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A Multiscale Curvature Algorithm for Classifying
Discrete Return LiDAR in Forested Environments

Jeffrey S. Evans and Andrew T. Hudak

Abstract—One prerequisite to the use of light detection and
ranging (LiDAR) across disciplines is differentiating ground from
nonground returns. The objective was to automatically and ob-
jectively classify points within unclassified LiDAR point clouds,
with few model parameters and minimal postprocessing. Pre-
sented is an automated method for classifying LiDAR returns
as ground or nonground in forested environments occurring
in complex terrains. Multiscale curvature classification (MCC)
is an iterative multiscale algorithm for classifying LiDAR re-
turns that exceed positive surface curvature thresholds, resulting
in all the LiDAR measurements being classified as ground or
nonground. The MCC algorithm yields a solution of classified
returns that support bare-earth surface interpolation at a reso-
lution commensurate with the sampling frequency of the LiDAR
survey. Errors in classified ground returns were assessed using
204 independent validation points consisting of 165 field plot
global positioning system locations and 39 National Oceanic and
Atmospheric Administration—National Geodetic Survey monu-
ments. Jackknife validation and Monte Carlo simulation were
used to assess the quality and error of a bare-earth digital elevation
model interpolated from the classified returns. A local indicator
of spatial association statistic was used to test for commission
errors in the classified ground returns. Results demonstrate that
the MCC model minimizes commission errors while retaining a
high proportion of ground returns and provides high confidence
in the derived ground surface.

Index Terms—Classification, curvature, digital elevation model
(DEM), filtering, forestry, interpolation, light detection and rang-
ing (LiDAR), thin-plate spline, vegetation.

1. INTRODUCTION

IGHT detection and ranging (LiDAR) vendors have put

forth substantial investment into developing ground iden-
tification algorithms. Unfortunately, most available algorithms
are proprietary and only available in commercial software or
through “in-house” vendor postprocessing at considerable cost.
A large portion of LiDAR survey cost is incurred during post-
processing to separate ground from nonground returns. This
is in large part due to the manual editing required to “clean
up” the surface and the need to reclaim software development
or purchase costs. Ground returns are often removed from the
point cloud and delivered separately in the form of a gridded
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raster or uniformly spaced point data. Both of these deliverables
generalize the data, discarding the original spatial precision and
volume of sampled ground returns. The proprietary nature of
these filtering methods and the format of provided data make
their validation difficult. Furthermore, overfiltering, smoothing,
or gridding ground returns compromises the original volume
of data, precluding analyses relying on relationships between
ground and nonground point volumes.

Retaining a larger volume of ground returns will result in
an interpolated ground surface more closely matching the scale
and precision of the original LiDAR point cloud [1] and will
greatly benefit any applications concerned with microtopogra-
phy. Improved DEMs will in turn increase accuracy and pre-
cision in the derived vegetation heights, benefiting vegetation
modeling applications. If the scale of an interpolated DEM is
commensurate with the LIDAR data, simply subtracting the in-
terpolated ground elevation surface from the LiDAR elevations
will provide accurate vegetation heights at each point while
preserving density relationships related to vegetation cover,
such as the proportion of nonground to total returns [2].

The majority of LiDAR classification approaches have
demonstrated utility in ground mapping or feature extraction
(e.g., buildings) in urban environments. However, few solutions
have specifically addressed identification of nonground returns
in forested environments. A few notable approaches have been
proposed for classifying LiDAR data in forested environments
[1], [3], but perhaps the most room for improvement in the
quality of LiDAR-derived DEMs and subsequent vegetation
characterizations lies in the initial classification of ground ver-
sus nonground returns [3]. Separating ground from nonground
returns is challenging due to the convolution of ground and
vegetation returns in the unclassified LiDAR point cloud. Clas-
sification approaches that overly smooth or reduce the volume
of ground returns (e.g., block minimums) are not well suited for
many applications, which can benefit greatly from maximizing
retention of ground returns while minimizing commission er-
rors (labeling a valid nonground point as ground). An omission
error (discarding a valid ground point) is less problematic
than a commission error in terms of influence on the inter-
polated ground surface. An automated and objective LiDAR
classification algorithm that appropriately balances commission
omission errors will facilitate applications that exploit the 3-D
nature of LiDAR, particularly in forestry [4]-[9].

Scale often has a profound effect on the behavior of land-
scape objects, such as trees. This is due to the topology of ob-
jects that do not behave in a uniform linear manner across scales
[10]. As an object is assessed across scales, it can split into
multiple objects, merge with other objects, persist, disappear, or
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in the case of LiDAR, change its amplitude (deviation from sur-
rounding points) [11]. All of these behaviors occur in LiDAR
point clouds as a classification/filtering model is applied.
Changing object topology across scales argues for an iterative
multiscale model applied directly to the LiDAR point cloud.

