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Dual-Satellite Cloud Product Generation Using
Temporally Updated Canonical Coordinate Features
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Abstract—State-of-the-art cloud products are typically gener-
ated using scientific polar orbiting satellites such as the Moderate
Resolution Imaging Spectroradiometer (MODIS). However, they
do not allow for observation of the same region at a regular
temporal frequency, rendering them ineffectual for nowcasting
problems. Operational satellites such as Meteosat-8 SEVIRI, in
contrast, are geostationary and provide continual data at a reg-
ular temporal frequency over a much larger region. MODIS-like
cloud products cannot be directly generated from operational
satellites as they typically have a smaller number of spectral
bands and different wavelengths and spatial resolution. This pa-
per applies the canonical coordinate decomposition method to
estimate scientific cloud products using imagery from operational
satellites. Using the proposed method features of the Meteosat-8
imagery data that are maximally coherent with the data from
the MODIS are generated. These features are temporally up-
dated at times and locations where MODIS data are unavail-
able using the alternating block power method. A subset of the
canonical coordinates of Meteosat-8 SEVIRI is then used to cre-
ate MODIS-like cloud products using several neural networks.
The quality of the generated cloud products and their temporal
consistency have been demonstrated on several data sets from
July 2004. A benchmarking with an independent Meteosat-8-
based algorithm is also provided, which shows the promise of our
approach in generating MODIS-like cloud products.

Index Terms—Backpropagation neural networks (BPNNs),
canonical correlation analysis, cloud mask and phase, power meth-
ods, remote sensing, temporal updating.

I. INTRODUCTION

SATELLITE instruments provide global and local views of
the Earth and atmosphere continuously, resulting in valu-

able but intractably large amounts of data for analysis. Many
studies have been conducted on the use of statistical methods
and neural networks to perform automatic classification and
analysis of this large volume of data. A good overview of these
efforts is found in [1]. Central to all of these nonparametric (i.e.,
not depend on the physical models) classification methods is the
need for a human expert to create labels. This labeling process
occurs on a global scale, which causes many incorrect labels on
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individual pixels. This lack of correctly labeled training data, in
turn, leads to inaccurate automatic classification systems. In ad-
dition, for cloud classification, the traditional expert-generated
labels, e.g., cirrus, cumulus, etc., are only informative about the
altitude of the clouds and do not directly define their physical
characteristics or compositions.

Various feature extraction methods have been examined for
cloud classification problems. The use of spectral information,
which is comprised of a set of radiance measurements in
different spectral bands, is utilized in many cases [2]–[4]. Tex-
tural features, which are typically less sensitive to atmospheric
attenuation and detector noise, are also examined [5], [6].
Some classification schemes incorporate a combination of both
spectral and textural features [7]. Others [8] even account for
temporal changes in the satellite data by adjusting the parame-
ters of the classifiers to account for such changes. Temporal
changes in cloud features have been further studied in [9] using
a simple pixel-based approach that updates the parameters of
the classifiers similar to the approach in [8].

Alternative statistical-based methods for extracting fea-
tures in remote-sensing data include principal component
analysis [10]–[12], independent component analysis [13]–[15],
and canonical coordinate decomposition (CCD) [16]–[21].
Niemeyer et al. [21] utilized these algorithms to detect changes
in land features using Landsat Thematic Mapper (TM) satellite
data. Although these methods are used in various remote-
sensing applications, their application to cloud classification
has not been widely examined to date. In this paper, the appli-
cation of CCD for relating two sets of satellite imagery data,
namely the Moderate Resolution Imaging Spectroradiometer
(MODIS) and Meteosat-8 SEVIRI, is explored.

The MODIS instrument provides data in 36 distinct spectral
bands, providing a complete global coverage every one to two
days [22]. The channels are processed in various combinations
using meteorological algorithms [23], [24] to yield cloud prod-
ucts, including the cloud mask and the cloud phase that are
regarded as the state of the art by scientists and meteorologists.
The MODIS cloud mask designates clear versus cloudy regions
in the area covered by the MODIS instrument, while the cloud
phase determines the composition of the identified clouds, e.g.,
ice, mixed, or water phase. Due to the polar-orbiting nature of
MODIS, these cloud products cannot be generated at regular
temporal frequencies and over a large spatial region.

The geostationary Meteosat-8 satellite, on the other hand,
provides data from the SEVIRI instrument in 11 distinct spec-
tral bands every 15 min over a region centered on 0◦ longitude,
covering approximately one hemisphere of the planet [25].
Owing to its increased temporal frequency and larger global
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coverage over the MODIS, it is highly desirable to produce
MODIS-like cloud products from Meteosat-8 data. However,
simply applying the MODIS product algorithms to information
gathered from Meteosat-8 is irrealizable due to the variation
in the number of spectral bands and the auxiliary information
required for cloud mask and cloud phase product generation.
Although there are unpublished results using only Meteosat-8
SEVIRI imagery to produce cloud mask/phase products, as far
as we know, no attempt has been made to optimally relate
dual-satellite imagery data in order to create MODIS-like cloud
products using the Meteosat-8 data alone without utilizing the
physical models and auxiliary information typically needed to
generate these products.

The motivations behind this paper are twofold. First, provide
a method of classifying clouds in a manner that holds a more
meaningful interpretation to cloud composition without the
intervention of a human expert. The goal here is to generate
MODIS-like cloud products using Meteosat-8 SEVIRI data
by extracting features of Meteosat-8 that are highly coherent
with the MODIS data. The second motivation is to extract a
reduced set of Meteosat-8 features that are highly representative
of those of MODIS and, at the same time, remove the effects
of noise and uncommon (incoherent) features that could be
detrimental to the classification. The CCD method provides an
ideal framework for achieving these goals and, hence, is applied
in this paper. In addition, the alternating block power method
is used to update the canonical coordinate (CC) mappings of
Meteosat-8 with each new satellite overpass when no MODIS
data are available. This allows MODIS-like cloud product
generation at times and locations when MODIS is not available.
A subset of the CCs of Meteosat-8 is then be used to create
MODIS-like cloud products using a bank of backpropagation
neural networks (BPNNs). Test results and benchmarking with
an independent Meteosat-8 based algorithm [26], [27] reveal
the usefulness of the generated MODIS-like cloud products
using only Meteosat-8 data at times and spatial locations when
MODIS is not available.

The organization of this paper is as follows. A brief review
of CCD and a description of the use of CCs of Meteosat-8 for
features are found in Section II. The method of updating these
coordinates with each new Meteosat-8 observation is found
in Section III. A description of the scheme used to generate
the cloud mask products using the temporally updated CC
features of Meteosat-8 is found in Section IV. The cloud mask
is used to generate the cloud phase product, which is found in
Section V. The benchmark and validation results against a state-
of-the-art Meteosat-second-generation method are discussed in
Section VI. In Section VI, a comprehensive study is carried
out to assess the performance of the proposed method in
comparison with an independent Meteosat-8 based cloud mask
and phase generation algorithm. Finally, observations and con-
clusions on this work can be found in Section VII.

