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Abstract— We consider the problem of detecting and locating  Previous work on the seismic detection of landmines can be
subsurface objects by using a maneuvering array that receds divided into two categories: methods that measure the s@ism
scattered seismic surface waves. We demonstrate an ada@iv \yave field directly above a mine and those that only measure
system that moves an array of receivers according to an optiai . . .
positioning algorithm based on the theory of optimal expenments. a,‘ portion Qf the wave field at a stand-off d'Sta_nce (41, [_5]ETh
The goal is to minimize the number of distinct measurements first technique has been shown to be relatively resistant to
(array movements) needed to localize objects such as buried clutter due to the strong resonant response directly abieve t
landmines. The adaptive localization algorithm has been &ed mine; however, this method is quite time consuming due to the
using data collected in a laboratory facility. The performance of large number of measurements needed to ensure that some of

the algorithm is exhibited for cases with one or two targetsand . .
in the presence of common types of clutter such as rocks in the the measurement points are above the mine [3], [6], [7].rEfo

soil. Results are also shown for a case where the propagationt0 speed up these techniques using large arrays of sensors ar
properties of the medium vary spatially. In these tests, the ongoing [8], [9]. The second technique is more sensitive to
landmines were located using three or four array movements. clutter because the resonant response is much more ditficult
It is envisioned that future systems could incorporate thisnew igo|ate in the scattered waves; however, it is potentiallicin
method into a portable mobile mine-location system.

faster because fewer measurements are needed. Although the
stand-off recordings might be made by a moving sensor, in
previous work the movement of the sensor was not controlled
adaptively in response to processing.

Buried landmines and similar subsurface structures pose an this paper, we develop a technique that combines the
huge threat to resettling civilians. It takes significamdiand strengths of the above techniques. We show how a small array
resources to clear out regions contaminated by mines, sahiit makes its first recording at some distance from a target
is important to develop efficient detection and localizatiocan be moved to new recording positions that will increase
systems to find the mines. Existing systems are usually based ability of the system to find the target’s location. The
on Ground Penetrating Radar (GPR) and Electromagneditay movements are done in an optimal fashion to maximize
Induction (EMI) sensing, but recent efforts [1]-[6] have-emthe “information gained” about the target at each iteration
ployed seismic waves to detect subsurface targets. In our case, we use a smdlx3 array, so any one image

To detect a landmine, a seismic wave is excited by a soutgas low resolution. However, as the array maneuvers, we can
at a known position and travels through the soil to interéttt w accumulate the measurements, and the cumulative imaging
underground objects. The resulting propagating waves in a@peration improves the resolution around the target lonati
elastic medium are of two main types: surface waves and bdgly increasing the effective aperture. After the target emted,
waves. This paper concentrates on reflected surface wasgesonfirmationstep would be performed to decide whether
(Rayleigh waves) for locating mines, because the Rayleighe target is a landmine by using an imaging technique that
waves carry most of the returned energy. The seismic wawashances the resonance, e.g., [10].
are sensitive to differences in the mechanical properfi¢gseo ~ One applicable theory for optimal sensor placement is the
soil, mines and clutter, while GPR and EMI sensors respofitheory of optimal experiments” [11], which predicts the re
to the electrical properties. The mechanical propertied asults of experiments based on information-theoretic cptsce
structure of a landmine are quite different from typicalniesr These methods use some form of the Fisher information
of clutter. The dominant feature of the response of a buriegatrix, from which the Cramer-Rao bound is obtained. Vasiou
mine is a soil-loaded resonance of the mine case and triggegasures of Fisher information are possible, giving daifier
mechanism [2], [7]. This resonance causes an enhanced dasign criteria, but this paper concentrates on D-optirasigh
sustained motion of the soil above the mine thus enhanciwgiich maximizes the determinant of the Fisher information
the waves scattered from the mine. Hence, it is possible ritatrix. An example of using the method of optimal experi-
use seismic imaging to discriminate landmines from commanents for sensor placement can be found in [12], [13], which
types of clutter such as rocks, wood, etc. deals with the movement of sensors used in direction-d¥adrr

(DOA) estimation to localize a source. The D-optimal cigar
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Classification of General Concealed Targets.” path that localizes a moving source. In [14], a single moving

I. INTRODUCTION



algorithm based on Prony’s method is used to first identify
different wave components and then separate them [17], [18]
This analysis technique requires a linear array of sensors t
collect the space-time data (10 or 15 sensors suffices). At
present, we use 2x10 array and perform the wave separation
on each ten-element linear subarray. Thehxa subarray is
retained for the imaging and optimal maneuvering steps.

After the waves have been separated, the next step is to
image the targets to find their locations. The applicable dat
model for the reflected waves is the classical model used
in passive array processing. The imaging algorithm works
in the frequency domain, even though the received sensor
data is not narrowband. The nature of the seismic waves
suggests that frequency domain processing is more suitable
for two reasons. First, soil is usually a highly dispersive
medium, where propagation velocity varies with frequency.
Second, targets at various depths can be imaged by varygng th
Fig. 1.  Surface displacement plots showing wave propagatis-50 frequency content of the probing pulse. Thus, we formulate a
landmine location denoted by an arrow (40dB scale). (a) &gylwave 44160 model and steering vectors that can be used when

approaching the mine, (b) wave reaches the top of the mifenén pulse ~ . )
passes the mine, (d) scattered wave with mine still resupati velocity varies with frequency.

