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Abstract—TanDEM-X (TerraSAR-X add-on for Digital Eleva-
tion Measurements) is an innovative spaceborne radar interfer-
ometer that is based on two TerraSAR-X radar satellites flying in
close formation. The primary objective of the TanDEM-X mission
is the generation of a consistent global digital elevation model
(DEM) with an unprecedented accuracy, which is equaling or
surpassing the HRTI-3 specification. Beyond that, TanDEM-X
provides a highly reconfigurable platform for the demonstration of
new radar imaging techniques and applications. This paper gives
a detailed overview of the TanDEM-X mission concept which is
based on the systematic combination of several innovative tech-
nologies. The key elements are the bistatic data acquisition em-
ploying an innovative phase synchronization link, a novel satellite
formation flying concept allowing for the collection of bistatic data
with short along-track baselines, as well as the use of new inter-
ferometric modes for system verification and DEM calibration.
The interferometric performance is analyzed in detail, taking into
account the peculiarities of the bistatic operation. Based on this
analysis, an optimized DEM data acquisition plan is derived which
employs the combination of multiple data takes with different
baselines. Finally, a collection of instructive examples illustrates
the capabilities of TanDEM-X for the development and demon-
stration of new remote sensing applications.

Index Terms—Bistatic SAR, digital elevation model (DEM),
formation flying, interferometry, microwave remote sensing, mul-
tistatic SAR, synchonization, synthetic aperture radar (SAR).

I. INTRODUCTION

IGITAL elevation models (DEMs) are of fundamental

importance for a broad range of commercial and scientific
applications [1]-[3]. For example, many geoscience areas, like
hydrology, glaciology, forestry, geology, oceanography, and
land environment, require precise and up-to-date information
about the Earth’s surface and its topography. Digital maps are
also a prerequisite for reliable navigation, and improvements in
their precision need to keep step with the advances in global
positioning systems, like GPS and Galileo. In principle, DEMs
can be derived from a variety of air- and spaceborne sensors
[4], [5]. However, the resulting mosaic of data from different
sources with a multitude of horizontal and vertical data, accura-
cies, formats, map projections, time differences, and resolutions
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TABLE 1
COMPARISON OF DTED-2 AND HRTI-3 DEM SPECIFICATIONS
Requirement Specification DTED-2 HRTI-3
. . i 90% linear point-to-point [ 12 m (slope < 20%) 2 m (slope < 20%)
Relative Vertical Accuracy error overa 1°x 1° cell 15 m (slope > 20%) 4 m (slope > 20%)
Absolute Vertical Accuracy 90% linear error 18 m 10 m
Relative Horizontal Accuracy 90% circular error 15m 3m
Horizontal Accuracy 90% circular error 23m 10m
Cpnft enlngt : . 30m 12m
Spatial Resolution independent pixels (1 are sec @ equator) | (0.4 arc sec @ equator)

is hardly a uniform and reliable data set. The Shuttle Radar
Topography Mission (SRTM) [6]—-[8] had the challenging goal
to meet the requirements for a homogeneous and reliable
DEM fulfilling the DTED-2 specification. The coverage of this
DEM is, however, principally limited to a latitude range from
56° S to 60° N due to the inclined orbit of the Space Shuttle
and its mapping geometry. Further restrictions apply to the
X-band DEM with its wide gaps at lower latitudes and the
C-band DEM where the data are available to the public only
at an artificially impaired spatial resolution corresponding to
the DTED-1 specification. A user survey among a wide range
of scientists and potential customers has clearly shown that
many applications require both an extended latitudinal cover-
age and an improved accuracy corresponding to the emerging
HRTI-3 standard and comparable to DEMs generated by high-
resolution airborne radar systems [3], [9]. The acronym HRTI
stands for high-resolution terrain information and relates to a
DEM specification which uses a fixed latitude and variable lon-
gitude grid to represent the elevation data on a global scale [10].
Table I compares the specifications of the DTED-2 and HRTI-3
DEM standards.

The primary objective of the TanDEM-X (TerraSAR-X
add-on for Digital Elevation Measurements) mission is the
generation of a worldwide, consistent, timely, and high-
precision DEM aligned with the HRTI-3 specification as the
basis for a wide range of scientific research, as well as for
operational and commercial DEM production [2], [9]. This
goal will be achieved by means of a second TerraSAR-X-like
satellite flying in close orbit configuration with TerraSAR-X.
Both satellites will then act as a large single-pass radar
interferometer with the opportunity for flexible baseline
selection. This enables the acquisition of highly accurate
cross- and along-track interferograms without the inherent
accuracy limitations imposed by repeat-pass interferometry due
to temporal decorrelation and atmospheric disturbances [11].
Besides the primary goal of the mission, several secondary
mission objectives based on along-track interferometry
(ATI), polarimetric SAR interferometry (PollnSAR), digital
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Fig. 1.

beamforming, and bistatic radar have been defined which
represent an important and innovative asset of the mission.
TanDEM-X was approved for full implementation by the
German government in March 2006 and will be realized
in the framework of a public—private partnership (PPP)
between the German Aerospace Center (DLR) and EADS
Astrium GmbH, as for TerraSAR-X. With a planned launch
in summer 2009, TanDEM-X opens a new era in the German
space program, providing a major push for the research and
development activities and associated techniques and technolo-
gies of high-resolution X-band synthetic aperture radar (SAR).

The outline of this paper is as follows. Section II introduces
the mission concept including innovative aspects, like orbit
selection using the HELIX satellite formation, the employment
of multiple interferometric data acquisition modes, and a new
synchronization system for bistatic operation which is based on
relative phase referencing in X-band via dedicated horn anten-
nas. The achievable DEM accuracy is derived in Section III via
a detailed interferometric performance analysis which accounts
for the peculiarities of the bistatic SAR data acquisition with
multiple baselines. Based on this analysis, we develop in
Section IV an optimized data acquisition plan for the derivation
of a global DEM in accordance with the HRTI-3 accuracy
requirements. Section V then provides examples for novel radar
imaging modes and scientific applications to be demonstrated
with TanDEM-X. This paper is concluded in Section VI with a
short summary and an outlook on present and future activities.

II. MiSSION CONCEPT

The TanDEM-X mission is an extension of the TerraSAR-X
mission, coflying a second satellite of nearly identical capa-
bility in a close formation. The TerraSAR-X satellite (TSX),
as basis for TanDEM-X, is not only a high-performance SAR
system with respect to SAR image and operational features but
it also has already built in all necessary features required for the
implementation of the TanDEM-X mission [12]. Examples are
additional X-band horn antennas for intersatellite phase syn-
chronization, the availability of a dual-frequency GPS receiver
for precise orbit determination, excellent radio-frequency (RF)
phase stability of the SAR instrument, and pulse repetition fre-
quency (PRF) synchronization based on GPS as a common time
reference. The second satellite (TDX) will be as much as pos-
sible a rebuild of TSX with only minor modifications, like an
additional cold gas propulsion system for formation fine tuning

Examples of data acquisition modes for TanDEM-X. (Left) Pursuit monostatic mode, (middle) bistatic mode, and (right) alternating bistatic mode.

and an additional S-band receiver to enable a reception of status
and GPS position information broadcast by TSX. This guar-
antees a low development risk, and it offers the possibility for
a flexible share of operational functions among the two satel-
lites.! The TDX satellite will be designed for a nominal lifetime
of five and one half years and has a nominal overlap with TSX
of three years. Note in this context that TSX holds consumables
and resources for up to seven years of operation, allowing for
a potential prolongation of the TanDEM-X mission duration.

The instruments on both satellites are advanced high-
resolution X-band SARs based on active phased array tech-
nology, which can be operated in Spotlight, Stripmap, and
ScanSAR modes with full polarization capability [12]. The
center frequency of the instruments is 9.65 GHz with a se-
lectable SAR chirp bandwidth of up to 300 MHz. The active
phased array antenna, which has an overall aperture size of
4.8 m x 0.7 m, is fixed mounted to the spacecraft body and
incorporates 12 panels with 32 waveguide subarrays for both
H and V polarizations. This enables agile beam pointing and
flexible beam shaping.

A. TanDEM-X Operational Modes

Interferometric data acquisition with the TanDEM-X satel-
lite formation can be achieved in four different operational
modes: bistatic, monostatic, alternating bistatic, and simultane-
ous transmit. Each of these modes will be described in the fol-
lowing. The four interferometric configurations may further be
combined with different TSX and TDX SAR imaging modes,
like Stripmap, ScanSAR, Spotlight, and Sliding Spotlight.

Operational DEM generation is planned to be performed
using the bistatic InSAR stripmap mode shown in Fig. 1 in
the middle. This mode uses either TSX or TDX as a trans-
mitter to illuminate a common radar footprint on the Earth’s
surface. The scattered signal is then recorded by both satellites
simultaneously. This simultaneous data acquisition makes dual
use of the available transmit power and is mandatory to avoid
possible errors from temporal decorrelation and atmospheric
disturbances. Prerequisites for bistatic operation are the PRF
synchronization and the relative phase referencing between the

The current mission scenario employs both satellites, also for monostatic
data takes, which is necessary to fulfill the data requirements of the TerraSAR-X
mission itself. In this way, the TanDEM-X mission goals can be achieved
without jeopardizing the TerraSAR acquisitions.
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Azimuth weighting of Doppler spectra for beamsteering to a (left) joint azimuth footprint and with (right) independent zero Doppler steering. The along-

track displacement is 1 km, and the slant range is 600 km. Solid and dashed lines show weightings of mono- and bistatic Doppler spectra, respectively. The gray
areas indicate the common Doppler spectra which are, in this example, confined by a maximum gain loss of 4 dB, as shown by the dotted lines.

two satellites. These challenging topics will be discussed in
more depth in Section II-B and C.