II. CCS AS FEATURES

CCD is a method that determines linear dependence (or
coherence) between two data channels by mapping the data
to their CCs where linear dependence is easily measured

by the corresponding canonical correlations. CCD has re-
cently been researched for various remote-sensing problems.
Okumura et al. [16] used CCD for noise reduction in lidar data,
while Hernandez-Baquero and Schott [17] used a form of CCD
to create estimates of land surface temperature from satellite
data to within 1 K. Lui et al. [18] used CCD to determine
land use, rather than surface temperature, from remotely sensed
data. Studies have also been performed to show the potential
of CCD for determining changes in snow cover using passive
microwave data [19] and for detecting changes at nuclear power
plants [20], [21].

In this paper, the CCD is applied differently than those
in [16]–[21]. In that, using the two-channel CCD mapping
matrices, a subset of representative Meteosat-8 features that is
most coherent with those of MODIS is extracted. This subset
captures most of the attributes of the MODIS data to allow
for reliable MODIS-like cloud product generation when and
where MODIS data are unavailable. This is accomplished
without making use of any model-based lookup table matching
typically used in most of cloud product generation systems. In
order to understand the methodology utilized to apply CCD
to the two-channel MODIS and Meteosat-8 data, first the
principle behind CCD and linear dependence (coherence) is
briefly reviewed [28].

A. Brief Review of CCD

Consider the composite data vector z consisting of two
random vectors x ∈ R

m and y ∈ R
n, m ≤ n, i.e.,

z =
[
x
y

]
∈ R

(m+n). (1)

We assume that x and y have zero means and share the
composite covariance matrix

Rzz =E[zzT ]=E

[(
x
y

)
(xT yT )

]
=

[
Rxx Rxy

Ryx Ryy

]
. (2)

This composite covariance matrix may be taken to block tridi-
agonal form as follows [28]:
[

FT 0
0 GT

] [
R

−1/2
xx 0
0 R

−1/2
yy

]
Rzz

×
[

R
−T/2
xx 0
0 R

−T/2
yy

] [
F 0
0 G

]
=

[
I Σ

ΣT I

]
. (3)

The trick is to choose F , Σ, and G to be the singular
value decomposition (SVD) of the coherence matrix C =
E[(R−1/2

xx x)(R−1/2
yy y)T ] = R

−1/2
xx RxyR

−T/2
yy . That is

C =R−1/2
xx RxyR−T/2

yy = FΣGT

FT CG =FT R−1/2
xx RxyR−T/2

yy G = Σ (4)

where F ∈ R
m×m and G ∈ R

n×n are orthogonal matri-
ces, i.e., FT F = FFT = I(m), GT G = GGT = I(n), and
Σ = [Σ(m) 0] ∈ R

m×n is a diagonal singular value matrix,
with Σ(m) = diag[σ1, σ2, . . . , σm] and 1 ≥ σ1 ≥ σ2 ≥ · · · ≥
σm > 0.
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Now, the transformation

[
u
v

]
=

[
FT 0
0 GT

] [
R

−1/2
xx 0
0 R

−1/2
yy

] [
x
y

]
(5)

resolves zT = [xT ,yT ] into their CCs wT = [uT ,vT ], with
the composite covariance matrix

Rww = E[wwT ] =
[

(Ruu = I) (Ruv = Σ)
(Rvu = ΣT ) (Rvv = I)

]
. (6)

We refer to the elements of u = [ui]mi=1 ∈ R
m and v =

[vi]ni=1 ∈ R
n as the CCs of x and y, respectively. Clearly, the

diagonal cross-correlation matrix Σ

Σ = E[uvT ] = E
[
(WT x)(DT y)T

]
= FT CG (7)

is called the canonical correlation matrix of canonical cor-
relations σi, with 1 ≥ σ1 ≥ σ2 ≥ · · · ≥ σm > 0 and WT =
FT R

−1/2
xx and DT = GT R

−1/2
yy are the overall CCD map-

ping matrices in (5). Correspondingly, ΣΣT is the squared
canonical correlation matrix of squared canonical correlations
σ2

i . Thus, the canonical correlations measure the correlations
between pairs of corresponding CCs. That is, E[uivj ] = σiδij ;
i ∈ [1,m], j ∈ [1, n], with δij being the Kronecker delta. An
important property of canonical correlations is that they are
invariant under uncoupled nonsingular transformations of x
and y [28].

In the CCD framework, one can easily determine the rate at
which the x-channel carries information about the y-channel
and vice versa or simply the mutual information between x
and y. According to Shannon [29], the information rate for the
composite data vector z = [xT yT ]T is defined as

R = Hx + Hy − Hz (8)

where Hx is the entropy of the x channel data, Hy is the
entropy of the y channel data, and Hz is the shared entropy.
Using Gaussian assumptions for x, y, and z and then following
derivations in [28], we may rewrite the information rate as

R = −1
2

log det{I − ΣΣT } =
1
2

n∑
i=1

log
1

1 − σ2
i

. (9)

The ith term in this summation, i.e., Ri = (1/2) log(1/(1 −
σ2

i )), is the rate at which the ith CC of y, i.e., vi, brings
information about the ith CC of x, i.e., ui. Thus, we further
refer to the Ri as canonical rates. This result implies that the
rate of information captured in the first l dominant CCs of the x
and y channels is the sum of the corresponding canonical rates

R̃ =
l∑

i=1

R̃i =
1
2

l∑
i=1

log
1

1 − σ2
i

. (10)

The information rate (10) can be used to determine the most
informative subset of the CCs for features in cloud classifica-
tion. This is done by increasing l until a prespecified percent of
information is captured in the first l canonical correlations.

Remark 1: A conventional method of CCD, as in (5), does
not offer a simple way to compute a small subset of CCs
and correlations. A full SVD for the coherence matrix, along
with the square-root inverses of data covariances, has to be
computed, regardless of the rank reduction. This makes the
conventional method computationally intractable, especially
when the data channels have large dimensions. In [30], simple
algorithms using a deflation process have been reported to
recursively compute the CCs and correlations one by one or
in groups.

B. CCD Application to MODIS and Meteosat-8 Data

Fig. 1 illustrates the structure of the entire system used to
find CC features of Meteosat-8 SEVIRI. As shown in this
figure, this process involves several processing steps. First,
because Meteosat-8 SEVIRI and MODIS are viewing the globe
from two different orbits, each has a distinct angle at which
it observes the planet. The difference in observation angles of
the two instruments gives rise to problems in visible spectral
bands due to differences in the angles of reflected light to the
satellites. To help alleviate this problem, the data from both
satellite instruments in the visible bands are partially corrected
(to the first-order effects) for solar zenith angle by dividing
the values of the original data returns by the cosine of the
angles of the sun from the zenith. Furthermore, because of
the spatial and positional differences, the data in a particular
pixel of MODIS will not necessarily match the data in the
same pixel of Meteosat-8 SEVIRI. Therefore, the two instru-
ments must be geolocated in terms of their reference to the
Earth. Also, Meteosat-8 SEVIRI spatial resolution at equator
is approximately 9 km2/pixel as opposed to the 1-km2/pixel
resolution for MODIS data. Therefore, the MODIS data are
subsampled to represent the region covered by Meteosat-8 at
the same resolution. In essence, the MODIS data are reduced
spatially by averaging the data over the regions covered by
Meteosat-8 to result in a pixel-to-pixel matching. This may
degrade the quality of the MODIS image to some degree.
However, by performing this operation in reference to the Earth,
the MODIS and Meteosat-8 data sets match pixelwise in terms
of the content and spatial resolution. Finally, each channel of
both MODIS and Meteosat-8 is mean-centered prior to the
CCD process.

