .. ... .. ... 18
Non-uniform discretization size along p direction . . . . . ... .. .. 19
The basic structure of the LWD tool . . . . . .. .. ... ... ... 30

Apparent resistivities Ropp and Rgem for op = 0.1[S/m] without bore-
hole versus anisotropy ratio. . . . . . ... .. ... ... .. ... 35

Apparent resistivities Rqpn and Ream for o, = 0.5[S/m] without bore-
hole versus anisotropy ratio. . . . ... .. ... ... ... ... ... 36

Phase Difference and Amplitude Ratio versus anisotropy ratio for o; =
0.5[S/m] without Borehole. . . . . . ... ... ... ... ... ... 38

Phase Difference and Amplitude Ratio versus anisotropy ratio for o, =
0.5[S/m] with oyppq = 0.0005(S/m]. . . . .. .. ... ... ... 39

Phase Difference and Amplitude Ratio versus anisotropy ratio for o, =
0.5[S/m] with Oyug = 2[S/m]. . . . . ..o 40



5.7 Phase Difference and Amplitude Ratio versus anisotropy ratio for o, =
10[S/m] with opuq = 0.0005[S/m]. . . . . . . . ... ...

5.8 Phase Difference and Amplitude Ratio versus anisotropy ratio for o =
10[S/m] with Omua =2[S/m|. . . . . . .. ..o

5.9 Illustration of the LWD tool and a 3-layer formation with a true vertical
thickness of dipping bed . . . . . . . ... ... o oL

5.10 The effect of the horizontal conductivity in an inhomogeneous anisotropic
dipping bed. . . . . . ..

5.11 Simulation results of the LWD in an inhomogeneous isotropic dipping
bed. . . . L e e

5.12 Simulation results of the LWD tool using omyuq = 2[S/m] crossing an
inhomogeneous anisotropic dipping bed with ¢, = 2.5, 0, = 0.5, and
Oiso = 10[S/m]. (True vertical thickness) . . ... ... ... .. ...

5.13 Simulation of the LWD using op.g = 0.0005[S/m] crossing an in-
homogeneous anisotropy dipping bed with o5 = 2.5, 0, = 0.5, and
Oiso = 10[S/m)].(True vertical thickness) . . . . . ... ... .. ....

5.14 Simulation of the LWD tool using opmug = 2[S/m| crossing an in-
homogeneous anisotropic dipping bed with o, = 10, o, = 2.5, and
Oiso = 0.5[S/m].(True vertical thickness) . .. ... . ... ... ...

5.15 Simulation of the LWD tool using omug = 0.0005[S/m] crossing an
inhomogeneous anisotropic dipping bed with ¢, = 10, o, = 2.5, and
Oiso = 0.5[S/m]. (True vertical thickness) . . . .. ... ... ... ..

5.16 Illustration of the LWD tool and a 3-layer formation with a actual
thickness . . . . . . . . . L

5.17 Simulation results of the LWD tool using omuq = 2[S/m] crossing an

inhomogeneous anisotropic dipping bed with o, = 2.5, g, = 0.5, and
Oiso = 10[S/m](Actual thickness). . . .. ... ... . ... ......

ix

47

49

30

51

52

54



5.18

5.19

5.20

Al

A2

Simulation results of the LWD tool using omuq = 0.0005[S/m] in an
inhomogeneous anisotropic dipping bed with o, = 2.5, ¢, = 0.5, and
Oiso = 10[S/m](Actual thickness). . .. ... ... ... ... .....

Simulation results of the LWD tool using oyug¢ = 2[S/m] in an in-
homogeneous anisotropic dipping bed with ¢, = 10, o, = 2.5, and
Oiso = 0.5[S/m](Actual thickness). . . . . . ... ... ... ... ...

Simulation results of the LWD tool using o,,,¢ = 0.0005[S/m] in an
inhomogeneous anisotropic dipping bed with o, = 10, o, = 2.5, and
Oiso = 0.5[S/m](Actual thickness). . . . . ... ... ... ... ...,

lustration of a LWD tool in a homogeneous formation (infinitely thick
bed) with an isotropic conductivity . . . . . ... ...

Simulation of the PD and AR of a LWD tool in an infinitely thick bed
with different uniform conductivity, omyuq = 0.0005 and 0,,,q = 2[S/m)]

37

a8

39

63

64



CHAPTER 1

INTRODUCTION

Electromagnetic well-logging tools are used to investigate physical properties of
complex earth formations in search of oil and gas reservoirs. EM logging tool re-
sponse can be interpreted by collecting experiments in various situations. However,
experiments are expensive and sometimes difficult to understand due to complicated
effects dependent on various physical parameters. Alternatively, numerical methods
have been developed to interpret the response of EM logging tool in complicated for-
mations. Furthermore, numerical modeling can also be used to design EM logging
tools.

Early modeling was very restricted by computer capabilities and limitations of
analytical approaches. With advances in computer technologies, numerical methods
become an important tool for the accurate interpretations of electromagnetic well-
logging tool responses in 3-D inhomogeneous, anisotropic media.

Available numerical methods to predict responses of EM logging tools include, for
example, BCGS-FFT [1], NMM |[2], a time-domain transmission line matrix(TLM) [3]
method, a finite-element method(FEM) [4], a finite-difference frequency-domain [5]-
[6] and finite-difference time-domain(FDTD) [7]. In particular, the FEM and FDTD
directly discretize Maxwell’s equations. In the FEM, the solution region is discretized
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into a number of finite elements conforming to the geometry of the problem. The
individual finite elements are assembled into a set of large matrices. Then, the solution
is obtained by solving the matrix equations. On the other hand, the FDTD using
explict time update equations has two main advantages. First, the implementation
is easier than the FEM method and matrix inversion is not required. Second, FDTD
in general requires less computer memory.

The property of interest in EM logging is an electric conductivity of the formation.
In general, the conductivity is anisotropic and represented by a full 3 x 3 tensor.
However, the traditional FDTD method is restricted to an isotropy conductivity.
If a fully anisotropy tensor is ignored, we can misunderstand the characteristics of
geological strﬁctures due to the inadequate knowledge and interpretation errors in a

complex formation.