Another essential requirement for radar interferometry on
natural surfaces is a sufficient overlap of the two recorded
Doppler spectra. For this, we note first that the instantaneous
Doppler shift between the monostatic and the bistatic SAR

acquisitions is given by [13]
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where A denotes the wavelength, r; and ry are the ranges
from the two satellites to a given point on the ground, o
denotes the scalar product, ?1 and ?2 are the velocity vectors
of the two satellites in an inertial reference frame, 51 and 52
are the instantaneous look vectors which connect the actual
satellite positions with the point on the ground, and 7E is
the velocity vector of the scatterer due to Earth rotation. For
the following analysis, we assume identical velocity vectors
for the two satellites, since their magnitude difference will
be less than 1 m/s (for a - Ae < 500 m, cf., Section II-D)
and their angular difference stays always below 0.001°. We
assume furthermore that the illuminator satellite performs total
zero Doppler steering to compensate the additional Doppler
shift from Earth rotation with regard to the monostatic SAR
image [14]. The corresponding yaw and pitch angles are smaller
than 4° and 0.1° (cf., [12]), respectively, and their additional
impact on the Doppler difference can well be neglected in the
following. Equation (1) may then be approximated by

v dalong

AfDOp% N7

2

where v is the satellite velocity, daone is the along-track
displacement between the satellites, and r is the mean slant
range r = (11 + r2)/2. An along-track displacement of 1 km
will hence result in an instantaneous Doppler shift of ~410 Hz
for a slant range of 600 km which corresponds in TanDEM-X
to an incident angle of 33°.

We may now compare two different solutions for the acqui-
sition of the bistatic SAR image. The first alternative steers the
antenna beam of the second satellite such that the footprints of
both antennas yield an almost perfect overlap on the ground.
The relative distortion of the two antenna footprints can be
neglected due to the small satellite displacements considered
for bistatic cross-track interferometry. The recorded Doppler
spectra are then confined by the same joint antenna pattern, and
we obtain from (2) a mutual displacement between the mono-
static and the bistatic Doppler centroids which varies between
330 and 420 Hz in case of a 1-km along-track displacement and
the incident angle range considered in Section III-A. This corre-
sponds to ~20% of the processed azimuth bandwidth, thereby
reducing the number of independent looks for interferometric
phase estimation as outlined in Section III-B. The mutual shift
between the two Doppler spectra can be avoided by employing
the zero Doppler steering independently for both satellites. The
weighting of the bistatic SAR spectrum by the joint azimuth
antenna pattern can then be approximated by

wl
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where [ is the antenna length, and sinc(x) = sin(x)/x. Fig. 2
compares the azimuth weightings of the mono- and bistatic
Doppler spectra for the two beamsteering alternatives. The sec-
ond alternative yields, in general, an improved spectral overlap
on the cost of a reduced maximum gain for the bistatic SAR
image. For TanDEM-X, this gain loss is less than 0.5 dB for
the along-track displacements below 1 km. A mispointing of
the two antenna beams may further reduce the gain. By noting
that the pointing accuracy in TerraSAR-X is 0.01°, which
corresponds to 3% of the 3-dB azimuth beamwidth, we obtain
in the worst case of opposite pointing errors an additional gain
loss of 0.1 dB, which has an almost negligible effect on the
overall interferometric performance. Based on this and further
analyses in Section III, it was decided that TanDEM-X employs
the second alternative of independent zero Doppler steering
during the DEM data acquisition phase. This has the operational
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(Left) Azimuth ambiguities as a function of the PRF for processed bandwidths of (solid) 2266, (dotted) 1600, and (dashed) 1066 Hz. (Right) Range

ambiguities as a function of ground range position and PRF for an incident angle of 35°.

advantage that the steering angles become independent from the
actual along-track separation between the two satellites.

A secondary DEM generation mode is the pursuit mono-
static InNSAR mode which is shown in Fig. 1 on the left. In
this mode, the two satellites are operated independently from
each other, thereby avoiding the need for synchronization. The
along-track distance should be larger than 10 km to avoid
RF interference between the radar signals. Temporal decorre-
lation is still small for most terrain types except vegetation
at moderate to high wind speeds as well as for water. The
interferometric height sensitivity is doubled with respect to the
bistatic operation, which means that the baseline determination
has to be more accurate by the same factor. Neither pulse nor
phase synchronization is required in the pursuit monostatic
mode. This mode is hence well suited as a backup solution
in the case of synchronization problems and/or problems with
close formation flying. The selection of appropriate orbits for
the pursuit monostatic mode has also to take into account
the rotation of the Earth, which leads—if uncompensated—to
a latitude-dependent additional cross-track baseline between
the two monostatic data acquisitions. Hence, a relative shift
between the right ascensions of the ascending nodes of the
two satellite orbits will be required if one wants to achieve
the same baselines as in the bistatic mode employing a close
formation. Vice versa, one may exploit an adaptation of the
along-track separation to adjust the cross-track baseline without
a fuel-consuming shift of the right ascension of the ascending
node. As explained later on, this may, e.g., be used to acquire
interferometric data in a crossing orbit configuration without
the necessity to change the radar operation from a right- to a
left-looking mode. Monostatic data takes are planned during
the commissioning phase, in an intermediate phase when the
satellites are separated from each other for a formation swap,
and at the end of the mission when the satellite formation is
flown with an increasing along-track separation.

A third operational mode is the alternating bistatic mode,
where the transmitter is switched on a pulse-to-pulse basis.
The scattered signal from the ground is then recorded by both
receivers simultaneously, as shown in Fig. 1 on the right. The
alternating bistatic mode acquires two monostatic and two
bistatic SAR images during a single pass of the satellite forma-
tion. For an ideal system and under the assumption of scatterer
reciprocity, the two bistatic SAR images would become equal.

Systematic deviations between the two bistatic SAR images
will be mainly due to differences in the oscillator frequencies
of the two tandem satellites, while deviations from reciprocity
can well be neglected for the intended interferometric acqui-
sitions due to the small bistatic angle which will be below
0.1°. A comparison of the two bistatic images is hence well
suited for the measurement of oscillator-induced phase errors,
thereby enabling an accurate phase calibration of the bistatic
SAR interferometer. After phase calibration, the two bistatic
images can be combined into a single bistatic SAR image
with double PRF. For the cross-track interferometry, it is now
possible to form two interferograms with different phase-to-
height sensitivities.

1) The combination of one monostatic image and a bistatic
image yields a cross-track interferogram with a height of
ambiguity of hamp = (A rsin(6;))/B,, where A is the
wavelength, 7 is the slant range, 6; is the incident angle,
and B, is the baseline perpendicular to the line of sight.
Either the first or the second monostatic image can be
selected, and a combination of both interferograms can be
used to improve both the phase calibration and the phase
stability.

2) The combination of the two monostatic SAR images
yields a second interferogram with a double phase-to-
height sensitivity, resulting in a height of ambiguity of
hamb = (A rsin(6;))/(2B.).

The use of alternating transmitters in the bistatic mode
allows for the simultaneous acquisition of two cross-track
interferograms with phase-to-height sensitivities differing by a
factor of two. This will facilitate the process of interferometric
phase unwrapping since it is now possible to reduce the
interferometric baseline without a loss in height accuracy if
compared to the bistatic mode. The simultaneous availability of
mono- and bistatic SAR interferograms will provide additional
information in case of volume scattering [15], and it may help
to distinguish between direct and double-bounce scattering
from the ground [16].

The major drawback of the alternating bistatic mode is an
increased susceptibility of the two monostatic SAR images to
range and azimuth ambiguities. This can be seen in Fig. 3
which shows the integrated ambiguity-to-signal ratios (ASRs)
for TanDEM-X. The figure on the left reveals that the minimum
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Fig.4. (Left) Illustration of simultaneous transmit mode and (right) derivation
of oscillator phase errors by comparing the phase of the monostatic and bistatic
interferograms.

PRF should be on the order of 3 kHz for each channel to ensure
a sufficiently low azimuth ASR (AASR). This implies that the
minimum PRF for both channels is on the order 6 kHz, which
will, in turn, reduce the unambiguous swath width to ~25 km
for an incident angle of 35°, as shown in the right-hand side of
Fig. 3. Note that this reduction quickly increases with higher
incident angles. We will employ the alternating bistatic mode
mainly for system verification, calibration, and demonstration
of new applications, which are based on the joint evaluation of
mono- and bistatic SAR images and interferograms.