After these preprocessing steps are carried out in the first
subsystem of Fig. 1, it is necessary to manipulate the data into
a two-channel format. For the problem of relating MODIS and
Meteosat-8 SEVIRI data, we assume that the MODIS data form
channel x ∈ R

m and the Meteosat-8 data form channel y ∈ R
n

in the CCD process, where m and n (m > n) are the number
of their spectral bands. For the Meteosat-8 SEVIRI, there are
m = 11 spectral bands (see Table I), while for the MODIS,
n = 19 out of 36 spectral bands (see Table II) are used. These
19 spectral images correspond to the ones used to generate the
original MODIS cloud mask product. The pixels at a specific
location across the MODIS spectral images form a realization
of random vector x, while the pixels at the same location across
the Meteosat-8 SEVIRI spectral images form a realization of
random vector y. There are seven infrared, ten visible, and two
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Fig. 1. Structure of the overall system used for data manipulation and CC feature extraction/selection processes.

TABLE I
SPECTRAL CHARACTERISTICS OF METEOSAT-8-SEVIRI CHANNELS

water vapor spectral bands of data in MODIS and six infrared,
three visible, and two water vapor spectral bands in Meteosat-8
SEVIRI. Owing to the fact that the spectral characteristics
of infrared, visible, and water vapor spectral bands are very
different, separate sets of vectors are formed for the three
different spectral regions, and the CCD process is carried out
separately for these three regions. In this way, the influence of
one spectral region on the CCD features of the other is avoided.
Note that, although some of the spectral bands of Meteosat-8
and MODIS are similar, it is clear from Tables I and II that
the MODIS data contain more information to generate much
better cloud products. Clearly, our goal in the CCD process is
to extract the best set of features from Meteosat-8 that is highly
representative of the information in the MODIS.

TABLE II
SPECTRAL CHARACTERISTICS OF MODIS CHANNELS

USED IN CLOUD MASK

After vectorizing the x and y channels, a geographical
mask is applied to the samples to allow for separate CCD
procedures over land and water. Again, this is based upon the
knowledge that the statistics of the images over land versus
over water are distinctly different. Thus, the geographical mask
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separates the sample vectors into land and water areas before
developing mapping matrices to create CCs of Meteosat-8.
After performing this masking, a total of six sets of vectors are
prepared for CCD. These vectors correspond to three different
spectral regions of MODIS and Meteosat-8 imagery over land
and water regions.

All the sample vectors in each set are used to create CCD
mapping matrices W and D for the particular spectral band and
a land or water region, as shown in the CCD subsystems in
Fig. 1. Thus, the CCD processes are partitioned in the sense that
a separate set of mapping matrices are developed for visible,
infrared, and water vapor vectors over land and over water. By
using all samples of the different vector sets, approximations to
the true statistics of the data are generated.

A relevance selection procedure is then applied to determine
which CC features of Meteosat-8 are to be kept and utilized in
the cloud classification. This process is based solely on the in-
formation content in the CCs using the information rate in (10).
The optimum number of CCs l for each spectral set over land or
water is determined experimentally such that at least 70% of the
mutual information between MODIS and Meteosat-8 SEVIRI
is retained in the first l features. Note that this feature selec-
tion is necessary in order to ensure that only the information
dominant and coherent features are used in the classification
process since the subdominant coordinates tend to capture the
dissimilarities (incoherence) and noise between the two satellite
imagery data, which could be detrimental to classification, if
included. This process also reduces the dimensionality of the
feature space, which, in turn, helps to better train the classifiers.
This subset of CCs of Meteosat-8 SEVIRI is subsequently
applied to a classifier to create MODIS-like cloud products.

The dotted versus solid lines in Fig. 1 illustrate the fact
that, while Meteosat-8 SEVIRI data are available every 15 min,
the data from MODIS are only available at certain overpasses
with less regularity and frequency of occurrence. The timing
schedule in the lower part of Fig. 1 shows the varying overpass
times of MODIS and Meteosat-8 SEVIRI. The MODIS data
overpass times for the region considered here are given by Ti,
where i ∈ [1,M ] is the index for the number of overpass for
that particular day and M is the total number of overpasses in
that day. The time between the MODIS overpasses is variable
for the day, ranging anywhere between 1 and 3 h depending on
the positions of the orbits of the two MODIS satellites, namely
Terra and Aqua [22]. The Meteosat-8 SEVIRI data, in contrast,
have overpass times designated by tj , where j ∈ [1, N ] is the
corresponding index of the overpass for the same day and N
is the total number of Meteosat-8 overpasses in that day. An
important distinction, however, is the fact that the Meteosat-8
overpasses occur at regular 15-min intervals. Also, each passing
of the MODIS instrument over the area seen by Meteosat-8
SEVIRI results in a different area of spatial coverage. Only
the areas that have overlapping data are used for computing the
canonical mappings. Owing to the changes that occur over time
in the satellite observations, it is obviously necessary to update
the canonical mapping matrices with each new Meteosat-8
observation, even when MODIS data are not available between
two overpasses. A temporal updating method is described in the
next section.

III. TEMPORAL UPDATING OF CC FEATURES

In order to create a temporally consistent set of features
for cloud mask/phase generation, it is necessary to update the
relevant CCD mapping matrices W and D with each new
Meteosat-8 overpass. It was previously mentioned that the
Meteosat-8 SEVIRI satellite provides data every 15 min, while
the MODIS data are returned sporadically. Thus, in order to
provide cloud products at times and locations where MODIS is
not available, it is necessary to update the Meteosat-8 features
every 15 min with new samples of the Meteosat-8 data while
retaining the information of the previous MODIS as well as
previous Meteosat-8 frames.

As noted before, only the first l most coherent CCs are used
to classify the Meteosat-8 data into cloud products. However,
as mentioned in Remark 1 in Section II-A, the conventional
method of finding CCD mappings requires a full SVD of the
coherence matrix C and does not allow for calculation of only
a subset of the CCs. Moreover, the conventional CCD method
does not allow for easy updates to the mapping matrices W
and D with the arrival of new samples. The alternating block
power-based method [30] provides a means of updating the
several columns of these matrices as new samples of satellite
data become available.

A. Temporal Updating Using Alternating Block Power Method

It can easily be shown that the problem of finding CCs can
be cast as a coupled generalized eigenvalue problem, which can
be solved using the alternating power method [31] by using al-
ternating iterations. In [30], an alternating block power method
was introduced, which allows solving for several columns of
W and D at the same time. That is, given the prior knowledge
of how many columns are needed to meet certain percentage
of mutual information rate, the first l columns of the mapping
matrices W and D can be computed, leading to the top l CCs
of each channel. In our specific application, l is predetermined
such that the corresponding canonical correlations capture at
least 70% of the mutual information [see (10)] between the
satellite instruments. Note that l ≤ m, i.e., less than or equal
to the smallest dimension of x and y channels.