One goal is to design the system so that the array can
be placed on a mobile platform, which can maneuver as
sensor is used to localize a vapor emitting source by estimatit senses the environment. Therefore, the size of the array
the location of the source and minimizing its CR bound #f3s to be small, which means a small aperture. This small
each step. A recent example of D-optimal experiment desigerture will result in low resolution or higher uncertgint
involves moving an EMI sensor to locate buried targets [15}pout the location estimate of the target. One way to inereas
and, in [16], D-optimal design is used for optimal sens@gsolution is to increase the effective aperture by movire t
placement to solve an inverse problem. array and forming a synthetic aperture. Hence, the algarith
The paper is organized as follows. Section Il describes thet determines the next optimal position for the array must
steps in the algorithm including the performance bounds @iso accumulate its measurements from several positions.
target location estimates from which the D-optimal maneuve The system maneuvers based on its present estimate of

?"go”thm IS de”"?d- Section 1l contalns_ the results opigp . the target location. The 2-D sensor array estimates thettarg

ing the new alg(_)nth_m to data collectegl in & laboratory sgtt location with an imaging algorithm. Then, the variance & th

for scenarios with single targets, multiple targets, andtet. location estimate is calculated by using the Fisher infdiona
matrix (FIM), assuming the location estimate is the trugéear

Il. TARGET LOCATION AND SENSORMANEUVER METHOD |ocation. Based on the expected value of the FIM, the next

The proposed optimal maneuvering algorithm is an iterati@Ptimal array position is calculated by using the theory of
that involves three main steps: The first is identificationhef ©OPtimal experiments [11], [15], specifically, D-optimalsign

seismic wave components and separation of the reflected wi{ch maximizes the determinant of the FIM. The two steps
from the incident wave; the second is near-field imaging withinvelved in the maneuver strategy for a mobile array of senso
propagation model to estimate the target location; andhing t &€ Shown in Figs. 2(a) and 2(b).

is the optimal maneuver calculation to reposition the réngi
array for the next iteration. During the first step, differe
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seismic wave components have to be identified and separi = ACTUAL 250 acTunL
because the imaging in the second step must be done with  xo. /
reflected waves. The system uses an active source that is £, ¢ £ g Egmn
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in the vicinity of the receivers, so the array will also retar

I Array at step i+1

very strong forward wave. For example, the raw collected d Vawaseor | |

at four time instants from a TS-50 (anti-personnel) landm ’ N ”

buried at a depth of 1 cm is shown in Fig. 1. This figure sho o ® w0 i o 0 W o s w0 m 0z %o
the strong forward seismic wave approaching the mine during @ (b)

the first two frames, and reﬂeCt'ng from the mine in the th'rclt'ig. 2. Algorithm steps illustrated: (a) The source geresrat probing pulse.

In the last frame the weak reflection from the mine can b@aves scattered from the target are collected by the regeadray. At steg,
seen clearly. the target locatiorz; is estimated when the array center istat(b) Estimate

. : the next array positior§; +; by usingz; and the constrained cumulative
If the target is far from the receivers, we can remove thg,, o, mformgtign Ma:ﬁ)’fnllea}s/ure a?on’g a circle.

forward wave with a time gate, but when the target is nearby,
the two waves tend to overlap in time. A frequency-domain
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The wave separation is based on a parametric mode
technique previously developed for borehole sonic logg EEZ . Y
applications [17]. The collected datgx,¢) from a linear = «
array is a function of space and time, and has a 2-D FoL o
representatiors (k, ) 0 S x>
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s(x,t):m/ /S(k,a))ef(kx_"”)dkdw, (1)

o 0 Fig. 3. (a) Array setup with linear array between the sourm:target. The
first sensor position is indicated by the arrow. (b) Spectamalysis: reflected

wherex is the spatial positiork the spatial wave number, andwaves have positive velocity; forward waves, negative aigjo
w is temporal frequency. By taking a Fourier transform of t - ..« 1%

. . 4
space-time data acrossonly, we obtain ) .
1 T g 2 g it
S(x7a)) = 2— / S(k,a))ej(kx)dk. (2) § 1 § B it Mine relection
g ;o B o
_ _ A
At each temporal frequenay, exponential modeling can b s s !
. . . . . 2 2 ]
done across the spatial dimension to approximate the ite !
in (2) with a sum (of propagating waves) O T ey T ey
p @ (b)
S(x,w) ~ Z a, (a))ef’cp (“’)x, (3) Fig. 4. Reconstruction (4) using the subsets selected inJ. Extracted