The drawbacks of the alternating bistatic mode can be
avoided by a fourth operational mode, where the two space-
crafts transmit their radar pulses at the same time [17]. To
prevent the RF interferences, the signal spectrum will be split
into two disjoint frequency bands, and each satellite illuminates
the scene with one of these subbands, as shown in Fig. 4 on the
left. The full spectrum of the scattered signal is then recorded by
both receivers simultaneously. This enables not only an efficient
share of the transmit energy between the two spacecrafts but it
also allows for the unambiguous acquisition of two monostatic
and two bistatic SAR images in a single pass. From these
images, one may then form two bistatic interferograms, one
for each subband. In addition, a low-resolution monostatic
interferogram can be obtained by exploiting the wavenum-
ber shift [18], which allows for coherent interferometric data
acquisitions even in case of nonoverlapping RF frequency
bands as long as the satellite orbits are separated in the cross-
track direction. By comparing now the redundant information
between the low-resolution monostatic interferogram and its
bistatic counterparts as shown in Fig. 4 on the right, one may
extract low-frequency phase errors resulting from mutual drifts
of the oscillator phases in the two spacecrafts. The phase in the
two bistatic interferograms can be approximated by [19]

AS@bistat (t) =27 -m- Afosc “t+m- ASoosc(t) + Ptopo (4)

where m is the frequency up-conversion factor, Afysc =
fose,1 — fosc,2 1s a constant frequency offset between the two
local oscillators, A@osc(t) = Pose,1(t) — Pose,2(t) is the time-
varying phase difference due to the mutually uncorrelated phase
noise from each local oscillator, and ¢qp, is the desired topo-
graphic phase. By combining the two bistatic interferograms in
a fourth-order interferogram and demodulating it with the phase

3321
TABLE 1I
TANDEM-X SYSTEM PARAMETERS
Parameter Value Parameter Value
Satellite Height (equator) 511.5 km Antenna Length 4.8m
Carrier Frequency 9.65 GHz Antenna Width 0.7m
Chirp Bandwidth 100 MHz Antenna T/R Elements 32x12
Sampling Frequency 110 MHz Antenna Tapering linear phase
Mutual Swath Overlap >4 km Antenna Mounting 33.8°
Peak Tx Power 2260 W Quantization 3 bits/sample
Duty Cycle 18 % Image Misregistration <0.1 pixel
Noise Figure T/R Module 4.3 dB Along-Track Baseline <1km
Losses (atmosphere, radiator, ...) 3.1dB Sigma Nought Model (90%, [30]) | Soil & Rock, VV
Azimuth Processing Losses <1.5dB Indep. Post Spacing 12mx12m

from the monostatic interferogram, as shown in Fig. 4 on the
right, one obtains a direct measure for the bistatic phase error

A<perror(ﬁ) =4dm-m- AfOSC t+2-m- ASDOSC(t) (5)

which can be used to correct the phase error in the two bistatic
SAR interferograms. Note that the topographic phase ¢opo 1S
canceled, since the combination of both bistatic interferograms
leads to the same phase-to-height sensitivity as in the monosta-
tic interferogram.

The phase error in (5) typically represents a low-frequency
signal with a narrow power spectrum and, thereby, affects
almost exclusively the evolution of the azimuth signal while
preserving the phase of each range line up to a constant offset.
One may combine all range and multiple azimuth samples to
identify mutual phase drifts with high accuracy notwithstanding
the low common bandwidth in the monostatic interferogram.
For a first rough estimate of the expected performance, we
note that the spectral shift between the two monostatic SAR
acquisitions is given by [20]

fc'BL

Af = r - tan(6;)

(6)
where f. is the radar center frequency. An effective cross-track
baseline of 300 m will lead with the TanDEM-X parameters of
Table II to the spectral shifts of 8.6 and 4.1 MHz for incident
angles of 30° and 45°, respectively. The phase errors for a single
range line can then be approximated by

1

V/Tave - AT - SNR

O'Lp’r-@

N AT
“\/2-As- By - cos(6;) - SNR

(7

which yields for a swath width of As = 30 km, a signal-to-
noise ratio (SNR) of 10 dB, and the incident angles of 30°
and 45° phase errors of 0.6° and 0.75°, respectively. A lower
SNR and additional coherence losses will reduce this accuracy,
but this could be compensated by extending the averaging
period 7.,z over not only one but multiple range lines. The
simultaneous transmit mode with split frequency bands enables
an accurate phase synchronization without the susceptibility to
ambiguities if compared to the alternating transmit mode. The
price to be paid is a lower range resolution for each individual
SAR image and a loss of coherence between the monostatic
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(Left) X-band phase noise spectrum S, (f) versus frequency offset from the carrier. (Right) Remaining phase error contributions Einterpol (f),

E.1ias(f), and EsNg (f) after periodic synchronization with fsyn, = 20 Hz for an SNR of 35 dB.

images for a significant part of the frequency spectrum. In case
of high bandwidth interferometric systems like TanDEM-X,
which allow for multiple looks in range, the resolution loss
in the bistatic interferogram is more than compensated by the
higher SNR in each subband. TanDEM-X will employ this new
mode for system calibration and verification, the demonstration
of novel SAR techniques and applications, as well as a backup
solution in case of problems with the phase synchronization
link to be introduced in the next section.

B. Relative Phase Referencing

A peculiarity of the standard bistatic data acquisition mode
is the use of independent oscillators for modulation and de-
modulation of the radar pulses. Any deviation between the two
oscillators will cause a residual modulation of the recorded
azimuth signal. The impact of oscillator phase noise in the
bistatic SAR has been analyzed in [19], where it is shown
that oscillator noise may cause significant errors in both the
interferometric phase and the SAR focusing. The stringent
requirements for interferometric phase stability will require
relative phase referencing between the two SAR instruments.
For this purpose, both TSX and TDX are equipped with six
dedicated synchronization horn antennas covering the full solid
angle for a mutual exchange of radar pulses between the two
satellites [21]. The nominal bistatic SAR data acquisition is
periodically interrupted, and a radar pulse is redirected from the
main SAR antenna to one of these six horn antennas pointing
in the direction of the second spacecraft. The pulse is then
recorded by the corresponding synchronization horn antenna on
the other satellite which transmits back a short synchronization
pulse. In this way, the mutual phase referencing becomes
independent of the actual distance between the satellites. The
synchronization pulses are then processed on the ground to
extract a correction phase which compensates the oscillator
phase error in the bistatic SAR interferogram.

In order to characterize the accuracy of the synchronization
process, we note first that the phase errors are conveniently
described in the frequency domain by a phase noise power
spectral density function S, (f) [22]. The left-hand side of
Fig. 5 shows for TSX S,(f) that is up-converted to the
X-band as a function of the frequency offset from the carrier.
The accuracy of the synchronization process is then determined

by how accurately the oscillator phase difference matches
the phase derived from the synchronization pulses. The error
sources influencing the quality of the compensation phase can
be grouped into two main categories: 1) errors due to the finite
synchronization frequency fsyn and 2) errors due to the finite
SNR of the synchronization link. The main contributions from
the first category are interpolation errors

Einterpol(f) = S<,0 (f) for |f‘ > fsyn (8)
and aliasing errors
Ealias(f) = S«p(f+i'fsyn)' ‘HLP(f+Z.'fsyn)|2
70
for |f] < fon 9)

which are both due to the low synchronization frequency fqyr, if
compared to the bandwidth of the phase noise spectrum S, (f)
[23]. The weighting function |Hyp(f)| = cos(mf7sys) in (9)
accounts for the alternating synchronization scheme, leading to
a short time delay 7., between the two transmit events. The
right-hand side of Fig. 5 shows the power spectral densities
Einterpol(f) and Ealias(f)'

The second category of phase errors is caused by the receiver
noise which is well characterized by a white spectrum within
the receiver bandwidth. Sampling will cause all noise spectral
contributions to be folded into the frequency interval | f| < foyn
and, thus, does not lead to noise reduction. The error spectrum
is hence given by

1

-
ASNR - fon

Esnr(f) |f] < fsym- (10)

The resulting phase errors are then derived by multiplying their
spectra with the azimuth compression filter and integrating the
result over frequency. Here, the azimuth compression filter is a
lowpass which accounts for temporal averaging in accordance
with the processed Doppler bandwidth. The total error budget
is finally given by

(In

1
2 2 2 2
Olink = Uinterp + Oalias + §USNR
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Fig. 6. Standard deviation of the synchronization link phase error contribu-
tions as a function of the synchronization frequency. The SNR and the azimuth
integration time are 35 dB and 0.5 s, respectively.

where o7, and o,  are the interpolation and aliasing
error contributions, respectively, and agNR /2 is the receiver
noise from the bidirectional synchronization link. Fig. 6 shows
the predicted phase error contributions as a function of the
synchronization frequency. The SNR is 35 dB, and the azimuth
integration time is 0.5 s in this example. For synchronization
frequencies above 10 Hz, the phase error is dominated by the
receiver noise. The actual SNR varies with the distance between
the satellites as well as their relative attitude. For the typical
DEM data acquisition mode with baselines below 1 km, the
SNR will be on the order of 30 to 40 dB, and a phase error below

1° can be achieved for synchronization frequencies above 5 Hz.

C. Relative Time Referencing

TSX and TDX trigger the start of a data take via GPS, but
the PRF timing is then internally derived from the ultrastable
oscillators (USOs). A deviation of the two USO frequencies
will lead to a drift of the receiving window of one satellite
with respect to the transmit event of the other satellite and
may, in this way, prevent a proper recording of the echo
signal. TanDEM-X accounts for this by introducing leap pulse
repetition intervals (PRIs) which readjust the position of the
receiving window. In order to determine the interval and the
duration of these leap PRIs, it is necessary to predict the time
difference between the two satellites. Since the data take start
time is derived from the GPS to an accuracy of 1-2 us, only
a relative time drift after the start of the data take has to be
considered. The time difference between the two satellites is
then given by

_Afi=Afy

Aty () = —2——2 ¢

12
fuso (12

where Af; and Afy denote the deviations from the nominal
USO frequency fuso- A frequency difference Af; — Afs of,
e.g., 60 Hz between the two 60-MHz oscillators would cause a
relative drift of the receiving window of 1.0 us/s and requires
therefore a leap PRI every second in order to keep the shift of
the receiving window below 1 us. The commanding of appro-
priate leap PRIs requires the frequency difference Af; — Afs
to be known a priori. A very accurate measurement of the
actual frequency difference can, for example, be derived from
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an evaluation of the synchronization pulses (cf. Section II-B).
However, the frequency difference changes due to the aging
of the two USOs. By allowing an additional time error of
Atsat max = D ps at the end of a 600-s data take, the value of
A f1 — A fs needs to be known with an accuracy of 0.5 Hz at the
time of the data take. Considering the aging of the TerraSAR-X
USO, the values of A f; » may change by 6 Hz/year. This means
that the frequency difference A f; — A f should be actualized
every two weeks.