An iterative method in [30] computes the first l columns of
mapping matrices W and D, i.e., Wl and Dl using the following
alternation equations:




Solve RxxW̄l(k + 1) = RxyDl(k) for W̄l(k + 1)

W̄l(k + 1) GSO−→ Wl(k + 1)
Solve RyyD̄l(k + 1) = RyxWl(k + 1) for D̄l(k + 1)

D̄l(k + 1) GSO−→ Dl(k + 1).
(11)

Note that the second and fourth equations in (11) perform
the Gram–Schmidt orthogonalization (GSO) of Wl and Dl,
respectively, and they guarantee the constraints WT

l (k +
1)RxxWl(k + 1) = I and DT

l (k + 1)RyyDl(k + 1) = I for
every iteration k. An iterative GSO for Wl and Dl procedure is
introduced in [30]. It is worthwhile to mention that, if no prior
knowledge about the number of necessary CCs l is available,
the order recursive alternating method in [30] can be used to
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calculate the CC mappings in a sequential manner until the
mutual information criterion is met.

To implement the above algorithm, updated versions of
covariance and cross-covariance matrices are required. At
those time instances where both data sets are available, i.e.,
MODIS and Meteosat-8 SEVIRI overpasses coincide, all the
covariance and cross-covariance matrices Rxx, Ryy , and Rxy

are updated; whereas in the absence of the MODIS, only
the covariance matrix Ryy of the new Meteosat-8 data and
cross-covariance Rxy between the new Meteosat-8 data and the
previous MODIS overpass data are updated. The covariance
and cross-covariance matrices are updated using




Rxx(j) = λRxx(j − 1) + x(j)xT (j)
Ryy(j) = λRyy(j − 1) + y(j)yT (j)
Rxy(j) = λRxy(j − 1) + x(j)yT (j)

(12)

where λ < 1 is a forgetting factor. Several different values
of λ were tested, and it was experimentally determined that
λ = 0.75 gave the best overall results. This value provided
the most optimal mechanism for weighting the recent and past
information for temporal updating of the covariance matrices.
Therefore, this value was selected and used throughout
our experiments. The initial estimates Rxx(0) = Ryy(0) =
Rxy(0) = δ2I , where δ is a small quantity. This prevents the
covariance matrices from becoming singular at early iterations.
After each rank-one update of the covariance matrices, the
alternating block power method is iterated for some number of
iterations. During these iterations, the covariance matrices are
kept fixed. With the next data observation, an update of the co-
variance matrices takes place again, and the process is repeated.

At the start of the day when both MODIS and Meteosat-8
data sets are available, the mapping matrices are calculated
using the standard SVD-based method in Section II. Then, the
alternating block power algorithm is implemented during
the day. During this updating process, the covariance matrix
for the MODIS data is held fixed until the next MODIS
overpass, but the cross-covariance matrix between MODIS and
Meteosat-8, as well as the covariance matrix of the Meteosat-8
data, are updated with each new Meteosat-8 SEVIRI overpass.
At the time of the new MODIS overpass, all of the covariance
matrices are recomputed, and the process restarts again. As
mentioned before, the temporally updating process is executed
for each spectral (visible, infrared, and water vapor) and geo-
graphical (land and water) regions separately, hence resulting
in six updated pairs of mapping matrices Wl and Dl.

B. Temporal Consistency and Information Rate

As discussed before, it is desirable that the retained CC
features capture at least 70% of the mutual information between
MODIS and Meteosat-8 for subsequent cloud mask/phase gen-
eration. In order to verify that, indeed, the retained (three
infrared, two visible, and one water vapor) CC features result
in the retention of 70% or more of the mutual information
during the course of temporal adaptation, the information rates
over land and water for July 8, 2004, from 12:00 UTC to
14:00 UTC are computed and monitored in Fig. 2(a) and (b),
respectively. These rates are calculated every 15 min with each

new Meteosat-8 SEVIRI overpass. In these plots, the horizontal
axis represents the time elapsed since the initial time at 12:00
UTC, i.e., the first time MODIS and Meteosat-8 were available.
At 13:30 UTC, after 90 min of elapsed time, the new MODIS
data are used in addition to the Meteosat-8 data to recalculate
the covariance matrices. Nonetheless, in between these time
instances, temporal updating takes place based upon every
new Meteosat-8 overpass. The information rates are calculated
separately over land and water for the retained three infrared,
two visible, and one water vapor CCs. Fig. 2(c) and (d) indicates
different regions of the Earth covered by MODIS at 120:00
UTC and 13:30 UTC overpass times, respectively.

Several interesting observations can be drawn from these
results. First, notice that, in both cases, the information rate
for the retained CCs features remains above 70% at all times.
This implies that the classification using these updated features
should provide reasonable results. Also, the information rate
over time remains fairly steady until the next MODIS overpass.
This is especially true over water, where the geographical
features are uniform compared to land regions. This indicates
that the information rate between MODIS at time 12:00 UTC
and Meteosat-8 during the time period of 12:00 UTC through
13:15 UTC is fairly consistent. However, at the time 13:30
UTC when new MODIS becomes available, there is a rather
substantial change in the information rate. This change is an
indication of the fact that the coherence (or linear dependence)
between the two data sets is different. This is most likely due to
the differences in MODIS viewing angle and coverage from one
overpass to the next. In this example, the MODIS overpass at
12:00 UTC shares a viewing angle that is very close to the angle
of Meteosat-8. However, at 13:30 UTC, the MODIS viewing
angle is distinctly different than that of Meteosat-8. In fact,
at 13:30 UTC, the MODIS instrument is viewing the covered
region at a very sharp angle from the zenith of the instrument,
which causes a great deal of reflection. Owing to the fact
that the viewing angle of the Meteosat-8 instrument is not
the same, the coherence (measured by the information rate)
between the instruments will change at this point. Another
important reason for this change in linear dependence is that the
MODIS instrument does not return data at the same geographi-
cal location over the Meteosat-8 region with each overpass [see
Fig. 2(c) and (d)]. Because various land and water features have
different characteristics within the overall image, this can also
lead to changes in the overall coherence. For instance, in this
case, the MODIS overpass at 12:00 UTC covers the Mediter-
ranean Sea and North Atlantic Ocean as well as land regions
such as Spain and Morocco. These areas are very dark and veg-
etated. However, the MODIS overpass at 13:30 UTC covers the
South Atlantic and sub-Saharan Africa. It is likely that different
regions covered by MODIS will also contribute to differences
in coherence over time. Although in this case there is a small
region of land covered by MODIS in both overpasses, there is
no guarantee that this will happen in consecutive passes. Thus,
it is necessary to do an analysis over the entire MODIS area.

The information rate plot over land in Fig. 2(a) remains fairly
flat from the initial MODIS overpass at 12:00 UTC until the
time just before the next MODIS overpass at 13:30 UTC, where
there is a sharp drop in coherence between the Meteosat-8
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Fig. 2. Temporally updated information rates for canonical coordinates of Meteosat-8—July 8, 2004. (a) Over land. (b) Over water. (c) Map of the region covered
by MODIS overpass on July 8, 2004, at 12:00 UTC. (d) Map of the region covered by MODIS overpass on July 8, 2004, at 13:30 UTC.

and MODIS data in all spectral bands. It is interesting to note
that, after this MODIS overpass, the coherence between the
instruments rises as a result of the temporal updating to some
degree for the visible and infrared channels, while dropping
for the water vapor channels. This is likely due to the rapid
development of cumulus clouds in the Meteosat-8 images over
time, which causes artifacts in the water vapor channels that
were not available at the 13:30 UTC MODIS overpass at which
the covariance matrices were updated. That is, these clouds are
seen in the water vapor images of the Meteosat-8 instrument
but not in the MODIS data, hence causing discrepancies in the
information content. However, it is important to note that, at all
times, the present information rate remains above the desired
level of 70%.