=1 wave and original at one sensor only: (a) Forward wave, (lileBted wave.
where P is the model order. The parametety(w) and
kp(w) are calculated with a pole-zero modeling techniquiae forward and reflected waves on the basis of positive and
based on the Iterative Quadratic Maximum Likelihood (IQMLhegative velocities, or equivalently, wave numbers. Ohesé
algorithm, which is equivalent to the well-known Steiglitzwaves are identified in Fig. 3(b), their individual paramste
McBride extension of Prony’s method [19]-[22]. can be extracted, followed by reconstruction in the spane-t
The poles from IQML determine the exponemtgw) = domain using (4). The extracted forward and reverse waves at
kp(w)+ jo, (@) whose real part is the wave numldgi(w) and the first sensor are shown in Fig. 4, demonstrating that this
whose imaginary part is the attenuati@p(w). Wave number method is able to separate and reconstruct these waves.
can be converted to phase velocity vig(w) = w/k,(w),
and then we can plot the magnitude @f versus frequency B. Target Location Estimates and Performance Bounds

and velocity. This type of plot is a 2-D velocity-frequency once we have extracted the reflected wave(s) we can address
spectrum, e.g., Fig. 3(b), from which it is easy to obtain thgie problem of finding the target location(s) as a near-field
dispersion curves for the various modes that make up tgﬁay processing problem.

signal. The complex amplitudes, determine the strength of 1) pata Model for active sensingConsider a single seis-
different wave components. Furthermore, the individualle® mnic source illuminatingk targets, and an array @t seismic

of s(x,7) can be identified and grouped according to velociacejvers, where the source, targets and receivers ararzopl
vp(w) and frequency. Once we have sorted out a single moggce we model the soil as a dispersive medium with frequency
in the velocity-frequency domain, it is possible to recomst dependent velocity, we prefer to do the processing in the
the waveform for that mode in the space-time domain by usirp,g;quency domain.

the model The received seismic data at frequercygan be written as

s(x,1) = Za(wi)e(a(wi)x+j(wit+k(wi)x))‘ (4) y(®) = G(0)D(@)g) (@) + N(w), (5)
i
where the sum would include only those parametss;), where gl(a.)) 'S a KX.I vector that models the_propagatlon
. . from the single seismic source to the targ&éyp) is a KxK
a(w;) andk(w;) corresponding to the mode of interest. . . : .
Thi ing has b lied to dat lected | iagonal matrix whose elements are the scattering coeftgie
IS processing has been applied fo data coliected In ., e g targets,G(w) is a P x K matrix that represents

Iaborator_y and in the field, and used to extract waves reﬂectt%e propagation from the targets back to the receiver array,
from bqned. targets [22]. For gxample, cop5|der the set d n(w) is additive noise [23]-[26]. The elements of the

shown in Fig. 3(a), where a Ilngar array I|e§ between t (?.opagation matrices are given by the 2-D Green’s function.
source and the target. The target in this case is a VS-1.6 a@ii

tank landmine buried at a depth of 8 Th it ce only the reflected signals are of interest, the active
ank fandmine buned at a depin of ©cm. The array_conss_sstgf;tem in (5) can be simplified to the following equivalent
ten sensors (ground contacting accelerometers) with am—mtg .

: . : assive system
sensor spacing of 3.4cm. The resulting velocity-frequency

spectrum is shown in Fig. 3(b). The analysis easily sepsrate y(w) = G(w)s(w) + n(w), (6)



whereD(w)0: (w) has been replaced by & x1 signal vector
S(w) that represents the reflected signals from targets. Equa-
tion (6) has the same mathematical form as the narrow-band
data model [27] used in conventional array signal processin . O Acual
and this similarity will be exploited while calculating the Estimate
maximum likelihood location estimate. ;
In the seismic problem, the elements of the propagation
matrix G(w) are given by the illuminating Green’s vector

(steering vector) [23]-[25], [28],

g(Zv X, w) = [g(zs X1, (1)), ER) g(Z, Xp, w)]T s (7) 50 100 150 200
X(cm)

wherez is the target locatiors; thei™ sensor position in the Fig. 5. Target location estimate done using the ML cost fonctl4); inverse
2-D plane, andz the 2-D Green'’s function, whose analyticabf J(2) is plotted (dB scale).
form is

gr.r’ w) = iHél) (LIV - r'l) : (8)
4 v(®) Using (12) we can then solve for the signal from the derieativ
where H{" is the zero-order Hankel function of the firstof L~ with respect tos(w;)
kind, and v(w) is the frequency-dependent Rayleigh wave R H -1y
velocity, which is an accurate model for a vertically sfiat $(er) = (A (wl)A(w’)) AT (@)y(@r). (13)
media, but an approximate model in the presence of late

inhomogeneities. Spectrum analysis of the surface wa\@s [ g (12) and (13) into (11), we can rewrite the ML cost