Algorithms that identify nonground returns based on cur-
vature thresholds within local neighborhoods appear robust
for separating ground from nonground in unclassified LiDAR
point clouds in forested environments, particularly in complex
terrain [3]. Previous attempts to account for slope and scale
effects have used variable window sizes or weighting func-
tions to address the interactions of topography and vegetation
on LiDAR returns [12]-[15]. However, these methods have
been most effective for classifying nonground returns in gentle
terrain, open canopy, or urban environments, rather than in,
perhaps, the most challenging environment of densely forested
complex terrain.

Curvature approaches identify positive local deviations from
surrounding points and then iteratively classify them as non-
ground. Haugerud and Harding [3] presented a virtual defor-
estation (VDF) algorithm based on identifying positive local
curvatures in an interpolated triangulated irregular network
(TIN) constructed from LiDAR point data. Once curvatures are
identified, TIN nodes that exceed a defined threshold are iter-
atively deleted, and the model is run again with the remaining
data until a convergence threshold is met. Interpolation of TIN
models is based on a linear weighting function applied to a
vector connecting adjacent points [16]. In complex terrain, this
can distort surface morphology, often resulting in large errors
[17]. These commission and omission errors can add noise to
the surface, particularly in settings with steep slopes and high
canopy density.

We present multiscale curvature classification (MCC), an
automated approach for classifying LiDAR returns that incor-
porates the strengths of curvature filtering [3], adds a scale
component in the interpolation phase, and a variable curvature
tolerance to account for slope interaction with the LiDAR
measurements [3]. The model iteratively classifies nonground
LiDAR returns that exceed positive curvature thresholds at
multiple scales. The three primary improvements of the MCC
model on the VDF model are given as follows: 1) thin-plate
spline (TPS) interpolation [18], [19]; 2) integration of a mul-
tiscale approach where the surface is interpolated at different
resolutions; and 3) a progressive curvature tolerance. Unlike
TIN, TPS interpolation allows for adjustment of tension be-
tween points, providing adherence to input data and controlling
the distance at which point samples affect the surface estimates
[20]. The spline tension parameter f also reduces large devia-
tions in the surface between sample points, effectively reducing
noise [20]. Inclusion of a multiscale approach more comprehen-
sively addresses topological relationships of nonground objects
across variable scales. Because the surface is generalized as
the scale parameter is changed, it is necessary to change the
curvature threshold parameter, effectively addressing changes
in slope effect as the data are generalized. In summary, MCC
is an automated algorithm that iteratively identifies nonground
points that exceed positive curvature thresholds across multiple
scales in unclassified LiDAR point clouds.
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Fig. 1. Location map of the two LiDAR survey areas and test sites.

II. OBJECTIVES

The primary goal was to automatically, objectively, and
consistently identify ground returns from unclassified LiDAR
point clouds. Four criteria were applied in developing the MCC
algorithm. The first was flexibility across different LIDAR data
formats. The MCC algorithm requires only the X, Y, and Z co-
ordinates as inputs, the three most basic components common
to all discrete return LiDAR data sets. The second criterion was
simplicity in model parameters. Overly complex or numerous
model parameters can introduce subjectivity or result in lack
of repeatability. However, the only user-defined parameters in
the MCC algorithm are the initial scale and curvature tolerance
parameters. The third criterion was that the model be fully
automated, i.e., the user need not intervene during the classi-
fication filtering process, which can also introduce subjectivity.
Finally, the algorithm should preclude or minimize the need for
postprocessing, which can be a very time-consuming, costly,
and subjective process. The MCC algorithm was designed to
objectively, reliably, and repeatability identify ground returns
with minimal to no need for manual postprocessing, from
any discrete return LiDAR data set acquired over a forested
environment.

III. METHODS
A. Study Area

The two LiDAR survey areas used in this paper, Moscow
Mountain and the Saint Joe Woodlands in north central Idaho
(Fig. 1), comprise 88000 ha of mixed conifer forest with a
mixture of industrial forest, private, state, and federal owner-
ships. Both areas are highly relieved with more topographic
complexity in the St. Joe Woodlands. Conifer species vary from
Pinus ponderosa at xeric sites to Tsuga heterophylla in mesic
settings. Other common conifer species include Abies grandis,
Abies lasiocarpa, Larix occidentalis, Picea engelmannii,
Pinus contorta, Pinus monticola, Pseudotsuga menziesii, and
Thuja plicata, which create diverse forest compositions across
broad temperature and moisture gradients. The canopy and age
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structures are highly variable between stands and often within
stands. Both landscapes are actively managed for multiple uses
including timber production, wildlife habitat, and watershed
protection, representing a large range of anthropogenic and
natural influences.