The information rate plot over water in Fig. 2(b) exhibits
fewer changes than those over land. The information rates
remain steady throughout the 2-h span tested. This is likely due
to the fact that the ocean areas do not change in temperature
and reflectivity over time as dramatically as the land areas.
Consequently, the new MODIS overpass data do not change the
covariance matrices drastically, hence resulting in very steady
information rates. The information rates for the first 90 min are
very steady. A small jump in information rate occurs at the next
MODIS overpass at 13:30 UTC for water vapor and visible
channels, while a slight decline in information rate occurs at

this point for the infrared channels. However, these changes are
minor, and the rates remain steady after the MODIS overpass,
indicating that there is a high coherence between the two satel-
lite data at different times. Again, all of these rates are above
the 70% desired level. Thus, the use of the three infrared, two
visible, and one water vapor CCs of Meteosat-8 that retain 70%
or more of the mutual information is verified experimentally.

To verify the validity of the aforementioned observations and
conclusions, the information rate is calculated on an alternate
day, July 7, 2004. The plots of these results over land and over
water are found in Fig. 3(a) and (b), respectively. In the plot
of information rate over land in Fig. 3(a), the three MODIS
overpasses occur at 0 min (corresponding to 9:45 UTC),
195 min (corresponding to 13:00 UTC), and 285 min elapsed
time (corresponding to 14:30 UTC). From this plot, it is obvious
that, over time, the information rate over the desert region in
sub-Saharan Africa remains reasonably steady for the infrared
and water vapor spectral bands. There is a significant rise of
coherence in the visible channels over the sub-Saharan Africa
region in this period. This rise in coherence is likely due to the
fact that the region seen by MODIS at 9:45 UTC is seen at a
distinct angle from that seen by Meteosat-8 SEVIRI. Because
of the sharpness of this angle from the MODIS zenith, the
MODIS instrument is receiving more directly reflected light at
this time than the Meteosat-8 instrument. However, as the day
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Fig. 3. Temporally updated information rates for canonical coordinates of Meteosat-8—July 7, 2004. (a) Over land. (b) Over water.

continues, the Meteosat-8 instrument receives more reflected
light, which causes the coherence in the visible channels to
increase. Because the water vapor and infrared channels do
not depend directly on the reflected light, this change is not
as dramatic in these channels. At the next MODIS overpass at
195-min elapsed time, there is a drop in the coherence in all
of the spectral bands. This is likely due to the fact that there
are few samples to change the MODIS covariance matrix, and
thus, the changes in the data are not properly reflected over land.
This is also the case at the final MODIS overpass of the day at
285-min elapsed time. However, in all cases, the coherence
remains above 70%.

Similarly, Fig. 3(b) shows the changes in the information
rate over water for the duration given. Notice that, for the
initial duration from the first MODIS overpass until the sec-
ond, there are some erratic changes in the information rate
as time elapses. This is likely due to the fact that there are
very few MODIS samples of the water regions with which to
initialize the covariance matrices. Therefore, the initial MODIS
covariance matrices over water are not necessarily accurate
estimates of the true values, hence leading to discrepancies
in the coherence between MODIS and Meteosat-8. However,
notice that, at the second MODIS overpass at 195-min elapsed
time, the information rate levels off to some degree and remains
fairly steady until the next MODIS overpass. Although there
are few sample points between these MODIS overpasses, the
information rate steadies in this period, indicating that the linear
dependence between MODIS and Meteosat-8 is reasonably
consistent in this time frame. At the third MODIS overpass
at 285-min elapsed time, there is a large jump in information
rate for visible and water vapor wavelengths. The coherence
values remain steady after this jump. At the 285-min overpass,
there is a drop in the information rate in the infrared bands,
but after this drop, the coherence remains reasonably steady.
The changes in information rate are likely due to the changes
in satellite viewing angle. Although correcting for solar zenith
angle aids in the problems associated with different viewing
angles, it is clearly illustrated through these plots that the
differences in angle have not been completely compensated

for. Part of this problem is with the amount of light returned
to the various satellites that is related to the area covered by
MODIS in each subsequent overpass. Because the area covered
by MODIS changes, the angle of observation changes with
each overpass, while the Meteosat-8 angle remains constant.
Thus, there are obviously problems involved with the overpass
location that cannot be solved by simply dividing by the solar
zenith angle. However, the information rate is always about
70%, which again indicates that these coordinates are good
features for classification.

IV. CLOUD MASK GENERATION PROCESS

The MODIS cloud mask algorithm uses 19 out of the 36
spectral bands from MODIS. These bands are screened and
tested for cloud coverage. For each spectral test, a probability
of clarity is assigned. After the various tests are performed, the
results of these tests are combined to classify the pixel as one
of the four possible classes that are confident clear, probably
clear, uncertain, and cloudy. Typically, approximately 90% of
the pixels are either classified as clear or cloudy [23]. For this
experiment, classification is performed to place the Meteosat-8
SEVIRI CCs into either clear or cloudy classes, and no pro-
vision is made for the less certain clarity levels as they are
ambiguous classes and cause inaccuracy in classification.

To show the usefulness of the extracted CC features
for creating MODIS-like cloud masks, several BPNNs are
trained based on the CC features of Meteosat-8 at different
geographical regions, namely land and water, and for every 2-h
span throughout the daytime. Thus, for an 8-h period during
10:00 A.M. and 12:00 P.M., four pairs of BPNNs are trained
for their specific spatial locations, e.g., for regions over land
and water. Note that this grouping of BPNN classifiers had to
be done since it is impossible to successfully train one network
to account for the spatial (over land and water) and temporal
variability in the satellite data.

The input signal to each three-layer BPNN is a 6-D feature
vector consisting of the CCs (three infrared, two visible, and
one water vapor CCs) of Meteosat-8 for a particular pixel. Each
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network has 12 neurons in the first hidden layer, six neurons
in the second hidden layer, and two outputs corresponding
to clear or cloudy classes. The nonlinear activation function
utilized at each level is a hyperbolic tangent [32]. With this
activation function, values outside of the range of [−1, 1]
will be mapped to a value between [−1, 1]. A hard-limiting
threshold operation is experimentally determined to yield the
best results at the output layer neuron and is used to convert
the output of the network to one of the possible cloud mask
levels. All of the networks are trained on 7500 randomly
selected samples of the two classes for a total of 75 epochs.
A rather large training data set is created by matching MODIS
and Meteosat-8 SEVIRI overpasses from the week of July 7,
2004, through to July 15, 2004. The BPNNs are trained solely
based on pixels labeled as confident clear or cloudy in the
original MODIS cloud masks. A total of 25 different weight
initializations are tried for each network, and an average clas-
sification rate of 94%–97% is found on the training data for
these networks. The best networks are then selected based on
the performance on the training data.