1.1 Electrical Well Logging Tools

Electromagnetic logging tools are extensively used to measure the conductiv-
ity(resistivity) and the dielectric constant of a complex formation. A dielectric log-
ging tool operating at a high frequency such as 1.1 GHz measures the travel time
and attenuation and is able to extract the relative permittivity and the conductiv-
ity of the formation. However, such a tool provides investigation in limited depth
because the conductivity attenuates the high frequency signal. On the other hand,
a logging-while-drilling(LWD) tool operating at 2MHz primarily obtains conductiv-
ity(resistivitiy) of the formation. In the oil industry, an electric conductivity is the
main parameter correlated to oil saturated media. Hence, we will be focusing on the

LWD tool to compute electric conductivities. A typical LWD tool consists of one
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Figure 1.1: Basic configuration of LWD tool

transmitter and two receivers wound around a steel mandrel and inside a borehole as
indicated in Figure 1.1. The transmitter wire antenna is operated at 2 MHz. Since
the receiver voltages are affected by the physical properties of both the formation and
the antenna characteristics, the antenna characteristics are usually compensated by
taking the ratio of the two receiver voltages at each antenna. The voltage ratio is

converted to an amplitude ratio and phase difference.



1.2 Organization of This Thesis

In this thesis, a 3-D FDTD method to simulate the responses of an EM well-
logging tool in anisotropic formations is implemented. The FDTD method can be
more efficient than other numerical methods to model a complex environment. The
cylindrical coordinate system is chosen to reduce staircasing discretization errors due
to the geometry of the EM logging tool. In the p direction, a nonuniform discretization
is adopted to enlarge the size of the computation domain and increases the efficiency
of the computer memory usage. A ramp sinusoidal function for a source at the
transmitter is used in the FDTD algorithm to eliminate the DC offset and high
frequency contamination. The data in the time domain at the two receivers are
converted into a phase difference and amplitude ratio in the frequency domain by
using two equations-two unknown method(2E2U) based on linear equations instead
of traditional Fourier transform methods. We examine in Chapter2 the description of
an anisotropy conductivity tensor with general oblique angles with respect to the tool
coordinates. In Chapter3, a FDTD method is extended for a nonuniform cylindrical
grid with a fully anisotropy tensor. Chapter4 discuss as the 2E2U method, an ramped
sine excitation, and an anisotropic PML formulation in cylindrical coordinates used
in the FDTD algorithm. In Chapterb, we present the simulated apparent resistivities
from the responses of an EM logging tool in anisotropic media with infinitely thick
bed and the simulated phase difference and amplitude ratio of an EM logging tool
crossing a dipping bed with anisotropy conductivities for various dipping angles in
a 3-layer formation. Chapter6 summarizes the conclusions and outlines the future

work.



CHAPTER 2

ANISOTROPIC MEDIA

2.1 Conductivity Tensor

Numerical simulations to analyze the response of electromagnetic well logging
tools have been used to obtain accurate interpretations for various models of the
earth formations. The important factor to incorporate in numerical simulations is the
possible electric anisotropy of the earth formations with a conductivity tensor oriented
along arbitrary directions. A generalized earth conductivity typically assumes that
the electric conductivity tensor has nonzero elements only along the diagonal in the

anisotropy axes. Thus, a 3 x 3 anisotropy conductivity is simply expressed as

Th 0 0
o = 0 oo O (21)
0 0 o

where oy is the horizontal conductivity and o, is the vertical conductivity of the
formation. These two conductivities can be different due to geological reasons, such

as the gravitational pull. The anisotropy ratio is defined as



Figure 2.1: Relation between the logging tool reference and the anisotropy coordinates

When the anisotropy axes and the tool axes do not coincide, we can have a full 3 x 3
tensor. The anisotropy axes are indicated by prime such as 2/, 3/, 2’ and the tool axes
are the reference frame such as p, ¢, 2. By using a rotation matrix, the conductivity
tensor in the anisotropy coordinate system can be transferred to the tool coordinate
system. The derivation of the rotation matrix is done with two rotations. First, an
oblique angle @ is defined by the rotation angle between z direction in the tool axes
and 2’ direction in anisotropy axes as shown in Figure 2.1. The first rotation function

by the oblique angle is easily obtained as



Figure 2.2: Azimuth relation between the logging tool and the anisotropy coordinates

cos® 0 -—siné
R(0) = 0 1 0 (2.3)
sin@ 0 cosé

The second rotation referred to as transformation from the rectangular to cylindrical
coordinate system is obtained by an azimuth angle ¢ as shown in Figure 2.2. This
is necessary because the cylindrical coordinate system is used since it conforms to
geometry of the logging tool. Hence, a coordinate rotation as a function of positions

in anisotropy media is expressed as

p T
¢ | =R(0,9) |y (2.4)
2 z



where the rotation matrix R(6, ¢) is defined as

cosfcosgp cos@sing —siné
R(0,¢) = —sing cos¢ 0 (2.5)

sinfcos¢ sinfsing cosf

Now, the conductivity tensor ¢’ in the anisotropy axes is transformed into & in the
tool coordinates by the above rotation matrix R(#). The constitutive relation in each

coordinate system is given by

According to the rotation matrix R(6, ¢), we have

RO,4)I =

R(6,¢)E = E (2.7)

From (2.6) and (2.7), we have

R(0,¢) =3 =05"E =& R(6,¢) E
J=R6,4) & R(6,0) E
dE=R"0,¢) 3 R(0,¢) E
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Thus, the conductivity tensor & in the logging tool coordinates becomes

Opp Opp Opz

g=R70,4) 7 R(0,0) = | 04p 04y 0y (2.8)

op

Op¢

T¢p

O¢¢

0'¢z

where

0, =opcos’l+ o, sin% 4

Ozp Ozp Uzz

0,co8’ ¢+ ogsin® ¢

—0,8in ¢ cos ¢ + 04 sin ¢ cos ¢
(0, — op) cos ¢ sin B cos O
—0,C0os ¢ sin ¢ + o4 sin g cos ¢
0,5in® ¢ + o4 cos® ¢

—(0y — 0p) sin ¢sinf cosd

(0y — op) cos ¢ siné cosd

—(0, — op) sin ¢ sin @ cos

onsin® 0 + o, cos 0 (2.9)

7 (2.10)



CHAPTER 3

NONUNIFORM CYLINDRICAL FDTD

3.1 The FDTD Algorithm in Cylindrical Coordinates

The classic Yee scheme is usually applied to an isotropic medium in a Cartesian
coordinate system [8]. Here, we consider a cylindrical coordinate system to conform
the geometry of LWD tools. Furthermore, we incorporate anisotropic media with a
3 x 3 conductivity tensor. Unfortunately, the basic Yee scheme does not automatically
allow a fully anisotropy tensor in cylindrical coordinate system since it is restricted to
diagonal elements. In this chapter, we discuss an extension of the FDTD algorithm
for cylindrical coordinates and fully anisotropic medium. In an anisotropic medium

the Maxwell’s curl equations are given by

OH
VxH=—€%—Et]+6E+J (3.2)

where E is the electric field in V/m, H is the magnetic field in A/m, J is the electric
current density in A/m? M is the magnetic current density in V/m?2, p is the perme-
ability of the nonmagnetic medium. In cylindrical coordinates, a general anisotropic