D. Orbit Configuration and Formation Flying

The TanDEM-X operational scenario requires a coordinated
operation of two satellites flying in close formation. The ad-
justment parameters for the formation are the node line an-
gle, the angle between the perigees, the orbit eccentricities,
and the phasing between the satellites. With these parame-
ters, several options have been investigated, and the HELIX
satellite formation shown in Fig. 7 has finally been selected
for the operational DEM generation. This formation combines
an out-of-plane (horizontal) orbital displacement by different
ascending nodes with a radial (vertical) separation by different
eccentricity vectors resulting in a helixlike relative movement
of the satellites along the orbit [24]. Since crossing of the
satellite orbits does not exist, one may now allow for arbi-
trary shifts of the satellites along their orbits. This enables a
safe spacecraft operation without the necessity for autonomous
control [25]. It is furthermore possible to optimize the
along-track displacement at predefined latitudes for different
applications: cross-track interferometric applications shall use
along-track baselines which are as short as possible, to en-
sure an optimum overlap of the Doppler spectra and to
avoid temporal decorrelation in vegetated areas, while other
applications, like ATI or superresolution, require selectable
along-track baselines in the range from one hundred meters up
to several kilometers.

The HELIX formation enables an interferometric mapping
of the complete Earth surface with a stable height of ambiguity
using a small number of formation settings which will be
derived in Section IV. Southern and northern latitudes can be
mapped with the same formation by using ascending orbits for
one and descending orbits for the other hemisphere, as shown
in Fig. 7 on the right.

For a more detailed treatment of the peculiarities of the
HELIX formation, we note first that, due to the nonspherical
geopotential of the Earth, a satellite is exposed to nonlinear
forces, and its orbit will possess long periodic variations. If
these long periodic variations vanish, the satellite’s orbit is
defined as frozen. The main parameter, which describes such
an orbit, is the so-called frozen eccentricity, which can be
approximated by [27]

S| LR S
er ‘ 2Jy a (1) 8 .Jp a3 sin(i)
24 cos™ (i)
I 2 13
{ 9 cos* (i) 1—5cos2(i)” -



3324

vertical
baseline

' f
/ LR iz
U

Fig. 7.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 11, NOVEMBER 2007

HELIX satellite formation for TanDEM-X. (Left) Orbital arrangement. (Right) Cross-track baselines as function of the orbit position. The positions

correspond to one complete orbit cycle, where NH and SH mean Northern and Southern Hemispheres, respectively.

taking into account the zonal coefficients up to J5. Here, Ry
denotes the Earth’s radius, a is the mean semimajor axis, and
1 is the mean inclination. By definition, the mean argument of
perigee is 90°. If the eccentricity deviates from ey, the satellite
orbit is no longer dimensionally stable, and its perigee will start
moving around the orbit. This motion is called libration, and its
period Tiibration 1S given by

2

o 14
86 400 - w (14)

71libration = ‘

where w is the short periodic variation of the argument of
perigee which can, for small eccentricities, be approximated
by [27]

WS _%\/,mjﬁ%a*% (1 —5co82(i))  (15)
where figaren = 3.98 - 101 m3 /s is the gravitational coeffi-
cient of the Earth. Since the TSX’s eccentricity is set to frozen,
TDX cannot orbit with a frozen eccentricity, and it will perform
the motion of libration over a period of Tjipration ~ 104 days.
To describe the relative motion between the two satellites,
a Cartesian corotating coordinate system is built up [28]: the
z-axis (along-track separation) points into flight direction, the
y-axis (horizontal cross-track separation) is parallel to the orbit
momentum vector, and the z-axis (radial separation) points
from the Earth’s center of mass to the satellite’s center of mass.
Mathematically, the unit vectors may be expressed by

—

N N
€along = €cross X €radial

—

TN
6cr(,ss:8><l//H8XUH

€radial = S /5

(16)

where v is the velocity vector of the satellite, and s is the
position vector of the satellite. The relative motion between
TDX and TSX is then given by

N N

STDX — STSX= ATalong * €along +ATross

* €cross T Arradial * €radial - (17)

In case of near-circular orbits in close formation, the motion
may be linearized [29], and the components of the relative
position vector s Tpx — STsx are then given by

Argiong = —2aAecos(u + 1) + AZalong
Areross = —aAicos(u)

Arpadial = —aAesin(u + 1) (18)

where Ae is the difference between the two eccentricity vec-
tors, u is the argument of latitude, 1 is the libration angle
defined as the difference between the eccentricity and the
inclination vector [26], and Az,iong is an arbitrary along-
track shift. Because both satellites orbit at the same inclination,
the difference in Ai is set up by different ascending nodes
only. Therefore, a helix may be defined by three parameters:
the vertical separation a - Ae, the horizontal separation a - Ai,
and the libration angle 1. Note that 1) varies between 0° and
360° during the libration period Tiipration- A stable acquisition
geometry requires a constant libration phase . This is achieved
via daily orbit maneuvers using the cold gas propulsion system
on TDX which necessitate a Av of approximately 3.3 - 1079 .
(a - Ae)/s per day.

For libration phases of ¢ = 0° and ¢ = 180°, the two orbits
are spatially separated with no collision risk, while for ¢ = 90°
and ¢ = 270°, the satellites are separated at the northern/
southern turns only in along track, leaving a high collision
risk. If the satellites are controlled at an intermediate libration
phase of, e.g., ¥ = 210°, the time to reach ¥ = 270° will be
~17 days, which is enough time to react in case that one
satellite goes into safe mode or has problems on the command
link. The motion of libration can even be used for a fine tuning
of the cross-track baselines by adapting the frequency of the
orbit maneuvers.

III. PERFORMANCE ANALYSIS

This section investigates the interferometric performance
of TanDEM-X, assuming an interferometric data acquisition
in bistatic stripmap mode. Table II summarizes the main
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instrument, orbit, and processing parameters which will be used
in the following analyses.

A. Coherence Estimation

The key quantity in estimating the interferometric perfor-
mance is the coherence [31], [32]
Ytot = YSNR * YQuant * YAmb * YRg * YAz * YVol * YTemp (19)
where the right-hand side describes the different error contri-
butions due to the limited SNR (ysnr ), quantization (YqQuant )
ambiguities (yamb ), baseline decorrelation (ygrg), relative shift
of the Doppler spectra (ya,), volume decorrelation (vyyo),
and temporal decorrelation (Yyremp). In the following, each
contribution will be discussed in more detail.

The finite sensitivity of each receiver causes a coherence
loss [33]

1
YSNR =
/(1 +SNRy1) - (14 SNR; )

(20)

where SNRy; 5, is the SNR for each interferometric channel.
Deviations between the two SNRs result from the relative shift
of the antenna patterns (cf. Fig. 2), the performance degradation
due to the delayed launch of the second satellite, and unequal
noise figures resulting from different operating temperatures in
the active Tx/Rx and the passive Rx-only receiver front ends.
The actual SNR depends on the strength of the retuned radar
signal and is derived from

0'0(9i — Oé)

SNR{; 91 =
2 7 NESZy 0y (6; — @)

1)

where o is the normalized backscattering coefficient, and
NESZ is the noise equivalent sigma zero level for each
channel [34]

447m3r3v sin(0; — @)kT Byg F Latm Lsys Lay
PTXGTXGRX)\gchPRF

NESZ = 22)
where r is the average transmit and receive range, v is the satel-
lite velocity, 6; is the incident angle, « is the local slope angle,
k is the Boltzmann constant, T" is the receiver temperature, B;g
is the bandwidth of the radar pulse, F' is the noise figure, Lgys
denotes the system losses, L,,, denotes the atmospheric losses,
Pry is the transmit power, Gty and Gry are the gains of the
transmit and receive antennas, respectively, A is the wavelength,
c is the velocity of light, 7, is the pulse duration, and PRF
is the pulse repetition frequency. The azimuth losses L,, are
derived from

— f|Hproc(f)|2 df
f |W(.f7 AfDop)|2 : |Hpr0c(f)|2 ' df

where Hpoc(f) is the transfer function of the azimuth process-
ing filter, and W (f; Afpop) is the weighting of the Doppler
spectrum by the joint Tx—Rx azimuth antenna pattern. We
assume, in the following, a rectangular shape for the envelope

(23)

az
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Fig. 8. NESZ for (solid) untapered stripmap mode and scattering coefficients
for (dashed) 50% and (dotted) 90% occurrence levels.

of the azimuth processing filter Hp,oc(f). The antenna patterns
shown in Fig. 2 on the right then yield for the mono- and bistatic
acquisition loss factors of L,, =1 dB and L,, = 1.5 dB,
respectively. The bistatic loss factor rises to L,, = 4.4 dB in
case of an increase of the along-track displacement to dajong =
2.5 km, if the processed Doppler bandwidth remains unaltered.
It is hence important to keep the along-track separation be-
tween the two satellites during the data acquisition as short as
possible.

Fig. 8 shows the predicted NESZ of nine beams in the
bistatic stripmap mode for an along-track displacement of 1 km.
The beams and their relative displacements have been obtained
in an iterative optimization process such that they cover the
required 240 km swath at the equator?> with a minimum inci-
dent angle of 6; = 30° and a constant height performance at
the crossing points of adjacent subswaths (cf., Fig. 17). No
amplitude tapering is used, and the chirp bandwidth is B,, =
100 MHz for all beams. For reference, Fig. 8 shows also the
X-band scattering coefficients for rock and soil surfaces at VV
polarization and occurrence levels of (dashed) 50% and (dotted)
90%, as provided in [30]. It can be seen that the SNR varies
between 16 dB (11 dB) and 8 dB (4 dB) for an occurrence level
of 50% (90%).