The networks are then tested on the temporally updated CC
features of Meteosat-8 data. Depending on the particular time of
the Meteosat-8 overpass, an appropriate pair of BPNNs is used.
Classification results of these temporally updated features for
July 8, 2004, are shown in Fig. 4(a)–(f). Fig. 4(a) is the original
MODIS mask for only cloud and clear pixels at 12:00 UTC
(initial time), while the corresponding network-generated mask
at the same UTC time is found in Fig. 4(b). The overall correct
classification rate for this result is around 91.40%. The overall
visual appearance of this mask is very good in comparison
with the original mask in Fig. 4(a). The misclassifications are
sporadic, indicating that there is no particular area in which the
majority of the misclassifications occur.

In order to illustrate the quality of the temporally updated
features versus the features without temporal updating, the
original MODIS cloud mask at 13:30 UTC is presented in
Fig. 4(c). Note that this mask covers a different region within
the Meteosat-8 data [see Fig. 2(d)]. The mask produced by
recomputing the mapping matrices based on new MODIS and
Meteosat-8 data at this time is found in Fig. 4(d), while the
network-generated cloud mask created with temporally updated
Meteosat-8 CCs (without the new MODIS data at 13:30 UTC)
is found in Fig. 4(e). The mask found in Fig. 4(d) is clearly
a closer approximation to the original MODIS cloud mask in
Fig. 4(c) than that in Fig. 4(e), especially in the upper left and
lower right areas of the image. This illustrates that the inclusion
of the new MODIS data at the next overpass indeed adds
valuable information to the features that are not captured from
the previous MODIS overpass. For comparison, the network-
generated cloud mask created using the CCs of Meteosat-8
without temporal updating is found in Fig. 4(f). Comparison
of the two network-generated cloud mask products in Fig. 4(e)
and (f) with the original MODIS cloud mask in Fig. 4(c) reveals
that the cloud mask created with temporally updated features
in Fig. 4(e) has a closer correspondence to the original MODIS
cloud mask than that created without temporally updated
features in Fig. 4(f). This is particularly clear in the upper left
and lower right regions of the image, where the mask generated

Fig. 4. MODIS cloud mask and network-generated results on July 8, 2004.
(a) MODIS cloud mask at 12:00 UTC. (b) Network-generated MODIS cloud
mask at 12:00 UTC. (c) MODIS cloud mask at 13:30 UTC. (d) Network-
generated two-class cloud mask with retraining using both Meteosat-8 and
MODIS at 13:30 UTC. (e) Network-generated two-class cloud mask with
temporal updating of only Meteosat-8 at 13:30 UTC. (f) Network-generated
MODIS cloud mask without temporal updating at 13:30 UTC.

with the updated CC features has a very close correspondence
to the original MODIS cloud mask, whereas the mask created
without temporally updated features has clear discrepancies
from the original MODIS cloud mask in these regions. The
overall classification rates for Fig. 4(d)–(f) are 85.43%,
75.32%, and 65.55%, respectively. Clearly, accounting for the
temporal changes in the features aids in the classification of the
Meteosat-8 into MODIS-like cloud mask products.

The strong disparity in the correct classification rates for the
cloud mask products with and without the temporal updating of
the features is illustrated in the confusion matrices in Table III
for July 8, 2004, at 13:30 UTC. Again, from the results in
this table, it is evident that the mask created by regenerating
the mapping matrices is much closer to the original MODIS
cloud mask than both the masks created with and without
the temporal updating. Note also that the mask generated by
regenerating the mapping matrices with new MODIS data tends
to overestimate clouds when compared with the masks created
without the new MODIS data. In contrast, there is a substantial
improvement in the accuracy of cloud estimation in the mask
generated with the new MODIS data versus the others, which
is evident by comparing the images in Fig. 4(d)–(f). This
indicates that the new MODIS data provides a great deal of
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TABLE III
CONFUSION MATRICES FOR TEMPORALLY AND NOT TEMPORALLY

UPDATED CANONICAL COORDINATE FEATURES OF METEOSAT-8
DATA ON DAY 190 AT 13:30 UTC

TABLE IV
CLOUD MASK RESULTS FOR JULY 7, 2004

ability to estimate clouds accurately. It is important to notice
also that the mask with features that have been temporally
updated is significantly better than the mask created without
temporal updating, especially in the case of identifying cloudy
regions over land. This lends credence to the use of temporal
updating for cloud product generation.

To verify the importance of temporal updating of the CC
features, the classification scheme is tested on an alternate
day. On July 7, 2004, there are three MODIS overpasses
within the Meteosat-8 test region. These overpasses occur at
9:45 UTC, 13:00 UTC, and 14:30 UTC. At all of these times,
the temporally updated features of Meteosat-8 provide better
results than the masks created with features that have not been
temporally updated. Table IV gives the measures of the overall
classification accuracy for the three overpass times for both
with and without the temporal updating of the features. It is
clear from this table that the temporally updated CC features of
Meteosat-8 give consistently better results in the classification
into MODIS-like cloud mask products.

V. CLOUD PHASE PRODUCT GENERATION

The MODIS cloud phase product uses the cloud mask to
determine the regions in which clouds are present and then

applies another set of tests to determine the composition of
those clouds, namely water, ice, or mixed phase. There is also
an unknown designation for cases in which the test results are
inconclusive. In these tests, only MODIS infrared wavelengths
8.55 and 11.03 µm are utilized for determining the cloud phase.
For this paper, clouds are classified as either water phase or
ice phase. The mixed and unknown phases are not classified
as they are not separable from the ice phase class in the CC
feature space. Since the cloud phase product cannot be created
without the cloud mask product, only the regions classified as
clouds in the MODIS-like cloud mask are used in the analysis
of the quality of the cloud phase product generation. This is
done for two reasons: 1) prevent errors of the cloud mask gen-
eration process to propagate into the cloud phase generation and
2) assess the performance of the cloud phase generation process
independent from the cloud mask results.

After the creation of the MODIS-like cloud mask, the regions
designated as clouds can be further separated into distinct
phases. To do this, several BPNNs are trained to classify the
top three infrared CCs of Meteosat-8 SEVIRI into MODIS-
like cloud phase products. Each network in the set has the
same structure as the ones used for cloud mask generation in
Section IV. Again, there are a total of eight networks for gen-
erating MODIS-like cloud phase products. A pair of BPNNs is
trained for every 2 h during the 8-h daytime period. Each BPNN
in a pair is trained separately over land or water based on cloud
phase labels from the original MODIS cloud phase product. The
input to each BPNN is a 3-D vector consisting of the top three
infrared CCs of Meteosat-8. Each BPNN has 12 neurons in the
first hidden layer, six neurons in the second hidden layer, and
two output neurons corresponding to the ice and water phase
classes. A hard-limiting threshold function is performed on the
output of each BPNN to yield a cloud phase label.

Training data samples for the cloud phase classification sys-
tem are randomly drawn from the MODIS cloud phase products
from the week of July 7, 2004, through July 15, 2004. A total of
7500 samples are taken for each of the two cloud phase classes.
These training samples are utilized in training the networks
for 75 epochs for each of the BPNNs. A total of 25 weight
initializations are tried for each network, and the network that
led to the best performance on the training data was selected for
subsequent testing. The selected networks have classification
rates between 93% and 96% on the training data. Note that
the comparison of the network results and the original MODIS
cloud phase products for ice or water phases is made only on a
subset of the testing data corresponding to the areas where the
network-generated cloud mask classified as clouds.