10



medium has a 3 x 3 permittivity and conductivity tensor, € and & respectively, given

by
€op €pp  Cpz Opp Opp Opz
€= | €p €9 Cpz | 0= | Opp Opp Ogs (3.3)
€zp €z¢ €2z Ozp Ozp Ozz

The six scalar equations of the vector equations (3.1) and (3.2) can be rewritten in

the cylindrical coordinate system (p, ¢, z) as

108, 0B, _ _ OH,
p 0¢ 0z ot M, (34)

9E, 0E, _  OH,
5z o - Fm Mo (3:5)

0E, 1 10E, _ 0H,
o oo T P M (36)

16H, OH 0E,  OE,  OE,
p 0 8_; = o, g T g T OB+ 0ps By + 0p B+, (37)

9H, O&H,  O8E,  0E, O,
a—zp - Bp = 6¢pa—tp + €49 5 + €42 BN + O'¢pEp + O'¢¢E¢ + 0'¢zEz + J¢ (38)

oHy 1 OH,  OE, 0B

OF,
z z zz ZE ZE zZzHz z .
9p +p ' 8% T o ‘e e T OnE 0B to E.+J, (3.9)

In a cylindrical FDTD, a grid point is defined as

(i,5,k) = (iDp, jAS, kA2) (3.10)

and any function of the discretized space and time is represented as

™o = F(ilp, jA®, kAz, nAt) (3.11)

11
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Figure 3.1: Location of the electromagnetic field components on the cylindrical FDTD
lattice

where Ap, jA¢ and kAz are the space increments, At is the time increment, and ¢, j, £
and n are integers. Figure 3.1 illustrates the positions of the E and H discretizations
using the three dimensional staggered FDTD grid scheme in cylindrical coordinates.
Using central difference approximations for space and time derivatives, the spatial

derivatives along p and time derivatives of any function F are

F?

n —
Fi+1/2,j,ic

F im1/2.4
g—p(iAp,qub,kAz,nAt): Y 23k 4 0[(Ap)Y (3.12)
9F ntl/2 _ pn-1/2
5t—(iAp,jA¢,kAz,nAt)= LIk A Bk 1 o[(At)? (3.13)
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The locations of the F and H components are shown as Figure 3.1. Applying
Eq.(3.12)-(3.13) into Eq.(3.4)-(3.9), the finite difference approximations for magnetic
fields H,, Hy, H, at time n + 1/2 and electric fields E,, Ey, E, on the time step n

are obtained as

1 (Elijripryn — gy B Eyiraprt) ~ Egujrijom
A¢ AZ,‘

n+1/2 n—1/2 (3.14)
—u At - J+1/2,k+1/2)

(E3<i+1/2,j,k+1>‘E/?(m/z,j,k)) (E"z+1,a,k+1/2> E?a,j,kﬂm)

Az; Apz ( )
n+1/2 n—1/2 3.15
_ H¢(i+1/2,j,k+1/2) - H¢(i+1/2,j,k+1/2) _
= —H At (i4+1/2,5,k+1/2)
E$(¢+1,j+1/2k En 6(i,j+1/2,k) 1 o
Ap; T A [Egs12i1/20
n+1/2 n+1/2
_ Elir1/25410) Eg(i+1/2,j,k) _ Hz(i+1/2,j+1/2,k) - Hz(i+1/2,j+1/2,k)
Ad a At
- Mg(i+1/2,j+1/2,k)
(3.16)

A¢ Az

1 +1
B Eii1yam ~ By B2k — Eowiri/en
= €pp At t €pp

n+1/2 n+1/2 n41/2 n+1/2
1 (Hz(i+1/2,j+1/2,k) - Hz(i+1/2,j——1/2,k)) _ (H¢(i+1/2,j,k+1/2) _ H¢(i+1/2,jyk—1/2)>

At

E* - E,
(i.4,k+1/2) 2(i,4,k+1/2) +1/2 +1/2 n+1/2
T ( At + Ono By 1/250 F O00EgG 12 T Toe Bl ki)

n+1/2
+J p(i+1/2,5,k)

(3.17)
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p(i,j+1/2,k+1/2) p(i,j+1/2,k—1/2)

HHL/2 — g2
( AZ,'

1 +1
~((Exyean — Elerean Ejtivim ~ Byavisan
= €gp Al + €49

At

1
+ €4 (Enfz k+1/2) Eﬁ(i,j,m/z))

n+1/2
+ J 11720

2(i~1/2,5+1/2,k)

Ap;

n+1/2
) _ (Hz(i+l/2,j+1/2,k) -

At

n+1/2

+1/2
+ 0¢PEp(i+1/2,j,k) + U¢¢E G j+1/2.k) T Oz

Ap;

n+1/2 n+1/2
<H¢(i+1/2,j,k+1/2) ~ Hyi1pp5611/2)

n+1/2

|

T An | etk T

+1 1
_(Edrean ~ Earyagm Eigriyan — Eranen
= e Al e

At

1
+ €22 (E"T] k+1/2) E?(i,j,k+l/2)>

+1/2
+ T k1/2)

Ag

n+1/2
Hn+1/2 (Hp(i7j+l/2yk+1/2) B Hp(‘i,j—l/2,k+l/2) ) }

At

+ asz;&l/z )+ 02¢En+l/2

(i+1/2,5,k

+1/2
Enz Jik+1/2)

(3.18)

n+1/2
z(4,5,k+1/2)

(3.19)

The F components in the right sides of Eq.(3.17)-(3.19) at time step n + 1/2 are

replaced by semi-implicit approximations as follows

n+1/2
E p(3+1/2,5, lc)

+1/2
Enz]+1/2 k) =

+1/2
E:(i,j,k+1/2)

+1
E i ein T Eniviyzim

2

+1
Eairizr) T Epujrijan

2

n+1
Bk T k)

2

14
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, and H 2 in Eq.(3.16)

Similarly, the undefined locations of Eg S+1/2,j+1/2k S(i+1/2,541/2.K)

and (3.19) are substituted as follows

B + E%. .
P(i+1,5+1/2,k o(4,5+1/2,k
Eg1/2,5+1/2k) = s )2 I8 (3.23)
n+1/2 n+1/2
n+1/2 Hyii o ke12) T Hoi-1/2.5041/2)
$(i,g,k+1/2) — 2 (3.24)