Another error source is the quantization of the recorded raw
data signals [35]. The investigation of quantization errors is
an important aspect, since the number of bits used for the
digital representation of the recorded radar signals directly
impacts the data rate to be transmitted to the ground. In a
strict sense, the quantization errors have to be treated as a
nonlinear and signal-dependent distortion, but for the current
investigation, it is reasonable to approximate them as additive
white Gaussian noise. This is justified by comparing the theo-
retical phase error predictions from the signal-to-quantization
noise ratio (SQNR) to the interferometric phase errors ob-
tained from a simulation using the complete TerraSAR-X block
adaptive quantizer. Fig. 9 shows the relative increase of the

2The required swath width corresponds to the spatial separation of the TSX
ground tracks and varies with latitude. TerraSAR-X has a sun-synchronous
11-day repeat cycle with 167 orbits, which yields a separation of ~240 km
between the adjacent ground tracks at the equator.
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Fig. 9. Increase of the standard deviation of the interferometric phase errors
due to quantization. Solid curves show from top to bottom the theoretic
predictions of the relative phase error increase for an optimum uniform carte-
sian quantization [36] with two bit (SQNR = 9.25 dB < YQuant = 0.894),
three bit (SQNR = 14.27 dB < yQuant = 0.964), and four bit (SQNR =
19.38 dB = YQuant = 0.989). Dotted curves show the corresponding simu-
lation results for the TSX BAQ.

interferometric phase errors for different quantization levels as
a function of the coherence prior to quantization. The solid
curves show the analytic predictions as derived from the SQNR
for n = 15 looks (cf., Section III-B), and the dotted lines
show the corresponding simulation results. The analytic predic-
tions from the coherence decrease match the simulation results
quite well.

From this investigation, it becomes clear that the quantization
errors could affect the interferometric performance in case of
using a low bit rate. On the other hand, one has to take into
account the limited downlink capacity of TanDEM-X, since the
data from the two spacecrafts have to be transmitted to a ground
station network which provides an average contact time of
~10 min/orbit at a total net data rate’> of 260 Mb/s. For the
selected sampling frequency* of 110 MHz, this corresponds
to average data acquisition times of ~90 s per orbit in case
of a quantization with 6 bits/sample and 180 s in case of a
quantization with 3 bits/sample. For comparison, one global
DEM acquisition with the beams defined in Fig. 8 will require,
in total, somewhat less than 10%-s mapping time. For TerraSAR
with its 5540 orbits per year, this corresponds then to an
average acquisition time of 180 s per orbit if global coverage
has to be achieved within one year. By taking into account
the downlink bottleneck and the limited mission duration, one
has to decide whether it is more appropriate to use a single
acquisition with high data rate and low quantization errors or
multiple acquisitions with lower data rate but higher quantiza-
tion errors each. An answer to this question can be found by
comparing the predicted phase errors from a single ny,;; data
acquisition

Y1 =@ [7 * YQuant (nbit)7 nlook] (24)

3The close satellite formation excludes the simultaneous downlink, and the
downlink time has to be shared among the spacecrafts.

4This value refers to complex I/Q sampling and is the lowest sampling
frequency provided by TerraSAR-X [12].
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Fig. 11. Range and azimuth ambiguities in bistatic stripmap mode.
with the performance estimate for n acquisitions with a quanti-
zation of ny;; /n each’

Pn =@ |:’Y " YQuant (%) y e nlook:| (25)
where njook 1s the number of independent looks, and  is the
total coherence without quantization.

Fig. 10 shows the ratio o, /@1 for npiy = 6, Nieok = 15,
and n € {2,3,6}. By taking into account that the coherence
for TanDEM-X ranges between 0.6 and 0.9 (cf., Fig. 13), it
becomes clear that a significant reduction of the phase errors
can be achieved by using two acquisitions with 3 bits/sample
instead of a single acquisition with 6 bits/sample. A further
reduction of the bit rate shows only a minor improvement (or
even a degradation in case of high coherence). In the follow-
ing, we will hence assume a block adaptive quantization with
3 bits/sample which allows for at least two global mappings
within the nominal mission duration. This yields an SQNR of
~14 dB and a coherence of Yquant =~ 0.96.

5This equation assumes a direct combination of the interferometric data from
multiple acquisitions with equal baseline. A further improvement of the overall
height accuracy can be obtained by selecting different baselines for the different
acquisitions. This will be analyzed in Section III-C.



KRIEGER et al.: TanDEM-X: A SATELLITE FORMATION FOR HIGH-RESOLUTION SAR INTERFEROMETRY

The third component in (19) represents the error contri-
butions from distributed range and azimuth ambiguities. The
corresponding coherence loss can be approximated by

1 1

: (26)
1+RASR 1+ AASR

YAmb =

where RASR and AASR are the range and azimuth ambiguity-
to-signal ratios, respectively. Fig. 11 shows the predicted range
and azimuth ambiguities for the individual swaths in the bistatic
stripmap mode. The corresponding coherence loss will hence
vary among the swaths with yan,, > 0.97.

The fourth component in (19) represents coregistration errors
in range as well as baseline decorrelation due to the imaging of
a flat surface from slightly different incident angles [37]. As
already mentioned in Section II-A, baseline decorrelation can
be avoided by filtering the two object spectra to a common
frequency band [18]. This reduces the range resolution and,
thereby, the number of independent looks for a given postspac-
ing, which will be taken into account in the estimation of the
interferometric phase errors (cf., Section III-B). By assuming
an unweighted processing of the rectangular range spectrum,
we then obtain yrg = sinc(m - Or), where Or is the relative
range shift between the two interferometric SAR images in
fractions of a resolution cell [31]. A misregistration of 10% will
hence cause a coherence loss of yrg = 0.984.

The fifth component in (19) accounts for the coherence
loss from a misregistration in azimuth as well as a Doppler
shift between the two interferometric channels [33]. Different
Doppler spectra may, for example, originate from a nonva-
nishing along-track displacement if the two azimuth antenna
patterns are steered to the same joint antenna footprint, as
shown in the left-hand side of Fig. 2. The coherence loss is then
derived as

_ JH(f) - H3(f) - exp(—j - 27 - 87ay - f) - df

(27)
VIR -dr -] 1D - df

YAz

where 7,, = daz/vgq is the coregistration error in azimuth,
and the azimuth weighting functions H;(f) and Ha(f) are
given by the product of the joint antenna patterns with the
spectral transfer function of the azimuth processing filter

Hproe(f)

Hy(f)
Hy(f)

ATX(f) : ARX,l(f)
ATx(f) : ARX,Q (f)

(28)

The effect of Doppler decorrelation can be minimized by
confining the support region of the azimuth processing filter
Hproc(f) to those frequencies where the two azimuth spectra
have similar magnitude. This strategy was also applied for the
definition of the common Doppler spectrum on the left-hand
side of Fig. 2, which yields ya, = 0.976 for az = 0.3 m. This
value drops to ya, = 0.913 for an along-track displacement of
2.5 km if we keep the processed Doppler bandwidth constant.
For comparison, the independent zero Doppler steering on the
right-hand side of Fig. 2 yields an azimuth decorrelation of
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Fig. 12. Coherence loss from volume decorrelation for an extinction of
1.0 dB/m. The volume heights are (solid) 5, (dashed-dotted) 10, (dashed) 20,
and (dotted) 40 m.

Yaz = 0.989 which is (almost) independent of the along-track
separation.

The last but one term on the right-hand side of (19) describes
the coherence loss due to volume scattering in vegetated areas
[15]. Similar to the classical baseline decorrelation, the effect
of volume scattering can be understood as an increase of the
interferometric phase uncertainty resulting from the existence
of multiple scatterers within a single resolution cell. Each of
these scatterers has a different height z and will hence con-
tribute with a different interferometric phase ¢ = 27z/hamp.
The coherence is then derived from the ensemble average over
all scatterer distributions

hy

hy
Yol = /O’O(Z) - exp (j?ﬂ'hz ) ~dz//ao(z) -dz  (29)
amb
0 0

where 0 (z) represents the vertical scatterer profile. To model
0(z), we note first that, for the vegetated areas, the effective
scattering cross section will be a function of the penetration of
the electromagnetic wave into the vegetation layer. By taking
into account the extinction in a homogeneous medium, we may
assume a vertical scattering profile

h, —z
cos(6;)

0%(z) = exp {—2~ﬁ- ] , 0<z<h, (30

where h, is the vegetation height, and 3 is the one-way
amplitude extinction coefficient in Nepers per meter. Fig. 12
shows the coherence loss for volume heights of 5, 10, 20,
and 40 m and an extinction of 1.0 dB/m (corresponding to
[ =0.115 Np/m) as a function of the height of ambiguity
for an incident angle of 35°. It becomes clear that volume
scattering can have a significant impact on the interferometric
coherence in areas with tall vegetation. The increased “phase
noise” in case of a low height of ambiguity may furthermore
cause problems with phase unwrapping. In order to avoid
such errors, we will try to keep the height of ambiguity in
the HELIX formation as high as possible while still meeting
the HRTI-3 requirements. The potential impact of volume



3328

Total Coherence (soil & rock, W)

0.9

| Ay
| RERRNIRIS

-
300 350 400 450 500
Ground Range [km]

T T T T
30 35 40 45
Incident Angle [deg]

Fig. 13. Total coherence predicted for bistatic stripmap mode. The individual
parabola-like curves show the variation of the coherence within each stripmap
swath. The dotted and solid lines are for the 50% and 90% occurrence levels of
the backscatter coefficients.

decorrelation on the TanDEM-X performance can be miti-
gated by increasing the independent postspacing in the vege-
tated areas. Such areas are systematically identified from the
recorded data by evaluating the changes of the local coher-
ence. For this, the residual highly predictable decorrelation
sources in (19) will be estimated by taking into account the
amplitude of the focused SAR signal. A comparison with the
coherence magnitude of the recorded data will then allow a
direct measurement of volume decorrelation in case of short
along-track baselines. This technique is hence complementary
to the systematic estimation of temporal decorrelation, as sug-
gested in [32]. The comparison of repeat- and single-pass
interferograms will furthermore allow for a clear separation
of the otherwise intermixed factors from volume and tem-
poral decorrelation, which allows for an improved charac-
terization of the 3-D scattering process. The measured co-
herence loss from volume (and temporal) decorrelation can
moreover be used to reduce the height bias in the vegetated
areas.