Representative test sites were subsets from each of the larger
project areas for a more detailed and intensive accuracy assess-
ment than the entire project area would allow. The first 250-ha
site was selected in the St. Joe Woodlands in dense forest on
moderate to steep slopes. The second 250-ha site was selected
in the Moscow Mt. area across a transitional forest—prairie
ecotone with agricultural lands, remnant prairie, open forest
canopy, and milder slopes.

B. LiDAR Acquisition

Horizons Inc., a LiDAR data provider located in Rapid
City, SD, acquired the LiDAR data in three surveys during
the summer of 2003. A three-return OPTECH ALS40 LiDAR
sensor was flown with a pulse repetition rate of 20 kHz onboard
a Cessna 310 aircraft at an altitude of 2438 m above mean
terrain. The nominal post spacing was 1.95 m with a 30-cm
footprint. The swath had a nominal width of 904 m and a
20° maximum off-nadir scan angle. LiDAR surveys were flown
with an automatic gain control to adjust return sensitivity over
variable-intensity terrain at the 1064-nm wavelength. Twelve
ground controls were surveyed using a survey grade Trimble
4400 dual-frequency GPS, achieving a horizontal accuracy of
< 1 cm through triangulated differential correction with three
continuously operating reference stations (CORSs) and three
locally established base stations using the Trimble Total Control
software. The surveyed controls were used by the vendor to
provide a local georectification solution for the LiDAR point
cloud, giving the LiDAR data a horizontal and vertical error of
< 0.106 m, as reported by Horizons, Inc.

C. LiDAR Processing

Data were delivered from Horizons, Inc., in a generic binary
file format containing X and Y coordinates (UTM Zone 11
NAD&83), orthometric elevation Z (NADVS8S), return level (1, 2,
or 3), and intensity (0-255). Binary files were converted to
ASCII files, utilizing an in-house application provided by Hori-
zons, Inc. Individual flight lines were then converted into point
coverages in ArclInfo. Flight lines were trimmed to a maximum
scan angle of 15° for the St. Joe Woodlands and 18° for Moscow
Mt. to minimize measurement error resulting from high scan
angles [21] while preserving complete coverage (i.e., no data
gaps between flight lines). The larger 18° threshold for Moscow
Mt. was necessary due to less overlap between flight lines com-
pared to St. Joe Woodlands. Scan angles were not included with
the delivered data, requiring that flight line centers be digitized.
An Arc Macro Language (AML) program was developed to
determine the scan angle of each LIDAR measurement based on
their calculated distance from the digitized center of the flight
line and known aircraft height. Data exceeding 15° or 18° scan
angle thresholds were discarded.
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D. McC

Implementation of the MCC algorithm first requires defi-
nition of a vector Z(s), which comprised the X coordinate,
Y coordinate, and Z (elevation) of all LiDAR returns. The
Z(s) vector is used to interpolate a raster surface using a TPS
[18]-[20] at a cell resolution defined by scale parameter . A
TPS is fit using a variable window with the 12 nearest neighbors
and an invariant tension parameter f (defined as 1.5 across all
scale domains). A 3 x 3 mean kernel is passed over the interpo-
lated raster defining a new vector z(s), which is coincident with
Z(s), consisting of the X coordinate, Y~ coordinate, and mean
surface value. The curvature tolerance ¢ is then added to x(s),
and points are classified as nonground by applying the condi-
tional statement “IF Z(s) > ¢ THEN classify as nonground.”
As the algorithm moves through iterations, Z(s) is redefined
as only points not yet classified; these remaining returns are
then used at the start of the next iteration. The A parameter,
which initially should approximate the nominal postspacing of
the LiDAR data, is calculated in three scale domains: first as
0.5, second as A, and third as 1.5\. The scale domain [ is
a model loop where a set of model parameters are run until
convergence. A curvature tolerance parameter ¢ in the initial
scale domain (! = 1) is defined by the user, and in subsequent
scale domains, 0.1 is added.

The classification steps are given as follows.

1) A surface is interpolated using Z(s) and a TPS. Two
model parameters for scale domain [ are applied, namely:
1) the scale parameter A\ and 2) the curvature tolerance ¢
(initial X and ¢ parameters are user defined).

2) A 3 x 3 mean kernel is passed over the interpolated sur-
face, and a new vector z(s) is declared that is coincident
with Z(s).

3) Curvature in scale domain [ is then calculated by

c=uxz(s)+t (1)

where x(s) is the mean elevation vector coincident with
Z(s) in scale domain ! and ¢ is the curvature tolerance
parameter in scale domain /.

4) LiDAR points are then classified as nonground and re-
moved if they meet the following condition:

IF Z(s) > ¢ THEN classify as nonground  (2)

where c is the curvature in scale domain [ and Z(s) is the
measured LiDAR elevation.

5) The convergence threshold j is then assessed, and the
model either iterates or starts with the next scale domain.