Using the above approximations, Eq.(3.17)-(3.19) are rearranged as

n+1/2 n+1/2 n+1/2 n+1/2
1 Hii1y2 54120 — PaGri/2-1/2,0 _ H i 2,001/2) — Hoid1/2,56-1/2)
Apitiye Ag Az
_(Cop | 0p +1 €og | Op¢ +1 €pz | Opz +1
= (35 +%°) Pthiaan + (2 +%8) Bilimn + (£ °5) Bibiwra
€op  Opp €ps p €pz  Opz
- (% AL 7) Eerirasin ~ (Kt 7) Egi /2 ~ (E - 7) Eske1r2)
+1/2
+ an+1/2,J k)
(3.25)
n+1/2 n+1/2 n+1/2 n+1/2
Hp(i,j+1/2,k+1/2) - Hp(i,j+1/2,k—1/2) _ Hz(i+1/2,j,k+1/2) - Hz(i—1/2,j,k+1/2)
AZ,' Ap,L
€p |, T¢p\ pm+l €o¢6 | ¢\ n+1 €¢z | T¢2\ rntl
(At + 2 ) Esarraim T (At + 9 )E¢(i,j+1/2,k) + (At + 9 ) B jke1/2)
€¢P _ % Em _ €¢¢ U¢¢ En Qﬁ _ _Oﬂ Em
At 9 p(i+1/2,5,k) At 9 8Gii+1/2k) T \ Ay 9 2(3,5,k+1/2)
n+1/2
J é(1,j+1/2,k)
(3.26)
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n+1/2 n+1/2
H¢(i+1/2,j,lc+1/2) - H¢(i—1/2,j,lc+1/2)
Ap;

n+1/2 n+1/2 n+1/2 n+1/2
<H¢<i+1/2,j,k+1/2) + H¢<i—1/2,j,k+1/2)) _ (Hp<i,j+1/2,k+1/2) - Hp(i,j—l/z,kﬂ/mﬂ
2 Ao

Ap;
_ (& | T2p\ 1 Ca¢ | T2 pntl Gz | Tz +
= (At + 5 ) Ep(i+1/2,j,lc) + (At + 5 ) E¢(i,j+1/2,k) + (At + 2 ) E;I(i,j,kﬂ/?)
€ _ Tzp\ pn € _ T2\ €2z T2z pm
T\A; T 9 ) Peitzik) T\ Af T g ) Petatrzk) T\ Ay T g ) Paliike1/2)

n+1/2
T aigkr1/2)

(3.27)

Note that the update equations for magnetic fields are in the well-known standard
form because the nonmagnetic medium is assumed. However, the update equations
to obtain the electric fields are expressed in matrix form. The final FDTD update

equations can be written as

I _ 12 + At Egigr1/2h+1) ~ Egigrijamn
p(i,j+1/2,k+1/2) - p('i,j+1/2,k+1/2) m AZ—,;

(3.28)
1 B iriherse) — Bliirery2) _ M
Ap; Ao p(i,j+1/2,k+1/2)
Hn+1/2 _Hn—1/2 éf E:,L(i+1,j,lc+1/2) - E?(i,j,k+1/2)
B(i+1/2,5,k+1/2) — "7 $(i+1/2,5,k+1/2) U Ap;
o P (3.29)
AZ-,; o(i+1/2,5,k+1/2)
g i 4 At { L ( Eparrpng — Eg(m/z,j,k))
2(i4+1/2,j+1/2,k) 2(i+1/2,j+1/2,k) L Api+1/2 A¢
3 (Eg(i+1,j+1/2,k) + Eg(i,j+1/2,k)) 3 (Eg(i+1,j+1/2,k) - Eg(i,j+1/2,k)>]
2 Ap;
- M;?(i+1/2,j+1/2,k)
(3.30)
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Az;

n+1/2

n+1
pliit1/2,k+1/2) " H

n+1/2 n+1/2
_ (H¢(i+l/2,j,k+1/2)_H¢(i+1/2,j,k—1/2)

)

Az;

/2
p(z‘,j+1/z,k—1/2>)

Ap;

n+1/2 n+1/2
_ (Hz(i+1/2,j,k+1/2) ~H ;22,5 641/2)

)

n41/2 n+

nt1/2 nt1/2
HyGy1y2,50+1/2 " Haa 172,464 1/2)
Ap;
n+1/2 n+1/2
4L oG+ 1/2,,k+1/2) T HoG-1/2,5641/2)
Api 2

p(i,j+1/2,k+1/2)"Hp(i,j—l/z,k+1/2)

1/2

- -(f

A¢

)|

[ Epiv1/2.5k)

Eyig+1/2.k)

B Eg(i,j,k+l/2)

(3.31)

According to the finite difference expressions of Eq.(3.28)-(3.31), all electromagnetic

field components at any location are obtained from the results of the past time step.

Note that the 3-D cylindrical FDTD domain is discretized with (N,, Ny, N,) grid

points. The discretizations of the ¢ and z directions are uniform, but the p direction

is discretized nonuniformly as discussed next.
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Figure 3.2: The periodic boundary condition in ¢ direction

3.2 Periodic Boundary Condition in ¢ Coordinates

The ¢ direction is discretized uniformly with a periodic boundary condition. As
shown in Figure 3.2, the electric field components are identified at j = 0 and j = N,
and magnetic fields are identified at j = —1/2 and j = Ny — 1/2. The appropriate
grid size is important to reduce unnecessary time steps and to decide the largest

cylindrical cell size. The outer cylindrical cell length along the ¢ direction is given as

Al; = iApA (3.32)

for i = N,. However, the largest Al should be chosen by the criteria below
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Mantrel Borehole

i=1,2v‘-,5,6,7 ,8 |Np-1 rN‘)

Al < min ( g , A ) (3.33)

where ¢ is the skin depth and ) is the wavelength in the formation. This set up a

condition for choosing the maximum A¢, Ap and Az.

3.3 Non-uniform grid in p direction

In the p direction, a nonuniform discretizations [9] is applied by increasing the
Ap grid size gradually as shown in Figure 3.3. The computation domain along the p
direction is divided into two regions. The region between the steel mandrel and the
borehole wall is so small that a uniform discretization size is applied. In the other

side, the discretization size increases nonuniformly because the formation outside a
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logging tool is much larger. If uniform discretizations are used there, the required
computer memories and computation time would be excessive. In diffusion dominated
problems, the maximum grid size is defined as

(AP)maz = g (3.34)

where the skin depth ¢ is given as

5= ! (3.35)

o {3 [y @1}

where w is the angular frequency and the largest conductivity ¢ in the formation is

chosen. For Z >> 1, Eq.(3.35) is simplified to

§= .- (3.36)

The grid size from the inner region to the outer region increases until the criteria(3.33).