(Sectlon_ I."A) Is used to determing(w). I function that must be minimized as a functionof
To minimize confusion when we refer to existing array

processing literature results, we change the notationHer t _ N
propagation matrix fron to A (called the steering matrix), J(2) = Z

ere Al is complex conjugate transpose Af Substitut-

2

(7 =A@ (A @a@)) " Af@)) v

and the final form of the data model becomes [27]: l;l
y(w) = AL, Z, 0)S(w) + N(w), 9) = Ztrace{PAL(w,)Ry (@)}, (14)
=1

wherey(w) is the array output vecton(w) is complex additive

noise, ands(w) is the signal vector. The steering matrixvhere Pi-(w;) = I — A(w;) (AH(wl)A(wl))_lAH(wl), is
A(¢.z,w) has elements given by the Green’s function (7}he projection onto the null space Af (w;) and R, (v;) =
which depends on the array center positiprand the (un- y(w;)y? (w;) is the single snapshot covariance matrix estimate
known) target locatiorz. Our objective is to determine theat w;. The target location estimate is then obtained by mini-

target location(s¥ given the received array dajdw). mizing the cost functiorn/(2), i.e., Zest = arg minJ(2).
2) Target Location EsthpationLet the data vectoly = A le of estimating the t fl Zt' for the TS
T N T Y PNX1 pe f db n example of estimating the target location for the TS-
[y (@) - Y (@n) ] €C © formed by 50 data in Fig. 1 is shown with the surface plot in Fig. 5.

aggregating the Fourier transform pfat N frequenciesw;.

Under the assumption of independent, identically distadu
(i.i.d.) Gaussian noise, the likelihood function (a probabilitg
density) for the current received data [29] is:

The surface plot (of the the inverse #{z)) was obtained by
sing (14) and evaluating this cost function at each paint
ver a 2-D grid. The target location estimate is the minimum
indicated with a square.

N
p(Y) = ]_[ % eXp{—%llY(a)l) —A(wl)s(wl)llz} 3) Cramer-Rao Lower Bound for the Estimate 2of The

j=1 % On On Cramer-Rao lower bound (CRLB) is an information theoretic

(10) inequality which provides a lower bound for the variances of

From (10), we obtain the negative log-likelihood function the unbiased estimators. If an estimator achieves the CRLB,
N then it is also a solution of the likelihood equation. The

L™ = NP log(na?) + LZ Z ly(wr) — A(w;)s(wp)||?. (11) Cramer-Rao lower bound is the inverse of the Fisher informa-

On 15 tion matrix (FIM). Assuming that the variance of the addtiv

goise in (5) is known, the log-likelihood function (11) for a

and the Maximum-Likelihood (ML) estimate is determined b ingle targethas one term that depends an

minimizing L~. In (11), both the target signal and the nois

variance are unknown, but the gradientlof is separable so 1 Y 5
that we can first solve for the noise variance from the devigat ~ L(§.2) = —— > ly(w) —a@.z.w)s@)|*.  (15)
of L™ with respect tos? " =1

N wherea(¢, z, w) is the propagation (steering) vector from the
52 = B Z ly(er) — A(wr)s(er) || (12) array centek to the location estimate. The (i, /)™ element
NP — of the matrixF is given by the partial derivative of (15) with



200
respect to thé™" and j™ parameters of the vectar[29]: 180 -0
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whereE,{.} denotes the expected value. The partial derivar R N T
of the steering vector is calculated with respect to theetiarg @ (®)
coordinates for a fixed array center. Fig. 6. (a) Circle constraint for optimum movement to thetraaxay position.

Mine location is indicated by smaller circle. The surfacetpshows the
determinant of the FIM (linear scale). (b) Location estimnafter the three
optimal moves; inverse af (2) is plotted (dB scale).

C. Movement of the Seismic Array via Optimal Experiments

Previously, we described how to determine the target lo- .
cation estimate and the corresponding FIM which represent nother way to cons?ramt the array movement would be to
the uncertainty about the estimate as a function of the ar d a penalty term as in [15]:
center position;. Suppose that we are at stepvith a target _
Iocationp estimrgtai ggtained when the arraypvis at pogsJition V(8) =340 — 1)\/(;"Jrl —8)TETE i~ 8. (19)
¢;, and now we are interested in determining the next optimaherev > 0 is the penalty factor that must be chosen relative
array center position candidaje, ;. Our approach is to selectto the size ofs,;(¢;, ), and X' is a diagonal matrix, whose
the new sensor position to reduce the expected uncertaintydiagonal elements are chosen to ensure smooth movement of
the estimated target coordinates by minimizing the deteanti the array from the previous position. However, this apphoac
of the CRLB, or, equivalently, by maximizing the determiharconstrains the step size indirectly, and does not guaradn#te
of the FIM as a function of the array centgrin the literature the array will stay between the source and the target.
of optimal experiments, this technique is called D-optimal An example of the circle constraint is shown in Fig. 6(a),
design [11] (see [15] for an application to magnetic sersorsvhere a circle of radius of 25cm is used. Based on the initial
Let ¢ represent the determinant of the FIM. The cumulatiiarget location estimate of the TS-50 landmine in Fig. 5, the
effect of the measurements up to siepan be written as: unconstrained optimal array position would be determined
by using (18) evaluated at each grid point where the new
array center could be located. The circle constraint r@stri
this evaluation to the small subset of points on the circle
in Fig. 6(a), so it is also much more efficient than the
where| - | stands for determinant an#(¢;) represents the unconstrained approach or the penalty function method.
FIM at stepi. The logarithmic increase due to the additional Once the next optimum array position is determined and
measurements at stépt 1 is given by the array is moved to the new position, a new batch of data is
collected. This new data is appended to the existing dath, an
8q(Giv) =INg ({81, 83 8ia)) = NG (1o 83) the new target location estimrf:lrt)e, as well as the negt optimum
=In|I + F(&)B ™! (17) array movement, are determined by using the cumulative data
Further steps are shown in Fig. 6(b). With each successive
wherel is an identity matrix, and; Z F(¢,). Therefore, step the target location estimate is improved in the serege th
there is a decrease in the uncertainty ellipse of the estimat
to maximize the expected |nformat|0n galn the next optimadtuitively, the explanation is that the cumulative estiima is
array center should be determined by effectively increasing the aperture.