MCC has two levels where iteration occurs, namely: 1) each
scale domain (I = 1—3) where parameters are defined and
changed when the convergence criteria are met and 2) a nested
loop defining model convergence j within [ (Fig. 2), where
a single set of model parameters is used. Once the model
converges within a scale domain, the A and ¢ parameters are
changed, and the algorithm proceeds to the next scale domain
until the convergence threshold j is reached in the final scale
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Fig. 2. Flow diagram of the MCC model, where [ = 1—3 scale domains, and
t and )\ are parameters defining curvature tolerance and scale, respectively.

domain, upon which MCC terminates. A convergence threshold
of 0.1 was used for this paper, meaning the model terminated
when less than 0.10% of nonground returns were classified
from the returns remaining from the last iteration.

Negative blunders are a common occurrence in LiDAR data,
which may be caused by the scattering of the photons in a
returned laser pulse [3]. Scattering lengthens the time for an
emitted laser pulse to return to the aircraft sensor, inflating
the calculation of distance traveled, hence causing a measure-
ment error where the surface elevation is erroneously recorded
as being below the surrounding measurements. It should be
noted that curvature classification approaches can potentially
remove valid returns surrounding negative blunders, which can
expand the edge artifact around a negative blunder to create a
distinct “bomb crater” effect [3]. To address negative blunders,
Haugerud and Harding [3] suggested setting the curvature
tolerance parameter to four times the interpolated cell size and
selecting returns exceeding this negative curvature threshold.
However, it should be noted that under certain circumstances,
returns that appear to be negative blunders can be in fact valid
returns (e.g., sinkholes). Therefore, the preceding suggestion to
remove potential negative blunders can be implemented as an
optional last model loop to employ at the discretion of the user
if needed.

E. Assessment of Interpolators Within MCC

Three alternative interpolation methods to TPS were tested
in the MCC model, namely: 1) Ordinary Kriging; 2) Inverse
Distance Weighting; and 3) TIN. The fit of each all-return
surface derived from the unclassified LiDAR point data was
evaluated using the root-mean-square error (RMSE) statistic
(3) calculated across ten jackknife replicates, withholding 10%
of the data in each replicate. The critical consideration in as-
sessment of interpolators within MCC was the fit of the data to
the derived surface throughout the classification process. Since
interpolation error will be most apparent in rougher surfaces
fit before reaching the final model solution, an assessment of
the unclassified LiDAR data surface fit is the best indicator of
interpolator performance within the model.
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E Validation

The classified ground returns were interpolated into 1-m
bare-earth DEMs for the two LiDAR survey areas (Fig. 1) using
an iterative finite-difference (IFD) interpolation method [22].
Note that the IFD was not an option for incorporation into
the MCC model because of the inability of the model to fit
surfaces generated by all of the LiDAR returns. Smith et al. [23]
explored the effect of different interpolators on DEM accuracy
and showed that the IFD model provided the most accurate
results for ground estimates derived from LiDAR. This model
is readily available using the Topogrid command in ArcInfo and
is specifically designed for creating DEMs [22].

The two DEMs were used as proxies for assessing the MCC
ground return classification results. They were validated at
204 locations (Fig. 1) distributed across the entirety of the
two project areas, using two independent data sets, namely:
1) field GPS locations (N = 165) collected during June—
August of 2003 and 2004, with a minimum of 200 static
measurements logged with a Trimble ProXT and differentially
corrected with online base station files to a reported horizon-
tal accuracy of < 0.6 m and a vertical accuracy of <2.0 m
(Trimble Pathfinder Office software), and 2) geodetic control
monument locations (N = 39) obtained from the National
Geodetic Survey (NGS) (http://www.ngs.noaa.gov/cgi-bin/
ds_radius.prl).

Validation points were distributed across the entirety of the
two project areas, making these independent validation data
appropriate for assessing any global elevation bias in the DEMs.
Residual error was calculated by subtracting the independent
validation elevations at the 204 coincident ground locations
from the DEM surface elevations. RMSE (3) was calculated
and used in conjunction with the residual error distribution to
assess global bias.

3

where
S”i predicted;
z;  observed;
n  number of observations.

G. Evaluation

More rigorous accuracy assessment was applied to the two
250-ha test sites than was feasible across the entire LiDAR
survey areas (Fig. 1). A jackknife validation was conducted,
in each subset test site, to evaluate the quality and error of
the DEMs derived from the classified LiDAR ground returns.
The jackknife validation was run with 100 iterations, ran-
domly withholding 10% (forested n = 13 544; transitional n =
16 003) of the classified ground returns in each iteration and
interpolating a new DEM from the remaining data, using an
IFD interpolation model. So as not to ignore multiple sources
of error [24], a total RMSE (4) was calculated, which included
both the vertical measurement error reported by the LiDAR
vendor (RMSE,;, = 0.106 m) and the interpolation error across
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jackknife replicates (RMSE; ). Accuracy was assessed using the
cumulative RMSE; ., across all jackknife replicates and the
residual error calculated by subtracting the withheld ground
return heights from the corresponding height values in the
interpolated ground surface, as follows:

RMSE;ota1 = v/ (RMSE,,)2 + (RMSE;)2 4)

where RMSE,,, is the RMSE of measured LiDAR elevations
and RMSE,; is the RMSE of interpolated LiDAR elevations.