3.4 Numerical Stability

The accuracy and numerical stability are affected by the space increment and
time increments used. The accuracy depends on how small the space increments
are chosen. To ensure the numerical stability, the time increment At must satisfy
the Courant stability condition [10]. The classic expression of the Courant stability

condition in Cartesian coordinates is given as
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At < . (3.37)

where AZmin, AYmin, DZmin are the smallest cubic space mesh sizes and v is the wave
velocity in the formation. To achieve stability, the time step At is chosen to satisfy

the inequality above. In cylindrical coordinates, the above becomes

1

1 2 1 2 1 2
v [(Apmin) + (pminA¢min) + (Azmin) :|

where Apmin, PminDOmin, Azmin are the smallest space grid increments in the cylin-

(3.38)

drical coordinates, and cy(Courant factor) is a parameter less than 1.
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CHAPTER 4

EXTENSION

4.1 'Two Equations-Two Unknown Method

Various applications of FDTD simulations require conversion from time domain
data to frequency domain data. The Fast Fourier Transform(FFT) method is tradi-
tionally used for the time to frequency domain conversion. However, the FFT method
needs a large number of time samples. As an alternative method for single-frequency
problems, the Two-Equation Two-Unknown method(2E2U) [11] is implemented here,
requiring less time steps than the FFT method. The 2E2U method based on the solu-
tion of two linear equations at single frequency(CW) is used to extract amplitude and
phase. Assuming a sinusoidal source excitation, the two linear equations are written

as

Asin(wt; +0) = ¢

Asin(wty + 0) = ¢o (4.1)

where A and 6 are the amplitude and phase, and w is the angular frequency. From
the FDTD simulations, q; and ¢, are obtained at two time steps, ¢; and ¢5. From the
two equations above, the two unknowns, A and 6, are obtained as
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§ = arctan [(b sin(wi1) — g1 sin(wty) ]

q1 cos(wtq) — g cos(wty)

(4.2)

(4.3)

4 '
sin(wt; + 6)

If ¢; and to are chosen very closely, numerical errors are caused by almost same
values of q; and g;. To choose the proper time steps, the time difference between ¢,
and to should be at least one tenth of the period, T/10. The 2E2U method needs a

particular source excitation to obtain more accurate simulation results as discussed

next.

4.2 Ramped Sine Excitations

The source excitation for the 2E2U method is usually described by a sinusoidal
excitation. However, the use of a pure sinusoidal source has two significant problems
in the FDTD: DC offset [12] and high frequency contamination [10]. The DC offset is
referred to as the nonzero dc component that decays only linearly the time average of
a sinusoidal source turned on at ¢ = 0. The high frequency contamination is related
with the discontinuity of the derivation of the source function at £ = 0. For single
frequency (CW) problem, a sinusoidal excitation by a ramp function can be used to

eliminate the DC offset and the high frequency contamination.

vs = r(t) sin(wt) (4.4)

where 7(¢), a raised cosine (RC) ramp function is defined as
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0 t<0
r(t) =< 0.5[1—cos(&£)] 0<t<aT (4.5)

1 t>aT

where T is the period of the sine function and « is a ramp duration parameter (number
of sine wave cycles during the ramp duration aT’). Here, we consider a source with
operating frequency f = 2 MHz, and a = 0.5. For the examples considered, the phase

difference and amplitude ratio converge after around 1.5T.

4.3 Cylindrical 3-D PML formulation

The FDTD computation domain size is limited by computer memory and CPU
time. Ideally, the computational domain should be infinitely large to simulate open
region problems, which is not feasible. In this work, a unsplit anisotropic cylindrical
perfectly matched layer(PML) [13] is used to simulate the responses of EM logging
tools in open regions. The PML acts as an absorber for the electromagnetic fields,
so that no spurious reflected fields are produced by the truncated boundaries of the
computation domain. Furthermore, the anisotropic medium PML formulations do
not modify Maxwell’s equations. In 3-D cylindrical coordinates, the PML constitutive

tensors related to background constitutive parameters €, u are written as

Epmr = €A o, 6, 2| (0 23 W) (4.6)
Bpmr = pA o, z](ﬁ, Z; w) (4.7)
where
- PS2S, pS, pS;
Ap, ¢, 40 23 W) = Pppy—— + 2,2, + PP 4.8
2 ]( ) oo F; S, p ppsp ( )



In the above, g is the spatial variable p in the complex variable domain, and s,, s,
are the frequency-dependent complex stretching variables. The complex coordinate

mapping is defined as:
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Nej
e
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f
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II

= e
/ ( z')) 4z (4.10)
by (

il

where a,(p), Q,(p), a,(z), and £1,(z) are frequency-independent variables. In addition,
sy = p/p. Absorption of propagation waves is effected by choosing €,, 2, > 0. If
evanescent modes exit inside PML, one call set a,, a, > 1 as well. In particular,
a PML with a, = a, = 1 and €, = 0, = 0 becomes the original region. The PML
can be extended to match an inhomogeneous medium with constitutive parameters 1
and e(r,w) [14]. The PML constitutive tensors matched to inhomogeneous medium

for all frequencies and angles of incidence are simply written as

epmr = €(r,w)A o ¢ 2P 2 w) (4.11)

Upmr = NA lo, &, z](p> Z; w) (412)
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Note that fippr is given in Eq.(4.7). Maxwell’s equations are written as

z’wu 1_\[[,, 6, 2] ° H=VxE (4.13)
) 10 -
—tw | 1+ oe@) €W)Apg, 1 E=V xH (4.14)

For a computation convenience, auxiliary fields such as H,, D,, E, are defined as

HazA[prﬁ)Z].H: Dazl—\‘[pvd’;Z]'D’ Eazj_\'[md’rz].E

Eq.(4.13)-(4.14) are rewritten by using the auxiliary fields as

iwuH, =V x E
(4.15)
—wD,+0E, =V xH
The original fields in terms of auxiliary fields are expressed as
E,= ¢ E, (4.16)
P 55y P
s
H,=—2H, 4.17
= ey (4.17)
s
D,=—2D, 4.18
P sgsy P (4.18)

Note that the other field components are obtained by cyclic permutation. The above
equations replaced by other auxiliary fields such as E,, H,, D, can be used to derive

first-order differential equations. For example, Eq.(4.16) is given by
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(twsg)Ee p = (tws,) Eq,p

(4.19)
(iws,)E, = iwE,,
In the time domain, Eq.(4.19) is written as
0 0
(bpa + Ap) E. ,= (a"ég + Qp) E, ,
(4.20)

0 0
(azb—t + Qz> Ep = EZEE’ p

By using a backward differencing scheme, time update equations for the original field

in terms of the auxiliary field become

(bp + DpA)EL , = bEL L+ (a,+ QA)EL , — a,EL)
(4.21)
(a: + LAYE, =a,E5 '+ EL - EL7)