The last term in (19) describes the errors from a change
of the scatterer structure between the acquisition of the two
interferometric channels with equal Doppler frequencies. We
will, in the following, neglect any coherence loss due to tem-
poral decorrelation. While such an assumption seems to be
justified for most types of land cover, it might cause severe
problems in dynamic oceanographic mapping if the along-track
distance between the receiver satellites exceeds hundred me-
ters (cf., Section V-A). Temporal decorrelation and systematic
phase shifts from ocean surface currents may also limit the
usability of ocean data takes for height calibration. Rather short
decorrelation times on the order of 50 ms and less, which
are corresponding to an along-track separation below 750 m,
have furthermore been observed for some types of vegetation
imaged in the X-band at moderate to high wind speeds [38]. It
is hence of great importance to keep the along-track separation
between the two satellites in such areas as short as possible.
The along-track displacements on the order of 100 m and less
(corresponding to a time delay of 74 < 7 ms) can be achieved
without any collision risk between the two satellites owing to
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the HELIX formation, which enables a systematic adjustment
of the optimum along-track baseline for a specified latitude
range.

Fig. 13 shows the total coherence it for TanDEM-X
operating in standard stripmap mode in case of surface
scattering. The dotted curves show the estimated coherence for
the scattering coefficients with an occurrence level of 50%. The
coherence is on the order of 0.8 to 0.9. The solid lines are for
scattering coefficients corresponding to an occurrence level of
90%. The lower scattering reduces the coherence particularly
at higher incident angles, where the limited SNR becomes the
dominant error source.

B. Interferometric Phase Errors

The knowledge of the total coherence ot allows now
for the derivation of the interferometric phase errors. The
probability density function (pdf) of the phase difference
Py () between the two interferometric SAR channels is given
by [39]

B r (n + %) (1 — vfot)" Yeot COS ©
2/ (1) (1 = 72, cos? )" 2

(1 — 720 )n L
+ TMF (n, 1; §Q’Yt20t cos? gp) 31

ptp(@

where n is the number of independent looks, I' is the gamma
function, and F' is the Gauss hypergeometric function [40]. The
standard deviation of the interferometric phase errors is then
given by

(32)

The left-hand side of Fig. 14 shows the well-known depen-
dence of o, on the coherence ;o for different look num-
bers n [32].

An estimation of the 90% point-to-point height errors, as
required by HRTI-3, requires the computation of the difference
between two random variables where each describes the fluc-
tuation of the interferometric phase at one location. The pdf of
this difference corresponds to a convolution between the two
pdfs p, () [41]. The 90% point-to-point phase error ¢ggy, is
then obtained from

$90%

[Py (¢) @ pu(p)] - dp = 0.9 (33)

—¥90%

where ® denotes convolution, and p () is the pdf given in
(31). The right-hand side of Fig. 14 shows the unwrapped mul-
tilook phase error @9y as a function of the coherence for dif-
ferent look numbers. Note the different shapes for the standard
deviation and the 90% point-to-point error curves as a result of
the varying shape of the non-Gaussian phase error pdfs.
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Critical Baseline (bistatic mode, slopes = {—20%, 0%, 20%})
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Fig. 15. Critical baseline for the TanDEM-X operating with a chirp bandwidth
of 100 MHz for slopes of (solid) 0%, (dashed) —20%, and (dashed-dotted)
+20%. The dotted line on the bottom shows the perpendicular baseline corre-
sponding to a height of ambiguity of 30 m.

To compute the number of independent looks n, we recall
first that range filtering has been assumed to optimize the inter-
ferometric coherence. As a result, the common bandwidth may
become lower than that of each individual channel, thereby re-
ducing the number of independent looks for a fixed independent
postspacing. The number of looks in range can be approximated
by® n.e = Arg/drg, where Arg is the postspacing of the final
product in range, and drg is the ground range resolution
within each channel after spectral filtering. By assuming
an unweighted range focusing, the latter can be computed
from [20]

¢ cos(a) B erit
2 Brg -sin(0y —a) Biaic — BL

org = (34)

where B, is the interferometric baseline perpendicular to the

line of sight, and B . is the critical baseline which is given

by [32]

2-Byg - A-r-tan(b; — o)
- .

BL,crit = (35)

This formula underestimates the number of effective looks if we assume
spatial smoothing of the interferograms with a rectangular convolution kernel
of extension Arg. A more rigorous formula can be obtained in analogy to (36).
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Fig. 15 shows the critical baseline of TanDEM-X for
different local slopes of the imaged scene. The chirp bandwidth
in this example is 100 MHz. The dotted line in Fig. 15 shows,
for comparison, the typical baseline lengths which will be
used for the operational DEM generation with TanDEM-X
(cf., Section IV). It becomes clear that TanDEM-X will only
use a small fraction of the critical baseline, and the loss in
range resolution from spectral filtering will be less than 10%.

The computation of the effective number of azimuth looks
is more involved, since we have to take into account the
nonrectangular and, in general, the different joint azimuth
antenna patterns which will introduce some correlation in the
interferometric data samples. This will then reduce the effective
number of looks if compared to an ideal rectangular transfer
function [42]. The effective number of azimuth looks for
interferometric processing can be approximated by (36), shown
at the bottom of the next page, where Hune(f), Hproc(f).
and Hgpooth (f) are the spectral transfer functions of the joint
antenna patterns, the processing filters, and the smoothing filter,
respectively. In the following, we assume spatial averaging
of the interferogram with a rectangular convolution kernel of
azimuth extension Aaz = 12 m, which has the transfer function
Hgmootnh = sinc(f - Aaz/vgrq), where vgrq = 7.1 km/s is the
beam velocity on the ground. In case of an unweighted azimuth
processing with the bandwidths and antenna patterns indicated
on the left- and right-hand sides of Fig. 2, we obtain for the ef-
fective number of azimuth looks values of n,, = 3.8 and n,, =
4.1, respectively. These values improve to n,, = 4.4 for an
along-track displacement of 0 m, while an increase of the
along-track displacement to 2.5 km reduces them to n,, = 2.2
in case of individual zero Doppler steering. It is hence clear
that the along-track displacement between the two satellites
should be kept as small as possible (cf. the Appendix).

By assuming that the maximum along-track displacement
in the HELIX formation stays always below 1 km, the total
number of independent looks varies between approximately
n = 15 for an incident angle of 30° and n = 23 for an incident
angle of 48° in case of flat terrain and the HRTI-3 postspacing
of 12 m x 12 m. A reduction of the postspacing to 6 m x
6 m, as, for example, required by the HRTI-4 standard, may
reduce the number of looks to values below four which leads
to an unfavorable coherence to phase scaling, as shown in the
right-hand side of Fig. 14. For the generation of customized
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Fig. 16. Relative height accuracy for an effective baseline of 500 m in the
stripmap mode. (Solid) 90% point-to-point height errors. (Dotted) Standard
deviation.

DEMs with improved spatial resolution on a local scale,
which represents a secondary mission goal of TanDEM-X, it
is hence advisable to increase the chirp bandwidth from 100
to 150 MHz or even 300 MHz, where the latter is provided by
TerraSAR-X on an experimental basis [12].

C. Relative Height Accuracy

The relative height errors may now be derived from

Ah = homp - (Ap/27) (37)
where Ay is given by either o, or ¢ggy. Fig. 16 shows
the predicted height accuracy for a fixed effective baseline of
500 m. The solid lines indicate the 90% point-to-point height
errors, and the dotted lines indicate the corresponding stan-
dard deviation. This and the following performance examples
include an additional phase error of 5° to account for residual
synchronization and instrument phase errors which may cause
a low-frequency height modulation of the resulting DEM.

The height errors in Fig. 16 show a significant increase
from near to far ranges. One reason for this increase is the
systematic decrease of the phase-to-height scaling which is
corresponding to a systematic increase of the height of ambi-
guity with increasing incident angles. As TanDEM-X enables
a flexible selection of the interferometric baseline, it is hence
advisable to adapt the length of the baselines to a fixed height of
ambiguity. The derivation of suitable HELIX formations with
an almost constant height of ambiguity will be explained in
Section IV.