Chrisman [25] refers to a raster surface as “a distribution
of possible realizations in which the true value lies.” This is
referred to as a spatial random field or a stochastic image.
Uncertainty in the DEM can be modeled by a set of realizations
of a spatial random field to provide a range of error that bounds
the “true” value [26]. To assess DEM quality, a Bayesian Monte
Carlo approach was implemented by setting the distributional
priors in each simulation to the range of the original DEM,
with the addition of the vendor reported measurement error
(0.106 m) defining the allowable standard deviation in the
random field [27]. One thousand Monte Carlo simulations were
conducted with replacement on the interpolated DEM. Residual
error was calculated in each simulation by generating a random
field following the preceding criteria and applying a mean
filter to account for autocorrelated errors [26]. The original
DEM was then subtracted from the random field. RMSE (3)
was calculated for each simulation condition, and the cumu-
lative RMSE was calculated across all 1000 simulations [28].
Mapping cumulative RMSE allowed assessment of the spatial
distribution of uncertainty [26], [29].

A local indicator of spatial association (LISA) statistic was
used on the classified ground returns within the two test sites
to identify commission errors based on discontinuities in the
local autocorrelation [30]. A spatial weighting matrix was cal-
culated using the six nearest neighboring ground returns and the
associated local autocorrelation value calculated at each point.
Spatial outliers were identified, and the neighborhood deviation
from the mean using these six nearest neighbors was calculated
to determine the magnitude of the potential error.

Finally, visual inspection was used in conjunction with the
results of the LISA statistic to assess overall surface quality
and examine potential commission errors, which are apparent
visually due to their obvious discontinuity from the surrounding
surface when viewed in shaded relief.

IV. RESULTS
A. Model Performance

The curvature tolerance parameter ¢ was sensitive to slope
effects and A and therefore was tested on a subset of the data to
determine the best starting value. In this paper, initial parame-
ters of A = 1.5 and ¢ = 0.3 consistently identified nonground
returns. The majority of nonground returns were identified in
the first scale domain; the volume of additional nonground
returns identified in subsequent scale domains asymptotically
declined (Fig. 3, Table I). Processing the returns across three
scale domains (Fig. 4) was sufficient to classify nonground
returns while minimizing omission errors.
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Fig. 3. Percent of returns classified in each of the three scale domains of MCC
operation in the transitional forest test site.

TABLE 1
NUMBER OF TOTAL LIDAR RETURNS AND NONGROUND AND GROUND
RETURNS CLASSIFIED AT THE TWO SELECTED TEST SITES

Test Site Total Returns Non-Ground Returns (%) Ground Returns (%)
Forested 995,075 859,632 (86.4%) 135,443 (13.6%)
Transitional 302,292 124,039 (41.0%) 178,253 (59.0%)

Fig. 4. Shaded relief of interpolated classification results at four stages of
MCC operation in each scale domain at the dense forest test site. (a) Preclas-
sified. (b) Convergence in scale domain 1. (c) Convergence in scale domain 2.
(d) Convergence in scale domain 3 (final result). The largest potential commis-
sion error is indicated by the arrow.

B. Assessment of Interpolators Within MCC

In the testing of different interpolation methods within the
MCC model, TPS was the best interpolator of the four alterna-
tives considered (Table II; Fig. 6). Ordinary Kriging produced
the poorest fit to the unfiltered point clouds and caused some
surface erosion [Fig. 6(a)], and proved to be overly proces-
sor intensive and unrealistic to implement due to difficulty
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TABLE 1I
FORESTED TEST SITE JACKKNIFE RMSE AND RESIDUAL ERROR RANGES
(IN METERS) OF FOUR INTERPOLATION METHODS TESTED IN THE MCC
MODEL FOR INTERPOLATING UNCLASSIFIED LIDAR RETURNS

Minimum Maximum

Interpolation Method RMSE . .
residual residual
Ordinary Kriging 4.8881  -28.016 32.892
Inverse Distance Weighting 4.8210  -26.883 26.679
Triangulated Irregular Network 4.5082  -29.695 27.008
Thin Plate Spline 1.8071 -8.094 10.475
TABLE III