By analogy we can use Eq.(4.17) and (4.18) to obtain the remaining update equations.
The PML is terminated by a PEC wall at the outer boundary and has a thickness d.
By implementing PML, we need to reduce a reflection error due to the PEC wall and
a numerical discretization error due to the abrupt transition of a conductivity profile
between the PML and the FDTD discretization. To minimize the reflection error and
numerical discretization error, the PML profile increases gradually from the interface

of the PML to the PEC outer boundary. Polynomial scaling is chosen as

ap = (p /d)"Apmag
(4.22)
Qp =1+ (Qp,maz - 1) : (p /d)
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Similarly, a polynomial scaling is also used for the z direction.
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CHAPTER 5

NUMERICAL SIMULATIONS

5.1 Logging-While-Drilling(LWD) Tool

An electromagnetic well-logging tool is an important part of oil and gas explo-
ration to indicate the formation conductivity at different depths. Logging-While-
Drilling(LWD) tool is considered here and has a 4-inch-radius steel mandrel and
5-inch-radius borehole as shown in Figure 5.1. One transmitter and two receivers
consist of 4.5-inch-radius wire loop antennas wrapped around the steel mandrel. The
two receivers are located at 30 inch and 24 inch away from the transmitter along the
LWD tool axis. The transmitter is operated at 2MHz. In the frequency domain, the

voltage at the two receivers can be expressed as

v =FG(L), i=1.2 (5.1)

= Ariéeri (52)

where F is an antenna factor given by the antenna effective lengths and input im-
pedances, and G(L;) is the propagation factor by function of L, and L, the space
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Figure 5.1: The basic structure of the LWD tool
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distances between the transmitter and the two receivers, respectively. The antenna
factor F' is eliminated to scrutinize the formation outside the LWD tool by taking the

voltage ratio as

(5.3)

We are interested in a phase difference(PD) and amplitude ratio(AR) from the above
voltage ratio of the formation. The phase difference(PD) and amplitude ratio(AR)

are defined as

PD = 9.,-1 - 97-2 (54)

AR = A1 [Aro (5.5)
5.2 Apparent Resistivity

The resistivity measured by the LWD tool is obtained from the voltage ratio
between the two receivers. In an anisotropic formation with an anisotropy ratio

k(Eq.2.2) and oblique angle §, the voltage ratio R is given as

. U(Lly 0’ ka Uh)

R=— - ' " "~
U(L2a 01 kv O'h)

(5.6)

where the space distances from the transmitter, L; and Ls, are 30 inch and 24 inch,
respectively. To calibrate the LWD tool, the same voltage ratio is taken for the LWD

tool in air assuming that o, and o, are equal to 0 to give
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_ o(L4,6,k,0)

Raop = oL 0.F.0) (5.7)
Thus, the air calibrated voltage ratio R, is defined as
R.= R/Ra (5.8)
Alternatively, Eq.(5.8) for phase and amplitude is expressed as
¢ = arg(R,) (in degree)
(5.9)

Similarly, the voltage ratio of equivalent homogeneous formation assuming k£ = 1(isotropic

formation) is given as

v(Ly,0,1,04)

Bo = v(L2, 6,1, 04)

(5.10)

Also, air calibration applies for the homogeneous voltage ratio of Eq.(5.10). Then,

on defining

Reo = Ro/Ran (5.11)

the homogeneous phase and amplitude are expressed as
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¢o = arg(Re) (in degree)
(5.12)
AdBO = 20 ].Oglo ’RCOI (in dB)

Apparent phase and amplitude conductivities oapn, 0gam are then obtained via inter-

polation such that

y; = interp (z,y, ;) (5.13)

where an factor of interest, y; is computed for a given z; and table of [z,y]| values.

inverse apparent conductivities as,

Raph = l/lnterp (¢0) Oh, ¢)

Roam = 1Jinterp (Aapo, on, AdB) (5.14)

With tables of [¢g, o] and [Agpo, on] for various op,.

5.3 Discretization

Along the p direction, the region between the 4-in radius steel mandrel and the
5-in radius borehole is discretized using a uniform grid size, Ap = 0.635 [cm] as shown
in Figure 3.3. However, the discretization size Ap outside the borehole is nonuniform.
The maximum outermost grid size is chosen as (Ap)maee = §/6 where the skin depth
6 for = > 1 is given as
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2
5=/
o (5.15)

Note that the smallest skin depth J corresponds to the largest conductivity in the
formation. In the ¢ direction, the grid size A¢ is discretized uniformly and chosen

via Eq.(3.32) and Eq.(3.33), which is repeated below for convenience

Al = iApAd
5 A
Alpee < min | =, —
min (6 10)

Along the z direction, both the LWD tool geometry and the formation conductivities
are considered to decide the discretization size Az. Here, the discretization size is

chosen as uniform, Az = 2.54 cm.

5.4 Numerical Results

5.4.1 Apparent Resistivity

Figure 5.2 - 5.3 show the apparent resistivities, Ropn and Rgam, versus the anisotropy
ratio k for seven oblique angles 8 between the anisotropy axis and the LWD tool axis
in a homogeneous formation. The domain is discretized by using (N,, Ns, N.) =
(30,125,180) in cylindrical coordinates. The nonuniform discretization size Ap in p
direction varies from 0.635 to 18.7566[cm]. The unsplit field PML in z direction is
set up using 5 cells with a cubic profile for a,, 2, at the top and bottom region. The
5-layer PML in p direction employs a cubic profile in the real part of the stretch-
ing variables only because the imaginary streching was found to cause unstability
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Phase Apparent Resistivity vs Anisotropy Ratio
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Figure 5.2: Apparent resistivities Rypn and Ragy, for o, = 0.1[S/m] without borehole
versus anisotropy ratio.
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Figure 5.3: Apparent resistivities Rupn and Rem for o, = 0.5[S/m] without borehole
versus anisotropy ratio.
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in the full anisotropic case. The relative permittivity and permeability are set to 1.
Figure 5.2 and Figure 5.3 show the phase and amplitude apparent resistivities for
o, = 0.1 and o, = 0.5[S/m], respectively. For k = 1(the isotropic medium), the
apparent resistivities such as Rgpp and R for both o, = 0.1 and 0, = 0.5[S/m]
cross at R, = Rp(= 1/0y) and are also the same values for various oblique angles. As
shown in Figure 5.2 for g5, = 0.1[S/m], both apparent phase and amplitude resistivi-
ties increase as g, decreases. From Figure 5.3 for o, = 0.5[S/m], the phase apparent
resistivities for # > 60° are minimum at £ = 0.75. From these plots, we observe that
phase and amplitude apparent resistivities for a general anisotropic medium are sensi-
tive to both k and 8. The results depicted in Figure 5.2- 5.3 show very good agreement
with the results of reference [15] using the analytical expressions for Sommerfeld in-
tegrals. Therefore, they serve to validate the FDTD algorithm for simulations of a