§iv1=arg rT251X{In |1+ F(&)B |} (18)

G 8D = IFG.. 8 = D FE)|.  (16)

Jj=1

Ill. PROCESSING OFEXPERIMENTAL DATA

1) Constraints:In this optimization problem (18), there are Several tests were conducted with anti-personnel and anti-
hidden constraints that come from the configuration of thank landmines with and without buried clutter objects in an
seismic measurement system. First of all, we need to makegerimental model [2] to evaluate the optimal maneuvering
sure that tharray always receives backscattered wavéshe algorithms. The experiments included a TS-50 anti-persbnn
array lies on the far side of the target, the forward scatteréAP) landmine, a VS-2.2 anti-tank (AT) landmine, a VS-1.6
waves are weak and are mixed with the very strong forwaAI landmine, and several rocks that were similar in size
probing pulse, so it is difficult to extract the reflected wavid the landmines. The TS-50 is a plastic landmine, 9cm in
using the Prony analysis. One way to impose this conditiondsameter and 4.6cm in height; the VS-2.2 is a non-metallic
to restrict the movement of the array center to be less thataadmine (24.2cm diameter, 11.8cm tall); and the VS-1.6 is
fixed step size of. In effect, this means that we calculate tha slightly smaller non-metallic landmine (23.3cm diameter
maximum of (18) on a circle of radius, with the center of 9.2cm tall). The experimental model with the sensor array
the circle at the previous optimum array center position. and seismic source is shown in Fig. 7. Damp, compacted
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Fig. 8. Experiment S-1. Single target case: (a) After phebe phasetwo
fixed positions). (b) After three optimal moves, the resolutof the estimate
around the true target location is significantly increased] the uncertainty
reduced. ML surfaces, the inverse £(z), are plotted on a dB scale.

Scan Region o'f.'Zm'hy dm o
A. Single Target Case (Experiment S-1)
The first experiment involved a single VS-1.6 AT landmine

Fig. 7. Experimental setup showing the sensor array>ot0 elements, the pyried 5cm deep in the experimental model. as shown in
seismic source, and a buried target. Although the sourca theright in this Fia. 7. Fi 8 h the tw b h ’ t
photo, all figures that show processing have the source otethe 'g'_ o |glure. (a) shows the two probe-phase measuremen

positions (indicated by thgx3 array of sensor positions), the

actual landmine burial location (indicated by the circlapd

the initial target location estimate (indicated by the doeuth)

sand has been used as a soil surrogate in the experimeftafle via the ML imaging algorithm during thobe phase
model as its properties closely resemble those of typic%l@r every3x10 array measurement position, the data collected
soils [4], [5], [30]-[33], and it can easily be reconditiche Cross each 10-element line of the array was processed by the
for consistency amongst multiple measurements. To prep&#@ny-based velocity spectrum analysis in order to separat
the model for an experiment after burying landmines arfge direct and scattered waves. The reflected waves were
clutter, the sand is wetted and packed using a hand tamb%?ynthesized at three out of the ten sensors in each line and
to recondition the soil as a homogeneous medium. Targég§ained to form & x3 array for imaging.

and clutter can be buried in a 2m by 2m scannable regionPuring thesearch phasethe optimal array movement was

in the center of the model. The seismic source is a grourfgnstrained by the circle constraint, using a 25cm radius to
coupled electrodynamic transducer located at a fixed positicontrol the step size. The initial and final location estiesat
approximately 40cm from the edge of the scan region. $own in Fig. 8(a) and (b), show the improvement in the
generates seismic waves with a 4.096s chirp swept frdafget estimate. With the circle constraint, we observe tha
100Hz to 2kHz. Surface motions were measured usingti array not only moves toward the target but also increases
3x 10 array of ground-contacting accelerometer sensors [3e effective array aperture, thereby reducing the size of
with inter-element spacings of 10.2 cm and 3.4cm. The sendb uncertainty ellipse around the target location esgmat
array was moved through the scan region using a comput@he final target location estimate was directly on top of the
controlled, three-axis positioning system. Post-prdogssf landmine burial position. The five array measurements made
the acquired data included convolution to shape the redeivg this case consist of 150 individual sensor measurements.
pulse into a 450Hz center-frequency differentiated GassiThis is a substantial reduction in the amount of data require
pulse prior to the processing. For typical measurements, #9 locate buried targets as approximately 3600 individual
ambient noise is approximately 45dB below the level of th@&nsor measurements (or 120 array measurements) would be
interrogation (incident) signal, while the signal clutiewel Nnecessary to scan the entiten® region.