RESIDUAL ERROR STATISTICS AND RMSE (IN METERS) BETWEEN DEMs
INTERPOLATED FROM CLASSIFIED LIDAR GROUND ELEVATIONS
AND TWO INDEPENDENT VALIDATION DATA SETS

GPS FIELD PLOTS NGS MONUMENTS
STATISTIC St. Joe  Moscow Mt. All St. Joe  Moscow Mt. All
Minimum -15.6186  -53.8300  -53.8300 -6.6304 -5.7145 -6.6304
Maximum 12.3020 33.7933 33.7933  4.7700 8.8110 8.8110
Mean 0.4100 -1.7868 -0.6951  0.2390 1.1048 0.6014
Median 0.0205 -0.5899 0.0000  0.0000 0.4555 0.0000
St. Dev 44618 10.7677 8.3077 23931 4.6679 3.5041
RMSE 0.4100 1.7655 0.6951  0.2390 0.9470 0.6157
Count (N) 81 84 165 21 18 39

in automatically and consistently fitting semivariogram func-
tions throughout model iterations. Inverse distance weighting
introduced curvature artifacts that resulted in dramatic errors,
in some cases misclassifying entire hill slopes as nonground
[Fig. 6(b)]. TIN maintained exact values at the sample locations
but produced large deviations between LiDAR sample points,
and significantly eroded some hillslopes [Fig. 6(c)]. The TPS
produced the best fit to the unclassified LiDAR data (Table II)
and was the only interpolator that did not erode the ground
surface [Fig. 6(d)].

C. Validation

The range and standard deviation of the field GPS residuals
were higher than those from the NGS monument residuals. This
is most likely due to NGS monument locations predominately
occurring in valley bottoms or on ridge tops with little canopy
cover, while the field GPS plots mainly occurred beneath
dense canopy, which diminishes field GPS accuracy. The NGS
monument elevations were expected to be much more accurate
than the nonsurvey grade field GPS elevations, although only
5 of 39 NGS monuments had a vertical accuracy of <1 cm
(i.e., level B or better vertical control). Across both study areas,
the mean residual error was —0.695 for the GPS locations
and 0.601 for the NGS monuments (Table III). These are
small biases considering the large magnitude of some outliers
(especially in the field GPS elevations) that inflated the residual
error and RMSE [24], [31].

RMSE alone failed to provide information about the residual
error distributions, such as the balance between small and large
deviations, and skewness [32]. The frequency distribution of the
residuals can be used to indicate the direction and magnitude
of a bias [16], uncovering possible systematic or conditional
sources of error. In this paper, the median values of zero in both
the field GPS plot and NGS monument residual distributions
(Table IIT) suggested little bias in the classified ground returns.
Limiting the NGS monument validation data to just the five
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TABLE 1V
RESIDUAL ERROR DISTRIBUTION STATISTICS (IN METERS)
ACROSS 100 JACKKNIFE REPLICATES IN EACH TEST SITE

Residual Error Statistics Forested Transitional

Minimum -1.108 -0.3715
Maximum 1.288 0.5716
Mean -0.008 0.0407
Median -0.009 0.0357
Standard Deviation 0.287 0.121
Skew 0.139 0.445
Kurtosis 0.954 1.795

locations with level B or better vertical control produced a
RMSE of only 0.04 m across the two LiDAR survey areas.

D. Evaluation

Results from the jackknife validation indicated that the
RMSE; ;.1 in the dense forest test site was 0.306 and 0.166 in
the transitional forest test site. The slightly higher RMSE;q¢a1
in the dense forest test site can be attributed to steeper slopes
and denser canopy, excluding ground returns. Analysis of the
residual error across all jackknife replicates demonstrated nor-
mally distributed errors (Table IV) in both test sites, indicating
minimal directional bias in the distribution. The mean residual
errors in the dense forest and transitional forest test sites were
—0.0081 and 0.0407, respectively, indicating very small biases.
The mean and median nearly match, indicating a symmetric
error distribution (Table IV). The standard deviation (Table I'V)
is consistently quite small, showing a constrained range of error.
A bivariant g—q plot of interpolated versus measured values (not
shown) showed the same distributional shape and variance in
both test sites, all supporting a very good model fit.

Monte Carlo simulation identified areas with higher un-
certainty that represent strong slope curvatures, commission
errors, or areas with comparatively high sample density. Subtle
horizontal bands in the RMSE surface of forested areas [more
obvious at the dense forest test site, Fig. 6(a)] coincided with
overlapping flight lines, where the sampling density was effec-
tively doubled. Although it seems counterintuitive that a higher
sample density should increase the RMSE, this could be related
to areas of higher sample density causing greater fine scale
variability than surrounding areas.