3-D fully anisotropy tensor in the cylindrical coordinates.
5.4.2 Borehole Effect

In the previous section, we have considered a homogeneous formation(no borehole)
to compare the analytical results. In practice, a finite radius borehole is present. In
this thesis, we consider an oil-based mud and water-based mud with g,,,4 = 0.0005
and Opmyuq = 2[S/m], respectively. Figure 5.4 - 5.6 for o, = 0.5[S/m] show the phase
difference and amplitude ratio using no borehole, 0,,,4 = 0.0005 and oyyg = 2[S/m],
respectively. The simulated results for o, = 0.0005 and 0,4 = 2[S/m] are the same
as those without the borehole. Next, Figure 5.7 - 5.8 for o, = 10[S/m] depict the
simulated results on g,,g = 0.0005 and 0,uq = 2[S/m], respectively. The discretiza-

tion size for o = 10[S/m] is (N,, Ny, N,) = (50, 127,230). The nonuniform grid size
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Figure 5.5: Phase Difference and Amplitude Ratio versus anisotropy ratio for o, =
0.5[S/m] with opmye = 0.0005[S/m].
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increases from 0.635 to 1.8757[cm]. We consider that the range of the anisotropy
ratio is from k = 1 to 2 because a horizontal conductivity of the earth surface is often
larger than a vertical conductivity [16). From Figure 5.7 for oy, = 0.0005[S/m], the
results of the phase difference are smaller for larger k£ and for 8 > 45° are close in
behavior. The results of the amplitude ratio show a non-monotonic behavior. How-
ever, the phase difference and amplitude ratio using g = 2[S/m] decrease for both
k and 6. From the observations, results with low o, are not affected by o,.g Wwhile

the simulations of high o} are very sensitive to g,u4.
5.4.3 Anisotropic Dipping Bed (True Vertical Thickness)

Figure 5.9 illustrates a 3-layer inhomogeneous formation with an anisotropic dip-
ping bed(true vertical thickness) for various dipping angles. The true vertical thick-
ness is retrieved as the original thickness(60inch) for all dipping angles. The upper and
lower layers have an isotropy conductivity o;5, whereas the middle layer as the dipping
bed has an anisotropy tensor with a horizontal conductivity o}, and vertical conductiv-
ity 0,. The conductivity of mud used in LWD tool is chosen as oyyuq = 0.0005[S/m]
for the oil-based mud and oyug = 2[S/m] for the water-based mud. Let the first
intersection point of the lower layer and the dipping bed be Pointl. Similarly, the
intersection point of the dipping bed and the upper layer is Point2(see Figure 5.9).
The domain is discretized by using (N,, Ny, N,) = (50,127,230). The grid size in
the z direction is Az = 2.54[cm]. In p direction, the discretization size Ap increases
nonuniformly from 0.635 to 1.8757[cm|. The maximum grid size is chosen by the skin
depth of the largest conductivity in the formation. The PML in p direction is set up

by using 5 cells and a cubic profile on the real part only of the stretching variables
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Figure 5.9: Illustration of the LWD tool and a 3-layer formation with a true vertical

thickness of dipping bed
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to avoid instability due to the imaginary part. A 5-cell PML in 2 direction employs

a cubic profile on both real and imaginary parts.

A. Effect of Horizontal and Vertical Conductivities

In this section, the LWD tool is simulated to study the effect of horizontal or
vertical elements of an anisotropy conductivity tensor. The formation illustrated in
Figure 5.9 for the vertical case, # = 0°, has the three layers where the upper and
lower layers conductivities have the identity tensor with o;s, = 10[S/m]. For the
middle layer, the conductivities of o}, and o, are chosen to be 2.5 or 0.5[S/m)] in three
different combinations. The conductivity of the mud is o,y = 2[S/m]. As shown in
Figure 5.10, the phase difference and amplitude ratio for o, = 2.5 and o, = 2.5[S/m)]
are exactly the same as those for o5, = 2.5 and 0, = 0.5[S/m]. However, the results
for 04, = 0.5 and o, = 0.5[S/m)] are obviously different. Therefore, we conclude, as
expected, that for the vertical case, # = 0°, the response of the LWD tool is controlled

only by the horizontal conductivity oy.

B. Dipping Angle Effects

In this section, we examine effect of a dipping bed according to a dipping angle
without anisotropy. The responses of the LWD tool are simulated in a 3-layer forma-
tion with an isotropic dipping bed. The identity tensor of the isotropic conductivity
has o, = 0, = 2.5 [S/m] for various dipping angles. The lower and upper layers
have 0is, = 10 [S/m]. The conductivity of the mud is oymuq = 2[S/m]. Figure 5.11
shows the phase difference and amplitude ratio of the LWD tool for 6§ = 0°, 45° and
60°. When the receiverl is located close to the interface between layers, the phase

difference and amplitude ratio change abruptly. The transition at these interfaces
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depends on the skin depth ¢ in the formation. As the dipping angle increases, the
shoulder effect is less because of the slower transition at Point1 and Point2. When the
receiverl reaches the middle of the dipping bed, the phase difference and amplitude
ratio for various dipping angles approach 35° and 3.1, corresponding to Figure A.2
with an equivalent thick bed. The behavior according to the dipping angle is similar

to reference [17].

C. Anisotropic Dipping Bed (True Vertical Thickness)

As depicted in Figure 5.9, we next simulate the results for phase difference and
amplitude ratio of the LWD tool penetrating a three-layer formation with an 60-inch
anisotropy dipping bed(true vertical thickness) for seven dipping angles. Figure 5.12
shows simulated results when oy, o,, and oy, are chosen to be 2.5, 0.5, 10[S/m),
respectively. The conductivity of the mud is oy = 2[S/m]. When the receiverl
approaches Pointl and Point2, the apparent thickness of the anisotropic dipping bed is
wider because of the outward slower transition due to the high o;, as the dipping angle
increases. Comparing the behavior for § = 60° shown in Figure 5.11, the horns at
the interfaces are clearly observed and the horn effect increases for the higher dipping
angle. In the region of the anisotropy dipping bed, the phase difference and amplitude
ratio are less than the results of the isotropic bed with o, = o, = 2.5[S/m] as shown
in Figure 5.9. When two receivers and the transmitter pass through completely the
dipping bed, the phase difference and amplitude ratio converge to the phase difference
and amplitude ratio of the conductivity of the isotropic layer(Figure A.2). Figure 5.13
depicts the simulation results of the same formation with o,,,4 = 0.0005 instead of
Omud = 2[S/m]. The overall characteristics for o,,,4 = 0.0005[S/m] are not much
different from those for o,,,q = 2[S/m], but the results using o,,,q = 0.0005[S/m] are
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slightly smaller than those of 0,,g = 2 [S/m] when the receiverl approaches Pointl
and Point2. Hence, the horn effect of 0,,,4 = 2 is less pronounced than that of
Omud = 2[S/m].