in clean sand is approximately 30dB below the interrogation

signal. The signals scattered from the mines are much weakerSingle Target in Clutter (rocks)

than the interrogation signal and are often below the lefel o

i To test the behavior of the algorithm in clutter, rocks are
the clutter signals.

introduced in addition to landmines. The rocks scattemsieis
For these experiments, @obe phaseand asearch phase waves, like land mines, so discriminating the rocks from
were used. In the@robe phasgmeasurements were made atandmines with the method of optimal maneuvers depends
two or three predetermined positions in front of the seismigpon the relative strengths of their scattered waves. Hewev
source to interrogate the entire scan region for targetshda a rock that is approximately the same size and buried at the
ML imaging algorithm (14) (using only one probe position wasame depth as a landmine will generally scatter less than
unreliable). The probe phase provides an initial low-nesoh the landmine due to the resonance of the landmine. Two
location estimate for theearch phashich then performs the experiments are presented that demonstrate that the thigori
optimal maneuvers to better locate the targets. The new aria not confused by rocks that scatter less than the landmine.
positions are calculated from the FIM, and the target locati 1) Experiment C-1The first experiment is with a small TS-
is refined according to (14) and (18). 50 AP mine buried at a depth of 1 cm surrounded by four rocks
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Fig. 9. Experiment C-1: TS-50 surrounded by four rocks. (g)efimental 50 100 150
setup showing rocks and the mine. (b) Final location estnadter three X(cm)
optimal moves; rock positions denoted by squares.

Fig. 11. Experiment M-1: Initial estimates from thobe phasefor the
two targets case. Three fixed array positions centered atahd23. The true
locations of two targets (circles) and their initial estieg (diamonds) are
also shown. ML surfaces, the inverse b(z), are plotted on a dB scale.
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Fig. 10. Experiment C-2: VS-2.2 surrounded by nine rocksEfaerimental .
setup showing rocks and the mine. (b) Final location estnafter three o > -l 0 Degree % 100
optimal moves; rock positions denoted by squares. (a)

Fig. 12. Experiment M-1 (two targets): Next optimal arraysition (linear
. . . . scale). (a) Surface plot obtained using (18) with a circl@®em. (b) Values
which are nearly the same size as the mine but buried deep®hg the circle from—90° to 90° by using (17).

The locations and burial depths of the rocks and the mine
are shown in Fig. 9(a). The location estimate using optimal
maneuvers is shown in Fig. 9(b), and the array is able to pickSince we want to minimize the determinant of the FIM
out the target in the presence of these rocks, primarilyds®a as in (18), there are various options available. One is to use
it is close to the surface. the full 4x4 FIM matrix in (18), and the other would be to
2) Experiment C-2:In the second experiment, Fig. 10(a)devise a partitioned approach with the two smatle2 FIMs,
a VS-2.2 AT mine is surrounded by nine rocks, one of whicbne for each target. The second approach is inherently more
is nearly as big as the VS-2.2 but buried deeper. The threemplicated and might involve multi-objective optimizatito
optimal moves to locate the mine are shown in Fig. 10(gatisfy both measures.
Since the VS-2.2 is large and the rocks buried at shallowerThus we use thet x4 approach and determine the next
depths are smaller, its signature is stronger than any of thgay position by using (18) with a circle constraint. A térc
rocks. Thus the algorithm picks out the VS-2.2 from the rockst radius 25cm is used, and the array center at position-2 is
rather easily, although the final location estimate is afithet ysed as the center of the first circle. The surface obtained by
edge of the mine. using the4x4 FIM is shown in Fig. 12(a) and the values on
the circle from—90° to 90° are shown in Fig. 12(b). There are
two well defined peaks with one direction favored more than
the other. The higher peak in this plot is picked to generate
In the first multi-target experiment, we assume that tHBe next optimal array position.
number of targets is known. Two VS-1.6 anti-tank (AT) mines The succeeding array positions are obtained optimally and
are buried at a depth of 5cm. During the probe phase, thitbe surface plot at the fourth step and the last step are shown
fixed array positions with respect to the source are useditoFig. 13(a) and (b). From this figure, we can make two
find the starting locations for the search phase. The thred fixnteresting observations: once the optimal maneuver ditgor
array positions are shown only as their centers (+ signg), kpicks one target, the algorithm continues to move toward tha
the shape and size of the array is the s@me& array used target. While the array moves toward target-1, the sigeadéir
before. The ML estimates of the two target locations are showarget-2 becomes weaker but does not disappear. At the last
in Fig. 11. Since two initial ML estimates have been obtajnedtep shown in Fig. 13(b), target-1 has been localized toimith
the method for maneuvering the array optimally with the FINts radius and there is appreciable reduction in the sizesof i
must be modified. The FIM is now of size4, so we partition uncertainty ellipse. However, the weak signature of taiyet
the matrix into four2x2 submatrices related to the individualis still somewhat present, and with a very accurate location
targets and their cross terms. estimate; most likely because the ML imaging algorithm is

C. Multi-target case: Experiment M-1
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X(em) Fig. 15. Experiment M-2 setup with a VS-2.2 landmine and &rot
(@) comparable size at the same distance from the source.