Two landscape features produced unusually high RMSE
(~3 m) in the transitional forest test site. The first is a building
[circle 1 in Fig. 6(b)]. The second is a small forested knoll
with a drainage ditch directly adjacent [circle 2 in Fig. 6(b)].
Although the nonground returns were successfully removed
from the knoll, the juxtaposition of the knoll and ditch created a
local area of higher uncertainty. With these two exceptions, the
simulation results indicated high confidence in the DEMs and
identified no areas exhibiting extreme uncertainty.

The LISA statistic effectively identified potential commis-
sion errors and allowed the evaluation of the magnitude of
each error. The largest potential commission error identified at
the dense forest test site consisted of two points that deviated
from the mean of the six nearest neighbors by 5.96 m and is
apparent upon close visual inspection of the interpolated DEM
surface (Fig. 4). This potential commission error and others less
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Fig. 5.

Before and after shaded relief of the interpolated surface of all returns
and ground returns from the transitional forest test site. A commission error
caused by a building is indicated by the arrow.

pronounced could be real nonground features of the landscape
(e.g., stumps or woody debris) that the MCC model failed to
eliminate. In the transitional forest test site, the same building
already mentioned caused the largest commission error, consist-
ing of six points that deviated from the mean of the six nearest
neighbors by 8.06 m (Fig. 5).

V. DISCUSSION
A. Model Performance

Vegetation density largely determines the ratio of ground-to-
vegetation returns. The contrast between the vegetation struc-
tures and the selected test sites is evident in the percentages
of ground and nonground returns identified (Table I). The vast
majority of nonground returns are removed within the first scale
domain (Figs. 3 and 4). By starting the first scale domain with a
cell size of approximately half the postspacing, the MCC model
first removes those returns producing the highest curvatures at a
finer resolution. As nonground points are removed, the remain-
ing data become more generalized. In the next scale domain,
the scale parameter changes to a larger cell size, effectively
compensating for this smoothing of the data and thus changing
the resulting surface topology. Since the curvature tolerance
parameter compensates for slope effect (which increases as
resolution coarsens), the sensitivity of the curvature tolerance
parameter changes as well. After the first few iterations of the
model within a given scale domain, most extreme curvatures
are classified, and each subsequent iteration further refines the
classification results. After the first scale domain converges,
the majority of large surface curvatures have been classified,
and subsequent scale domains, in effect, smooth small surface
modulations created by low understory vegetation and ground
debris. In summary, the scale and curvature tolerance parame-
ters work in concert to account for changes in the topology of
objects in the point cloud as nonground returns are removed
from consideration. Varying the scale and curvature tolerance
parameters in the MCC algorithm robustly addresses variable
canopy configurations interacting with slope, as manifested in
the LiDAR point cloud.

Abrupt edge features (e.g., buildings) typically will not
exceed the positive curvature thresholds used by the MCC
algorithm to identify nonground returns. Reconfiguring the
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algorithm to identify and remove such edge features would
erode or remove road and stream bank cuts. Since this algorithm
is designed for forested landscapes where road cuts typically far
outnumber buildings, retention of these features is imperative.
Morphological filters have been shown to be effective for
removing buildings [15], and future research should explore the
possibility of combining multiple classification approaches to
exploit the strengths of each.

A few other limitations of the MCC model need to be
addressed. Processing time is a current drawback to implemen-
tation of the MCC model. Fitting splines on high volumes of
data is very time and processor intensive, and there is much
room for improvement. Mitasova et al. [20] propose a spline
model that uses quadtree segmentation for handling large data
volumes and appears to be quite promising. Implementation of
MCC in a more efficient language than AML and integration
of the quadtree approach [20] would dramatically improve the
speed and efficiency of the model. In the LiDAR data used in
this paper, an attribute indicating “last return” was not provided
so it was not considered in the implementation of the model.
Running the model on last returns would increase speed by
reducing the overall volume of the data.

B. Interpolators Within MCC

While TPS clearly outperformed the other interpolators
tested within MCC (Table II), further investigation of the in-
fluences of tension and smoothing in TPSs may provide more
flexibility across a large range of LiDAR data sets [20]. Three
scale domains were adequate for good model performance in
this study, but different forest structures or LiDAR acquisition
parameters (i.e., very dense post spacing) may require changes
in the curvature threshold parameter and/or the number of scale
domains required.

C. Validation

A variety of validation methods were chosen in this paper
to more rigorously evaluate the performance of the MCC algo-
rithm and quality of the derived DEM. Many factors influence
the creation of a DEM, including the interpolation method,
resolution, and sampling error. Further consideration of these
factors was beyond the scope of this paper but have been
addressed by Smith ez al. [23], [33]. The idea of using a derived
DEM surface as a proxy for classification quality has been
introduced in previous research [34] as a means of validating
the large volume of data that LiDAR surveys provide. Lewis
and Hutchinson [35] empirically demonstrated that the details
of the probability distribution of spatially correlated errors are
far less important in determining data quality than the inherent
quality of the derived surface.