A further improvement of the DEM accuracy can be achieved
by combining the overlapping data segments from successive
TanDEM-X satellite passes. The redundant interferometric sig-
nals from overlapping beams can then be used to partially
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Fig. 17. Height accuracy for a height of ambiguity of (dotted) 45 and (dashed)
30 m. The solid curve shows the error resulting from the combination of
multiple swaths. All errors are point-to-point height errors for a 90% confidence
interval.

compensate the performance decay at each swath border and
to improve, thereby, the overall interferometric height accuracy.
By assuming a linear combination of N height estimates

N
iLcomb = Z Q- Bz (38)
=1

the weights «; can be obtained by minimizing the overall
height error under the assumption of additive and mutually
uncorrelated height errors with known variances Ah? which
yields

(39)

N -1
o = Ah;%- (Z Ah,f) .
k=1

The overall height error is finally derived by inserting (39) into
(38) as

N N 1 N
Ahcomb = H Ah? Z (AhQ : H Ahi) . (40)
i=1 i=1 ik

Fig. 17 shows the predicted point-to-point height errors for
the 90% confidence interval, assuming two sets of DEM data
acquisitions with two fixed heights of ambiguity of (dashed)
30 m and (dotted) 45 m. Note that the two acquisition sets
use mutually displaced beams to further improve the perfor-
mance. The height error from the combination of all acqui-
sitions is shown in solid style, yielding an almost constant
performance with an accuracy which is well below the 2-m
requirement.

The impacts of slopes and volume decorrelation on the
achievable performance are shown in Fig. 18. The figure on the

fngroc(fl) : ngoc(fQ) .

[HZ.(f1) + HZoo(f2)] - dfy - dfe

Nag

N fngroc(fl) : ngoc(fQ) ’ [Hgnt(fl) + Hgnt(fz)] ’ I_[szmooth(f2 - fl) ’ df1 ’ de

(36)
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Impact of slopes and volume scattering on the relative height errors. (Left) Height accuracy for a local slope of 20% (dotted) facing toward and (solid)

away from the radar. (Right) Height accuracy for volume heights of (solid) 5, (dashed) 10, and (dotted) 20 m.

left shows that a slope of 20% facing away from the radar may
increase the height errors particularly at high incident angles.
This is mainly due to the lower scattering for shallow incident
angles. The reduced spectral overlap for slopes facing toward
the radar has only a minor impact and is partially compen-
sated by the increased scattering. The figure on the right-hand
side shows the impact of volume decorrelation for vegetation
heights of 5, 10, and 20 m for an extinction of 1 dB/m. It is
clear that volume scattering will impact the performance for all
incident angles, but this effect is mitigated by the availability of
two interferometric baselines.

D. Baseline Estimation Errors

In the previous derivations, we have neglected the errors due
to the finite accuracy of relative baseline estimation. Such errors
will mainly cause a low-frequency modulation of the DEM,
thereby simultaneously contributing to the relative and absolute
height errors. For the latter, the HRTI-3 standard is much less
stringent and requires an accuracy of 10 m at a 90% confi-
dence level.

Baseline estimation errors can be divided into along-track,
cross-track, and radial errors. The along-track errors will be
sufficiently resolved during the coregistration and are hence
regarded as uncritical. The cross-track and radial errors may
cause errors in both the line of sight (AB,) and perpendicular
(AB,) to the line of sight. The baseline errors perpendicular to
the line of sight will cause a bias in the phase-to-height scaling.
The resulting height error is given by

AB;

€1

Ah=h-

(41)

where h is the topographic height, AB, is the error of the
baseline estimate perpendicular to the line of sight, and B
is the length of the perpendicular baseline. By assuming a
maximum topographic height of A = 9000 m and baselines
corresponding to a height of ambiguity of han, = 35 m (i.e.,
B, =260 m for §; =30° and B, = 439 m for 6; = 45°),

TABLE III
HEIGHT ERRORS FOR 1-mm BASELINE ESTIMATION UNCERTAINTY

Normal Height Errors (for /14,,,=35m)
Incident Angle Baseline ABj/= 1mm AB,=1mm
(rgmp=35m) ah Ah/As (tilt) Ah (h=9km)
30° 260 m fifia 3.8 mm/km 3.5cm
45° 439 m 2.3 mm/km 2.1cem

a baseline estimation error of AB; = +1 mm will result in
height errors of £3.5 cm and +2.1 cm for incident angles of
0; = 30° and 6; = 45°, respectively.

Errors in the relative position estimates of the antenna phase
centers parallel to the line of sight (AB,) will primarily
cause a rotation of the reconstructed DEM about the (master)
satellite position. As a result, the DEM will be vertically dis-
placed by

ABH o Ramb

Ah =1 -sin(6;) - B 3
L

-AB, (42)
where r and 6; are the slant range distance and the incident
angle of an appropriately selected reference point (e.g., at
midswath), respectively. This vertical displacement will be
Ah = +£1.1mfor AB, = +1 mm and hap,p = 35 m. A paral-
lel baseline error will furthermore cause a tilt of the DEM which
is given by

__Ah_AB
Ptilt = As B,

(43)

where As is the ground range distance from the selected
reference point. The resulting tilt will be 3.8 and 2.3 mm/km
for incident angles of 6; = 30° and 6; = 45°, respectively
(AB, =1 mm and hgmp = 35 m). Table III summarizes
the predicted height errors resulting from AB, =1 mm and
AB| =1 mm.

Precise baseline determination will be performed by a double
differential evaluation of the GPS carrier phase measurements.
Analyses based on the experience gained from the GRACE
mission indicate an achievable accuracy for the estimation of
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B,

estimated

Fig. 19. Tllustration of the major impact of baseline estimation errors. (Left)
Unknown baseline offset during each data take. The baseline measurement
accuracy of 1-2 mm is indicated by the gray tube. (Right) Vertical displacement
and tilt of adjacent swaths as a result of different baseline offsets during the data
takes.

relative satellite positions on the order of 1-2 mm [44]. In
comparison, variations of both the GPS and the SAR antenna
phase centers can be neglected since they affect both satellites
in almost the same manner. An uncertainty in the attitude of
the two satellites will cause additional baseline errors that stay
well below 1 mm. Furthermore, note in this context that both
satellites experience almost the same gravity field and are ex-
posed to highly correlated orbital perturbations. Residual (i.e.,
unmodeled) variations of the overall baseline vector will hence
show a high degree of temporal correlation. Even in the case of
a large differential acceleration of Aa = 100 - 10~ m/s? (e.g.,
due to unmodeled differential drag between the two satellites,
etc.), the resulting differential orbit error after a 100-km data
take will be on the order of only 10 um. By noting furthermore
that such an acceleration will mainly affect the estimates of
the along-track baseline (which are uncritical for the cross-
track interferometry), we may conclude that residual orbit
fluctuations can be neglected in the computation of relative
height errors (the area for relative point-to-point height errors
in HRTI-3 is approximately 100 km x 100 km). This shows
the great advantage of using an unperturbed free-flying satellite
formation in contrast to a single-pass SAR interferometer
employing a mechanical connection between the two SAR
antennas by either a long boom [7] or a tether [45]. Both solu-
tions imply additional mechanical forces within the differential
gravity field and lead to annoying baseline oscillations that are
difficult to correct for by the final calibration.

A factor not to be ignored is the uncertainty in the relative RF
phase centre positions at the beginning of the data take which
may result in a tilt of the acquired DEM swaths as illustrated
in Fig. 19. For example, an initial error in the estimate of the
SAR relative phase center position of AB, = %1 cm could, in
the worst case (assuming the unlikely case of four equally tilted
swaths), result in a relative height error of +£3.8 m for As =
100 km. Such a tilt can be reduced by additional calibration
data takes from crossing orbits via a bundle block adjustment in
either radar or DEM geometry [46]. Appropriate data takes will
be acquired during the third mission year after a 180° rotation
of the eccentricity vector in the HELIX formation, thereby
taking advantage of an increased baseline length in combination
with the advanced interferometric modes (alternating bista-
tic and simultaneous transmit). A promising supplement—or
even a complete alternative—is the use of ICESat data which
provide a dense grid of global elevation measurements with
submeter accuracy [47]. If necessary, one could in addition
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employ the following: 1) a sparse set of calibration targets and
reference points; 2) dynamic GPS tracks on the ground; 3) laser
and radar altimeter data from other spaceborne missions; and
4) ocean data takes acquired with TanDEM-X using short
along-track baselines. By taking into account that the forma-
tion flight with TanDEM-X allows for the acquisition of long
data takes with high phase and baseline stability,” it becomes
clear that the absolute DEM accuracy is mainly limited by
the accuracy of the calibration sources. Therefore, the 10-m
absolute height accuracy, as required by HRTI-3, may well be
achieved.

IV. OPTIMIZATION OF THE DATA ACQUISITION PLAN

The performance analyses in Section III-C revealed that the
derivation of a global DEM according to the HRTI-3 standard
requires data acquisitions with a height of ambiguity on the
order of 30 to 40 m. As the height of ambiguity depends
not only on the length of the cross-track baseline and its
orientation in space but also on the actual slant range and
incident angle within the swath to be imaged, a single HELIX
formation will not be sufficient to monitor a wide coverage
range. Therefore, a small set of HELIX formations will be
employed for global DEM data acquisition. Each individual
HELIX is then used to map a subset of the required swaths
which depends, in turn, on the geographic latitude ¢. An
optimized set of HELIX formations with its associated swath
assignment can be derived by minimizing the overall variation
of the height of ambiguity within a predefined latitude range.
This minimization is achieved in a two-step procedure where
we first derive the optimum swath assignment for a given set of
HELIX formations { Hy, ..., H,}

Maxy i {hamb [H (¢, k)] }
Min(p’k {hamb [H(d)v k)]}

where the function H(¢,k) € {H.,...,H,} represents the
selected HELIX formation as function of latitude ¢ and swath
number k. Note that the number of swaths depends on the
geographic latitude since fewer swaths will be required for
full coverage at higher latitudes. The previous optimization is
then repeated for all sets of HELIX formations, and the set of
HELIX formations yielding the lowest variation of the ambigu-
ous height is regarded as optimum for DEM acquisition. For
TanDEM-X, the set of possible HELIX formations is further
restricted by the following constraints.