Fig. 13. Experiment M-1, two VS-1.6 landmines: (a) Optimamauvers up
to step 4. (b) After seven steps. ML surfaces, the inversé(aj, are plotted . o
on a dB scale. only one strong target, and then locate this target usinignapt

moves. Once it is localized, we then remove the contributfon

o5 ;0 .5 this target from the array data by using the CLEAN algorithm,
4w G) .- and proceed to find the next strongest target, repeating thes
s s operations until all possible targets are localized. Ineord
o = E7 = to determine that there are no targets remaining, a power
; L =5 distribution function is proposed based on the metric in].[35
“ It uses the array data at the probe phase only.
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Fig. 14. Experiment M-1, two VS-1.6 landmines: estimatihg $econd target hi distribution i lculated f itionsn th
after removing the effect of the first target from the arratadéa) Probe phase T _'S power 'S_m ution Is calculate . or positiopsn t _e area
with the array at positions 1, 2 and 3. (b) Final estimaterafieee optimal Of interest, using the Green’s function vector (steeringtag

maneuvers. ML surfaces, the inverse bfz), are plotted on a dB scale. g(p. w;) andy(w;) is the array data at frequenay.

For a stopping criterion, a scalar metric is calculated thase
on the matrix norm ofP(p, w;)—the Euclidean normIi(y).

hen there are strong targets present in a uniform backgdroun

e get a distribution with higher values far,. However, once
we locate the targets, and remove their contributions frioen t
array data, the power distribution decreases along with the
lues of the norm. Hence, one way to decide when to stop is
calculate this distribution along with the matrix nornftea

q £ 1h h . 4 all the | localizing each target. If the values in the metric beconmy ve
targets, and out of these we have estimated all the locatiqnz,) compared to the starting value, then this indicatas th

th “ »
fexcept for theqrfz]_ ;arget.bThen ;hfe cLe_aned ar_ray_databa'E Ao stronger targets remain.
requencyw; which can be used for this target Is given by: 14 gimyjate this scenario, an AT mine (VS-2.2) and a rock
M of nearly same size and shape, Fig. 15, are buried at a depth of
Ym(wr) = y(owp) — Z a(p;, wr)s;(wr) (20) 6cm. Both of these targets are at nearly the same distanme fro
Jj=1,j#m the source, with the rock being slightly closer. Assuminatth

whereg is the steering vector whose elements are given [jere is only one target, we let the array maneuver optimally
the known 2-D Green’s functior; is the /" target location After three iterations, the rock, which is stronger in thise is
estimate, and; (w;) is the signal reflected from thgh target localized as_shown in Flg. 1_6(a). After this, the same steps a
which can be estimated using (13). Once we remove the fif§P€ated, with the contributions of the already localizegét
target using (20), the FIM will be reduced to2a2 matrix. removed from the array. This time the array moves toward the
The probe phase for the second target uses the previousgtartecond target (the AT mine) and localizes it in three optimal
position as shown in Fig. 14(a), the only difference beirag thMOVes as shown in Fig. 16(b). o
the effect of target-1 has now been completely removed fromAfter each probe phase we calculate the power distribution
the array data. The next few optimal moves to locate targ&?d its norm. At first there are two strong targets. The
2 are shown in Fig. 14(b). Now this second target has beBi§togram of this power distribution is shown in Fig. 17(a),

completely localized in addition to considerable reductio with a calculated norm of 31.58. Once this target is locdlize
the size of its uncertainty ellipse. we remove its contribution from the array at the same probe

position. The second power histogram is shown in Fig. 17(b)
with a norm value of 12.45. The third power histogram when
both targets have been removed is shown in Fig. 17(c), and the

In most realistic situations, there is @opriori knowledge calculated norm value is 7.24. This final norm value should be
of the number of targets, and a different strategy must liee same as for an empty sandbox and can be used to define
developed. At each iteration, we could assume that thereaistopping criterion (see Table I).

using seven array measurements at the end.

Once we have completely localized the first target, we wo
return to the original starting positions and remove theaff
of the already localized target from the array data. The nema
ing targets can then be localized. The removal technique u
will be based on the CLEAN algorithm originally develope o
for radio astronomy [25], [35]. Suppose that there arfe

D. Multi-target case: Experiment M-2
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TABLE |
O et ’ ESTIMATED NORM VALUES FOR POWER DISTRIBUTION FOR DIFFERENT
i MULTI-TARGET SCENARIOS

£ 100
S

- L
25 Case 1: Single AT mine and large rock (M-2 £
4 Initial | 31.58
Rock removed| 12.45
Rock and AT mine removed 7.24
R T xem Case 2: Single AP mine and 4 rock
@ (b) Initial | 19.39

Fig. 16. Experiment M-2: VS-2.2 mine and a large rock. (a) Tifrs target AT mine and oneR?glékrergnn?gsgj %lgg
localized is the strongest target, in this case the rockAfter “CLEAN"-ing — - :
the data, the algorithm locates the second strongest tavhéth in this case Case 3: Single AT mine and 9_ _rOCI‘
is an AT mine. ML surfaces, the inverse 8{(z), are plotted on a dB scale. Initial | 22.077
AT Mine removed | 12.762
AT mine and big rock at 10 cm removed 8.19