The intention of including the nonsurvey grade field GPS
and NGS control validation points was not to assess local
accuracy but to identify any global bias in the classified ground
elevations across a number of independent validation points.
The vertical error residuals from the GPS and NGS validation
may be primarily random, given that the median errors were
zero (Table III), which supports the idea of assessing global
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Fig. 6. Shaded relief’s comparing different interpolators within MCC.
(a) Ordinary Kriging. (b) Inverse distance weighting. (c) Triangular irregular
network. (d) TPS.

bias using validation data less accurate than the LiDAR data
[36]. If a representative validation sample were to be calculated
based on the number of observations in the LiIDAR, the number
of field samples required for 95% confidence intervals would
be virtually impossible to acquire [37], precluding many tradi-
tional validation techniques.

D. Evaluation

Less understory vegetation and surface clutter will increase
certainty in the ground estimate, as demonstrated by the Monte
Carlo simulations (Fig. 6). Including the LiDAR measurement
error in the total RMSE reported for the jackknife validation
and Monte Carlo simulation results more honestly reflects the
cumulative error in the estimate of ground elevation and more
conservatively assesses the accuracy of the derived DEM. The
LISA point pattern statistic provides an unbiased empirical
method for validating the classified ground points and quan-
tifying the magnitude of identified errors. The results illus-
trate that potential commission errors are kept to a minimum
(Figs. 4 and 7). Potential commission errors can vary from low
amplitude errors representing understory vegetation to entire
nonground objects that the model fails to identify [3], [15].
Some level of surface modulation is to be expected in forested
areas due to low understory vegetation, logs, stumps, and other
ground debris [3].

Commission and omission errors play an important role in
LiDAR point classification. Omission errors are more difficult
to observe and quantify than commission errors. However, if oc-
curring in moderation omission errors has less influence on the
quality of the resulting DEM. Generally, the results indicated
no severe biases in classified ground returns, either globally
(Table III) or locally (Table IV, Figs. 4 and 7), suggesting that
MCC appropriately balanced commission and omission errors.

The definition of “ground” is application and scale depen-
dent, making it easy to disconnect the resolution of an in-
terpolated DEM surface estimate from the resolution of the
LiDAR sample data. Block minimums are a clear example of a
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Fig. 7. Cumulative RMSE from 1000 Monte Carlo simulations in (a) the
forested test area and (b) transitional forest test area. The RMSE range por-
trayed in the legend in (b) excludes two features (indicated by white arrows)
that produced the RMSEs of ~3 m.

LiDAR filtering strategy that can potentially disconnect a sur-
face estimate from the resolution of the LiDAR sample data.
Increasing the block size to identify the minimum ground
height effectively smoothes the data to a resolution that is
coarser than the LiDAR sampling frequency. This produces a
contiguous grid of ground estimates that is consistently derived
across the landscape, which may be convenient for some appli-
cations, but is decoupled from the highly variable nonground
samples that are of primary interest for many applications. The
more sophisticated MCC classification strategy is most suited
for forested landscapes with or without complex terrain. The
MCC algorithm is efficient in that it maximizes the number of
classified ground returns, making it an attractive algorithm for
a variety of applications.

VI. CONCLUSION

The complex vertical arrangement of LiDAR data requires
an iterative processing approach to converge on an accurate
solution of identified nonground returns. The multiscale facet
of the MCC model is perhaps its most useful innovation. By
addressing topologic differences across scales [10], MCC ef-
fectively identifies nonground returns in the vertical distribution
of elevations in the LiDAR point cloud. The dynamic scale
and curvature tolerance parameters work in concert to account
for changes in the topology of objects in the point cloud as
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nonground returns are removed from consideration. Exploit-
ing multiscale topological relationships removes much of the
low-level surface modulation created by understory vegetation
that other filtering approaches often miss while simultaneously
maintaining a high volume of ground returns. The quality of
the LiDAR-derived DEM directly affects the quality of the
LiDAR-derived canopy heights used in subsequent vegetation
modeling. The MCC model employs minimal parameters and
requires only the most basic data inputs (X, Y, and Z), provid-
ing flexibility and repeatability across LiDAR data sets. Further
research is needed to evaluate how well the MCC algorithm
handles different vegetation canopy geometries (e.g., broadleaf
deciduous) and topographic settings (e.g., canyonlands). These
differences may affect the user specification of the number of
scale domains (model loops), scale parameter (resolution within
a scale domain), curvature tolerances, or the spline parameters.

The MCC model is currently implemented in AML run-
ning under Workstation ArcInfo. The development of MCC in
Arclnfo was undertaken to provide a classification tool that is
readily available to the LiDAR user community. Current and
subsequent version(s) of the code are available for download at
http://forest. moscowfsl.wsu.edu/gems/lidar/.
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