The results of the cloud phase classification process are
substantially better than those for the cloud mask product.
Moreover, the phase products created with the temporally up-
dated features have considerably better quality than those that
did not use temporally updated features. The original MODIS
cloud phase product and the corresponding network-generated
cloud phase product at 12:00 UTC on July 8, 2004, are found
in Fig. 5(a) and (b), respectively. Notice that there are regions
in the network-generated cloud phase product that are classified
as clear while they are not clear in the original MODIS phase
product. This is due to misclassifications in the cloud mask
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Fig. 5. MODIS cloud phase and network-generated results on July 8, 2004.
(a) MODIS cloud phase at 12:00 UTC. (b) Network-generated MODIS cloud
phase at 12:00 UTC. (c) MODIS cloud phase at 13:30 UTC. (d) Network-
generated cloud phase with retraining using both Meteosat-8 and MODIS at
13:30 UTC. (e) Network-generated cloud phase with temporal updating of only
Meteosat-8 at 13:30 UTC. (f) Network-generated MODIS cloud phase without
temporal updating at 13:30 UTC.

generation process that are not considered in the analysis of
the cloud phase product. The network-generated cloud phase
product at 12:00 UTC has an overall accuracy of 93.97%,
which indicates that the classification scheme is capable of
successfully distinguishing between ice and water phase clouds.

To further illustrate the real usefulness of the temporal up-
dating process, the MODIS cloud phase product on July 8,
2004, at 13:30 UTC is given in Fig. 5(c) as a benchmark. The
network-generated cloud phase with the recalculated mapping
matrices and using both MODIS and Meteosat-8 is given in
Fig. 5(d), while the network-generated cloud phase with only
temporally updated Meteosat-8 features (and no new MODIS
data) is given in Fig. 5(e). Fig. 5(f), on the other hand, shows the
cloud phase product created without any temporal updating of
the features. First, we note from Fig. 5(d) and (e) that inclusion
of the new MODIS data did not make a significant impact
on the cloud phase generation, although ice clouds over water
(upper left portion) are better classified. Overall, the correct
classification percentages of these images are 91.78% for the
phase product in Fig. 5(d) that used data from both satellites
and 85.92% for the cloud phase product in Fig. 5(e) that used
only temporally updated Meteosat-8 features. Obviously, inclu-
sion of the MODIS data accounts for the statistical changes

TABLE V
CLOUD PHASE CONFUSION MATRICES FOR TEMPORALLY AND

NOT TEMPORALLY UPDATED CANONICAL COORDINATE

FEATURES FOR JULY 8, 2004 AT 13:30 UTC

that occur in the new MODIS data, resulting in better cloud
phase product generation. Perhaps, more important than this
comparison is that between the cloud phase products created
with and without the temporally updated features in Fig. 5(e)
and (f), respectively. Notice that, in the phase product that
used no temporal updating of the features, virtually all of the
clouds are labeled as water phase clouds, resulting in an overall
correct classification rate of only 53.90%, which is clearly
unacceptable.

The strong disparity in the correct classification rates of the
cloud phase products with or without temporally updating is
illustrated in the confusion matrices in Table V for July 8, 2004,
at 13:30 UTC. Notice that, in all cases, the correct classification
rate of the water phase clouds is approximately 90% or better.
However, in the case of ice phase, the product created with
temporally updated features has a correct classification rate of
72.52% versus only 2.96% for that without temporally updated
features. In comparison, the cloud phase products generated
when using both MODIS and Meteosat-8 data are only slightly
better than those created with temporally updated features with
no new MODIS data.

Finally, to verify the importance of CC updating on the data
of other days, tests are performed for cloud phase product
development on July 7, 2004. Table VI gives the correct clas-
sification rates for the cloud phase products with and without
the temporally updated features at each overpass on July 7,
2004. Columns 2–3 in this table correspond to the case where
the evaluation area is restricted to only the portion that is cor-
rectly classified in the cloud mask generation process, whereas
columns 4–5 in this table provide the results over the entire area
covered by MODIS and not just the area correctly classified
in the cloud mask generation process. Although, in practice,



FALCONE et al.: DUAL-SATELLITE CLOUD PRODUCT GENERATION 1057

TABLE VI
CLOUD PHASE PRODUCT RESULTS FOR JULY 7, 2004

only areas correctly classified as clouds would be further clas-
sified into phases, these results are given here for the sake
of completeness. Clearly in all cases, the temporally updated
features give significantly higher quality results. An important
note should be made at the 9:45 UTC overpass. At this time,
there are very few ice phase pixels, and thus, misclassification
of a very small number of pixels can lead to a large drop in
overall classification rate. However, at this point, the temporally
updated features still outperform the case without any temporal
updating. Overall, these results attest to the importance of the
temporal updating of Meteosat-8 CC features for generating
MODIS-like cloud mask and phase products that are scientif-
ically meaningful and consistent.

VI. BENCHMARKING AND PERFORMANCE ASSESSMENT

In order to assess the performance of our method, a
comparison was carried out with an independent Meteosat-8
SEVIRI-based method for generating cloud mask and cloud
phase products. This method, which was developed by the
Cooperative Institute for Research in the Atmosphere (CIRA)
at Colorado State University, is based upon the 8.7-µm IR
cloud test using a standard thresholding technique [26], [27]
applied against a background brightness temperature database
(BBTD). The BBTD is composed of the warmest pixels ob-
served at a given time over a 15-day period. Visual inspection
of the Meteosat-8 data confirmed that, virtually, all regions
within this data set were cloud free at some time during this
15-day period, thereby greatly enhancing the effectiveness of
the applied background threshold cloud test. This test then
flags the analysis pixel as cloud-filled when the difference
between the BBTD and the current satellite brightness temper-
ature exceeds the value of the defined threshold. A different
threshold is used over land and water. The land/water points are
identified with a land/water mask. The 8.7-µm thresholds used
in these tests are 20 K over land and 5 K over water.

A similar cloud thresholding method is applied to the
0.8-µm Meteosat-8 SEVIRI data. The current satellite reflec-
tance is thresholded against a 15-day background reflec-
tance database (BRD). The BRD consists of the darkest satellite
pixel observed at a given time over a 15-day period. The
0.8-µm thresholds used in these tests are 0.25 over land and
0.1 over water. All 0.8-µm Meteosat-8 data used in these cloud
tests have been corrected for solar zenith angle dependence.