Next, Figure 5.14 and 5.15 show the simulation results with o5, = 0.5, o, = 10
and o, = 2.5[S/m], respectively. In Figure 5.14 and Figure 5.15, the conductivities
of mud are used by omug = 2 and gpmuq = 0.0005[S/m], respectively. In both cases,
the phase difference and amplitude ratio vary abruptly at Pointl and Point2 due to
the large conductivity o, = 10[S/m|. As the dipping angle increases, the apparent
thickness is reduced because the inward transition due to low o, is less abrupt.
As the receiverl reaches at the middle of the anisotropic dipping bed, Figure 5.14
for opua = 2[S/m] shows that phase difference and amplitude ratio are reduced as
expected from Figure 5.8. From Figure 5.15 with o, = 0.0005[S/m], the phase
difference with the larger dipping angle than 45° are similar while the amplitude
ratio changes considerably, as expected from Figure 5.7. Comparing Figure 5.12-
5.13 and Figure 5.14- 5.15, we observe that the effect of 0,,,4 on the LWD tool is
more significant when oy, is larger. For larger dipping angles, it becomes more difficult
to determine high conductive values on dipping beds by LWD tools using the water-
based mud because the phase difference and the amplitude ratio for the higher dipping

angles show more complex behaviors.
5.4.4 Anisotropic Dipping Bed (Actual Thickness)

Figure 5.16 illustrates a 3-layer inhomogeneous formation including an anisotropic
dipping bed with an actual thickness for various dipping angles. The actual thickness

according to being equal to 60[inch] for § = 0° varies in proportion to 1/cosé for
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the dipping angles. Figure 5.17- 5.18 show the results in the formation with o, =
2.5, 0, = 0.5 and o5, = 10[S/m|. The conductivities of mud for Figure 5.17- 5.18
are Omud = 2, Omud = 0.0005[S/m)], respectively. Comparing Figure 5.12- 5.13 and
Figure 5.17- 5.18, the overall behaviors are similar. As the dipping angle is higher,
the center region is much wider due to the effect of the actual thickness and the
horn effect is less observed. Next, Figure 5.19 and Figure 5.20 show the results with
or = 10, 0, = 2.5 and oy, = 0.5[S/m)], respectively. The conductivities of mud are
Omud = 2, Omud = 0.0005[S/m], respectively. For the higher dipping angle, the center
region shown in Figure 5.19 and 5.20 tends to be large due to the effect of the actual
thickness while the center region shown in Figure 5.14- 5.15 is narrow due to inward

transition at the interfaces.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

This thesis has presented the application of the cylindrical FDTD to simulate
the responses of electromagnetic logging tools in anisotropic media. In Chapter2, we
examined how to represent the generalized conductivity tensor of the earth forma-
tion in the tool coordinate system by using the transformation matrix. In Chapter3,
we discussed the extension of 3-D FDTD with the anisotropic conductivity tensor
to cylindrical coordinates. For computation efficiency, a nonuniform discretization
size in p direction is used to enlarge the computation domain. In Chpater4, the two
equations-two unknown(2E2U) method was discussed to convert time domain data to
frequency domain data. A ramped sinusoidal excitation for the source function was
used to avoid DC offset and high frequency contamination. The anisotropic unsplit
field formulation of PML is applied to the FDTD algorithm at the outer boundary
of the computation domain to avoid spurious reflections from those boundaries. In
Chapterb, we presented numerical results of logging tool responses using the extended
FDTD method. In Section 5.1-5.3, the LWD tool geometry and discretization were
discussed briefly. In Section 5.4.1, the apparent resistivities of the FDTD method

in homogeneous anisotropic formations were obtained, showing good agreement with
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the results of reference [15] using Sommerfeld integrals. In Section 5.4.2, we stud-
ied the effect of the mud conductivity on the tool responses. In section 5.4.3, we
study the response of the LWD tool in 3-layer inhomogeneous formations with the
anisotropic dipping bed, for various dipping angles. We verified that the responses
of the vertical LWD tool, § = 0° in anisotropy formation were controlled by o} only.
We also verified that the dipping angle affected the apparent thickness of the dipping
bed. We simulated the anisotropic dipping bed with the true thickness and actual
thickness for various dipping angles. From the examples, the effect of anisotropic
dipping bed is clearly observed as the less phase difference and amplitude ratio and
the larger horn effect for the higher dipping angle. When the horizontal conductivity
on the anisotropic bed was higher than the isotropy conductivity on the background
formation and the oil-base mud was used, it was not appreciable to find the dipping
bed because of non-monotonic behaviors of the amplitude ratio for the higher dipping

angle.

Future Work

The extended ’cylindrical FDTD algorithm with full 3 x 3 anisotropy is useful to
simulate not only the response of the LWD tool but also other problems involving
anisotropic conductivities. However, the unsplit anisotropic PML in cylindrical co-
ordinates used only the real part of the stretching variables in p direction because of
unstability due to the imaginary part in the present formulation. For this reason, the
domain size was larger than that possible with full stretching variables. Our future
work will study the stability of an anisotropic PML with full 3 x 3 anisotropy and

various well-logging tool scenarios, such as invasion zone, eccentric tools.
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APPENDIX A

REFERENCE RESULT: LWD TOOL IN INFINITELY
THICK BED WITH UNIFORM CONDUCTIVITY

The LWD tool configuration is illustrated in Figure A.1 in homogeneous formation.
The LWD tool operates at 2MHz and has a 4-in radius steel mandrel and 5-in radius
borehole. The transmitter and receiver antennas consist of 4.5-in radius wire wound
around the steel mandrel. The source is chosen to be a ramp sinusoidal excitation.
The conductivity of the mud is either oy, = 0.0005 or g = 2[S/m]. The relative
permittivity and permeability are equal to be 1. Figure A.2 depicts the responses of
the LWD tool in the homogeneous formation with different isotropy conductivities.
We note that the phase difference and amplitude ratio of omyuq = 0.0005[S/m] are the
same as those of opmyuq = 2[S/m]. The domain is discretized by using (N,, N4, N, )=(30,
125, 180). The uniform grid size in z direction is 2.54 [cm|. In p direction, the
discretization size, Ap = 0.635 [cm] is uniform inside the borehole. Outside the
borehole, Ap is increased gradually to Ap = 18.7566 [cm]. The unsplit field PML
consists of five cells with a cubic profile for a, in p direction, and for a,, p, in top

and bottom regions along the z direction.
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