~|

7]

7]

- 5000 ‘ ‘ ‘ ‘ ;
§ a Case 4: Single AP mine (Experimerﬁ S-1)
2 i . Initial | 13.07
I . L AP Mine removed (empty sandbox) 7.41
0 0.1 0.2 0.3 0.4 0.5 0.6
> 5000 T T
% I ” b F. Lateral Soil Inhomogeneity
T, ‘ ‘ ‘ ‘ Sometimes the soil properties will vary laterally due to
50000 0;1 02 03 04 05 06 changes in the soil composition and/or compaction. This can
g easily occur on a dirt or gravel road where the soil is packed
S ¢ more densely in the tracks by the vehicular traffic. The siism
T 0&.‘ ‘ ‘ ‘ ‘ wave velocity in the tracks is generally higher than in the
0 01 0z 08 04 05 06 surrounding regions. With such a velocity change, the waves

Fig. 17. Experiment M-2: Power histogram at the probe phéseWith wil take.a Curveq route m.Ste.ad of propagating on a stralght
both targets present. (b) With one strong target removesirgibk). (c) with Path. This can direct the incident wave away from the mine
both strong targets removed (both the mine and the rock). or cause an error in the predicted mine location because the
imaging algorithm assumes the waves travel in a straight
path. An experiment was performed to investigate how the
E. Stopping Criterion for Multi-target Cases optimal maneuvering algorithm would handle such a case.
Based on the two previous examples we can formulatefadiagram of the experiment is shown in Fig. 18(a) where
general strategy for dealing with multi-target cases when v@ TS-50 mine is buried at a depth of 1cm, and the water
don't havea priori knowledge about the number of targets. A§ontent plus sand packing was selectively adjusted to form a
we locate the targets one at a time and remove the strondtigh velocity region. This caused a significant portion af th
target with the CLEAN algorithm, we return to the probe stagéave to be directed away from the mine. The field intensity
and recalculate the power distribution, along with its noAm in the path was 12dB stronger than that incident on the
we remove each localized target contribution from the arrajiine. Also the wave curves slightly away from the mine.
the power values will decrease. This reduction can be usedTd results of applying optimal maneuvering to this case are
a guide for stopping if we know the metric values for an empghown in Fig. 18(b). The algorithm still converges quickdy t
sandbox. Using several different experiments, we summarie location of the mine (in three optimal moves) even in the
the power values in Table I. The metric converges to neady tRresence of the lateral inhomogeneity. Even though most of
same value (approximately 7.5) after the processing remov@e energy in the surface wave is diverted away from the mine
all the strong targets. This lower limit value corresporalan location, there is enough reflected energy for the algoritbhm
empty sandbox, when there are no targets present. make its first move in the correct direction after which the
For the stopping criterion we will use a threshold that i§cation becomes easier.
within £10% of the empty sandbox valud.f = 7.5). For
example, consider the data set with a single TS-50 AP mine, IV. SUMMARY
which is Case 4 in Table I. Its value with the contribution of The algorithm presented in this paper shows that it is
the mine removed from the arrayis = 7.41 which is within  feasible to control a maneuvering array to find buried target
10% of 7.5. In a realistic situation, the power distributiodike landmines. The experiments showed that the maneuyerin
will depend upon various factors including the propagaticsystem tends to find the strongest reflecting target, butiblis
properties of the medium, the dynamic range of the seisntizfind multiple targets and estimate the number of targets fr
source, as well as the target types, sizes and burial depthg. data. The algorithm starts from an initial estimate give
Therefore, we would have to calibrate the array by using &y a probe phase, but as long as the probe phase gives some
area without any targets to calculate the benchmark metimclication of energy from the approximate direction of the
values for the stopping criterion. target, the array maneuvers will improve the location estén



10

Scan Region

1.8mby 1.8 m 160 [13]

% PR T
" 1 .
@nmine AEEY 1
Seismic Location 2100 ¥
Source 3
> s [ ]
> 80 14

|:| Faster Propagation

Region
- 25 [15]

+
.\ 50 100 150

X(cm)

@ (b)
[16]

Fig. 18. Lateral inhomogeneity experiment. (a) Layout sihgwthe mine
location and the region of higher velocity. (b) Locationuies for a TS-50

mine buried at a depth of 1cm after three optimal moves. ThesMiface, [17]
the inverse of/(2), is plotted on a dB scale.

(18]

Although the optimal maneuver method developed here is
for one source and one moving array, this strategy could B€]
extended to multiple cooperating sources and receivers. Th
benefit would be faster coverage of larger regions if all theg
sources and receivers were mounted on individual robots. In
order to exploit this configuration, it would be necessary 1[91]
develop a distributed optimal maneuvering algorithm.

Future work must also address the identification problem to
distinguish a landmine from a strong clutter reflector. Aftd??]
the target is located, the array would be positioned on top
of a potential landmine to measure the induced resonance 2]
and make the confirmation. The resonance feature could be
enhanced with an imaging algorithm that generalizes tipg;
method in [10].

[25]
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