The original MODIS cloud mask used in this paper is shown
again to facilitate the benchmarking in Fig. 6(a) and (b) for
July 8, 2004, 12:00 UTC and 13:30 UTC, respectively. The
cloud masks obtained using the CIRA Meteosat-8 method
are then shown in Fig. 6(c) and (d), covering the same time

Fig. 6. MODIS cloud mask, CIRA, and networked-generated results on
July 8, 2004. (a) MODIS cloud mask at 12:00 UTC. (b) MODIS cloud mask
at 13:30 UTC. (c) CIRA cloud mask at 12:00 UTC. (d) CIRA cloud mask at
13:30 UTC. (e) Network-generated MODIS-Like cloud mask at 12:00 UTC.
(f) Network-generated MODIS-Like cloud mask using temporal updating of
only Meteosat-8 at 13:30 UTC.

frame. The network-generated MODIS-like cloud mask at time
12:00 UTC and that generated with temporal updating of just
Meteosat-8 CCs up to and including 13:30 UTC are shown in
Fig. 6(e) and (f), respectively. Visual evaluation of these results
reveals that the cloud masks generated using our approach are
much closer to those of the actual MODIS masks in Fig. 6(a)
and (b). This is particularly true for the cloud mask at time
13:30 UTC, where both methods use only the Meteosat-8
data. Nonetheless, the fact that our methods utilize a temporal
updating of the CC features over a sequence of Meteosat-8 and
MODIS (when available) passes enable these features to cap-
ture highly common attributes of the data of both instruments,
hence leading to a much better reproduction of MODIS cloud
mask. The overall classification rates for the CIRA Meteosat-8
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TABLE VII
CONFUSION MATRICES FOR CIRA METHOD AND NETWORK-GENERATED

TEMPORALLY UPDATED CLOUD MASK FOR JULY 8, 2004

algorithm are found to be 88.56% and 90.83% for 12:00 UTC
and 13:30 UTC, respectively, and 91.40% and 85.43% for the
same times using our method.

Table VII shows the confusion matrices for CIRA cloud
mask and the MODIS-like cloud masks generated using our
approach. The percentages in these matrices are obtained based
upon the original MODIS cloud masks at times 12:00 UTC
and 13:30 UTC as benchmarks. Thus, they show how good the
methods can generate a cloud mask similar to MODIS. As can
be observed from these results, although the CIRA algorithm
provides better results classifying clear pixels, especially over
land, it performs rather poorly, capturing the same cloud areas
classified by MODIS.

The daytime cloud phase algorithm developed by CIRA
starts with the produced cloud mask. If a pixel is cloudy,
according to the cloud mask, then the cloud phase algorithm
is applied. If it is not cloudy, the algorithm is not applied. The
cloud phase algorithm has two parts. First, if the 8.7-µm bright-
ness temperature is less than −30 ◦C, the pixel is classified as
ice cloud. If the pixel is −30 ◦C or warmer, a second test is
applied. This second test relies on three reflective wavelengths,
namely 1.6, 0.8, and 0.6 µm. The albedo (reflectance corrected
for solar zenith angle) is calculated for each wavelength. The
albedo is theoretically between zero and one. The albedos are

Fig. 7. MODIS cloud phase and CIRA results on July 8, 2004. (a) MODIS
cloud phase at 12:00 UTC. (b) MODIS cloud phase at 13:30 UTC. (c) CIRA
cloud phase at 12:00 UTC. (d) CIRA cloud phase at 13:30 UTC. (e) Network-
generated MODIS cloud phase at 12:00 UTC. (f) Network-generated cloud
phase with temporal updating of only Meteosat-8 at 13:30 UTC.

multiplied by 255 and assigned a color: 1.6 is red (R), 0.8 is
green (G), and 0.6 is blue (B). In the resulting image, the ocean
is dark because it is poorly reflective at all three wavelengths;
vegetated land is green because chlorophyll is reflective at
0.8 µm, but absorptive at 1.6 and 0.6 µm; bare land is brown
to red; liquid water clouds are white because they are highly
reflective at all three wavelengths; and ice clouds are cyan
because they are highly reflective at 0.8 and 0.6 µm, but poorly
reflective at 1.6 µm.

For each cloudy pixel (−30 ◦C or warmer), the R, G, and
B values are transformed by one of the several color analysis
schemes into, for example, hue (H), saturation (S), and lightness
(L). The important parameter is hue (H), which varies in a
“color wheel” from 0 (red) to 2/12 (yellow) to 4/12 (green)
to 6/12 (cyan) to 8/12 (blue) to 10/12 (magenta) and back to
12/12 (red). The phase algorithm classifies any cloudy pixel
with H between 5/12 and 7/12 as ice cloud. All other cloudy
pixels are liquid water clouds. This process results in a two-
class cloud phase image. Clearly, the algorithm can be fooled
by snow on the ground, which is also cyan in color (with these
three wavelengths).

The original MODIS cloud phase benchmarks used in this
paper are shown in Fig. 7(a) and (b) for July 8, 2004, 12:00 UTC
and 13:30 UTC, respectively. The corresponding cloud phase
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TABLE VIII
CONFUSION MATRICES FOR CIRA METHOD AND NETWORK-GENERATED

TEMPORALLY UPDATED CLOUD PHASE FOR JULY 8, 2004

products generated using the CIRA method are shown in
Fig. 7(c) and (d). The cloud phase products generated using the
network with the temporally updated CC features are shown in
Fig. 7(e) and (f). Again, visual evaluation of these results shows
a much better reproduction of the MODIS cloud phase using
our algorithm when compared to CIRAs method. The overall
correct classification rates for the CIRA algorithm are 69.05%
and 63.66% for 12:00 UTC and 13:30 UTC, respectively, in
comparison with 97.16% and 91.84% for our approach.

Table VIII gives the confusion matrices for CIRA cloud
phase and our MODIS-like cloud phase at 12:00 UTC and
13:30 UTC. Note that the percentages in these matrices are
obtained based upon the match with the actual MODIS cloud
phases at these times and over the areas classified as clouds
in their respective cloud masks. Clearly, these areas and their
sizes in the generated cloud masks are different for the two
algorithms. However, since the numbers of pixels in these areas
are large, the percentages are representative of the ensemble
statistics. Owing to the fact that CIRAs algorithm is not de-
signed to mimic what MODIS produces, the percentages are
vastly different, especially at 13:30 UTC. This is due to the
fact that, at 13:30 UTC, the discrepancy between MODIS cloud
mask and CIRA-generated could mask is substantial.

Overall, it is evident from the results presented in this section
that, when MODIS is used as the benchmark, the cloud products
generated using our neural network with temporally updated
CC features are significantly better than those of the CIRA
method, which uses only the Meteosat-8 data.

VII. OBSERVATIONS AND CONCLUSION

A temporally adaptive method for creating features of an
operational satellite that are most coherent with a scientific
research satellite is introduced in this paper. The extracted
features capture highly coherence attributes between the two
satellites, allowing for the creation of cloud products that
are research-quality, especially at times and locations that the
MODIS data are unavailable. These products are generated
without using any cloud physical models or auxiliary infor-
mation typically needed by the conventional methods. The
proposed method provides a means of creating research-quality
products not only with temporal consistency but also with
spatial spreading. Moreover, the temporal updating mechanism
enables continual generation of cloud products during the day-
time when only the operational satellite provides new data.
Land and water features are separated to allow for distinction
between the statistical features of these two classes. In the
case of both the cloud mask and the cloud phase, the results
indicated that the temporally updated features provide much
better cloud classification than those without temporal updat-
ing. Specifically, the cloud masks generated with temporally
updated features provide better identification of cloudy regions
than those without temporally updated features. Additionally,
the cloud phase generation process with the temporally updated
features gave much better ice phase cloud determination when
compared to the case without updated features. Overall, the
temporal updating process allows for the incorporation of the
statistical changes in the new data while retaining the infor-
mation in the previous data, hence resulting in better cloud
mask/phase products.

The results in this paper show the great promise of the
proposed CCD-based feature extraction method, together with
a mechanism for temporal updating of the CC features for dual-
satellite data analysis. Other potential remote-sensing applica-
tions of the proposed method include aerosol and fire detection,
ocean thermal monitoring, etc.
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