= Min (44)

1) The cross-track separation between the satellite orbits
shall always be larger than 150 m. This minimum sep-
aration is required for safe operation. The libration phase
1 should furthermore be kept in the interval from 150°
to 210°, which leaves at least a 17-day safety margin
until the eccentricity vectors coincide due to their natural
rotation (see Section II-D).

2) The height of ambiguity should always be smaller
than the maximum height of ambiguity meeting the

"Baseline stability means, of course, a reconstructed baseline based on a
differential orbit model.



KRIEGER et al.: TanDEM-X: A SATELLITE FORMATION FOR HIGH-RESOLUTION SAR INTERFEROMETRY

Helix aAe
386 m| 330 m
Hy |440m|385m|210°f
H3 | 440m | 550 m|210°]

e — — |- — — -
- 2809 _ _ _|_ _ _ _
27

56
| _ _ _
[S2sies | Rai
[=2628 o 27 eS| _ _ _
—25.94_|_27.38_|_ _ _ _
T 27.08
Q —25.37_ | _26.82_| _ _ _
el —25.15_ [ 26.50 |~ 27.80
2 _2s95_| 2640 [ 2772
E 26.25_|_27.57 _
24,87 2613 27.45

Fig. 20. (Right) HELIX parameters for DEM acquisition and (left) corre-
sponding ambiguous heights as a function of the (horizontal) swath number
and (vertical) latitude (in 2° steps). The gray scales correspond to (light gray)
Hjy, (gray) Ho, and (dark gray) Hs.

HRTI-3 DEM performance requirement as outlined in
Section III-C. This ensures that the relative height ac-
curacy is better than 2 m for all latitudes within the
considered incident angle range.

3) The resulting HELIX formations shall not require
too much fuel for formation keeping. As outlined in
Section II-D, this is tantamount to the requirement of
minimizing the radial displacement a - Ae between the
two satellites.

4) Each change of the HELIX formation will cost additional
fuel and reconfiguration time. The number of HELIX
formations should hence be minimized. A low number
of HELIX formations will moreover increase the average
time within each mission phase, thereby providing more
flexibility for the scheduling of the individual data takes.

Fig. 20 shows the HELIX parameters and the corresponding
ambiguous heights which have been derived from this optimiza-
tion procedure for a latitude interval ranging from ¢ = —62° up
to ¢ = +70°. The higher northern latitudes and Antarctica will
require an increased vertical displacement a - Ae, and a ded-
icated formation has been derived independently in mapping
the polar regions. This formation will not use a fixed libration
phase, but we will allow for a natural rotation of the eccentricity
vector. Daily orbit maintenance using the cold gas system can
then be substituted by less frequent maneuvers using the more
efficient hydrazine thrusters. The drift of the eccentricity vector
during this mission phase is furthermore well suited to fill in
the potential gaps remaining from the previous data acquisitions
with an adequate height of ambiguity.

The gray areas in Fig. 20 show a variation of the height of
ambiguity between 23.53 and 32.12 m which corresponds to a
ratio of Max(hamb)/Min(hamp) = 1.36. A height of ambigu-
ity below 30 m is likely to cause phase-unwrapping problems
for at least some regions with difficult terrain. To avoid such
difficulties, we will map each point of the Earth landmass with
a second increased height of ambiguity. This is in accordance
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with the system resources and the data rate constraints dis-
cussed in Section III-A. A combination of both acquisitions
will facilitate phase unwrapping while still meeting the height
accuracy requirements [48]. In principle, one should employ
for the second data acquisition rather small baselines but still
large enough that the height errors from this second acquisition
remain well below the height of ambiguity from the first ac-
quisition. However, this will not be feasible with TanDEM-X,
since the choice of very short baselines will violate the mini-
mum distance constraint previously introduced. We will hence
use another technique where both interferograms are demodu-
lated with respect to each other. In this way, we obtain a third
interferogram with a height of ambiguity

hamb _ hamb,l : hamb,? (45)

hamb,Q - hamb,l

where hamp,1 and hamp, 2 are the ambiguous heights from the
first and the second data acquisition, respectively. In order to
achieve again a homogeneous performance, we may simply
scale the HELIX parameters a - Ae and a- Ai in Fig. 20
by a constant factor u. This ensures, for each point on the
Earth surface, two interferometric acquisitions with an almost
constant baseline ratio. The resulting height of ambiguity is
then given by

1

T (46)

hamb = ' hamb,1~
A scaling factor of p = 0.75 will hence increase the dif-
ferential height of ambiguity by a factor of four from,
e.g., hamb,1 = 25 m to hymp, = 100 m. In principle, one could
employ a factor . which is even closer to one, thereby increas-
ing the height of ambiguity further. The limit is then given by
the accuracy of the formation control and the height accuracy.
The use of two acquisitions with similar baseline lengths has the
additional advantage of improving the relative height accuracy,
as shown in Section III-C.

Remaining problems due to foreshortening, shadowing, and
layover effects will be resolved by means of additional data
takes after the completion of the second global DEM acqui-
sition. The involved areas are adaptively identified from the
previously recorded data. The additional acquisitions employ
different incident angles and/or a combination of data takes
from ascending and descending orbits. The latter requires either
a roll maneuver of both satellites before each data take to
acquire SAR images in the left-looking mode or a shift of the
libration phase of TDX in the HELIX formation. A 180° shift of
the libration phase v will be performed during the third mission
year in acquiring the calibration data takes required for the
bundle block adjustment. Residual height ambiguities can then
be resolved by employing the maximum-likelihood technique
suggested in [49].

V. NEW IMAGING TECHNIQUES

The TanDEM-X mission will provide the remote sens-
ing scientific community with a unique data set to exploit
the capability of new bistatic radar techniques and to apply
these innovative techniques for enhanced geo- and biophysical
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parameter retrievals. The following sections give a short
overview of some of these potentials.

A. Along-Track Interferometry

TanDEM-X is predestinated for ATI, which compares the
phase of two complex SAR images acquired in identical geome-
tries but separated by a short time interval [50]-[52]. This
technique is well suited in monitoring dynamic processes on
the Earth’s surface. As outlined in Section II, it is possible to
adjust the along-track displacement between the two satellites
from almost zero to several kilometers. Therefore, it becomes
possible to adapt the ATI sensitivity of TanDEM-X to a wide
range of radial velocities. Rather short baselines on the order
of 50 to 100 m are, for example, desired for the measurement
of ocean surface currents. For this, we note first that the signal
returns from ocean surfaces decorrelate within very short time
periods, the length of which depends on the actual wind speed.
The decrease in coherence can be modeled by

t2 Bglong
YTemp = €XP (—72) = exp <_4’/27'e2 47

e

where 7. is the time lag leading to a 1/e decay of the auto-
correlation function. The factor four in the denominator on
the right-hand side is due the assumed operation in bistatic
mode where the effective along-track baseline is only half the
actual distance between the two satellites (cf., Section II-A).
The correlation model in (47) is in good agreement with the
X-band VV decorrelation functions shown in [53] if we use
Te = {4,6,12 ms} for wind speeds of {15,10,5 m/s}. Using
(47), the interferometric phase errors are then computed ac-
cording to Section III, where we assume an incident angle of
0; = 40°. The scattering coefficients have been derived from
[54] which yield for VV-polarization normalized radar cross-
sections of NRCS = {—12.1, —15.6,—21.5 dB} for the three
aforementioned wind speeds under upwind conditions. The
accuracy of the velocity estimates in the ground range direction
is finally approximated by [53]

)\Vsat

S a—— 48
27 Batong Sin 0 ¢ (48)

Ov

Fig. 21 shows the predicted accuracy for the three wind speeds
as a function of the along-track separation between TSX and
TDX. This example is based on a horizontal resolution of
50 m x 50 m. It becomes clear that the optimum along-track
separation ranges from 35 to 150 m, depending on the actual
wind speed, while the along-track baselines above 150 m are
likely to cause significant decorrelation in case of medium
to high wind speeds. Very short along-track baselines below
100 m can be adjusted without any collision risk, owing to the
HELIX formation.

The ATT can furthermore be performed by the so-called dual-
receive antenna mode in each of the two tandem satellites,
which provide each an additional along-track baseline of 2.4 m
[55], [56]. TanDEM-X can hence be operated as an along-track
SAR interferometer with four phase centers (cf., Fig. 22). The
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Fig. 21. Predicted accuracy of ocean current measurements for wind speeds
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combination of short and long baseline ATI data acquisitions
can then, for example, be used to resolve phase ambiguities
from high-velocity scatterers. The advantage of an additional
short baseline becomes also evident from Fig. 21, where the
upper dashed-dotted curve shows the 27 ambiguous velocity
which has a value of 5 m/s for an along-track baseline of
75 m. For comparison, the accuracy with the split antenna
mode in TSX and TDX will be 1-2 m/s, which is suffi-
cient to resolve the phase ambiguity from the large baseline
measurement.

A further potential arises from the alternating bistatic mode
which enables the acquisition of two effective along-track
baselines separated by a factor of two in a single pass [57].
This will not only improve the interferometric performance
by an adaptive selection of the time lag for the different
wind speeds but it also enables a direct measurement and
compensation of the additional Doppler shift induced by the
Bragg scattering mechanism, thereby avoiding, e.g., the need
for ancillary wind information for ocean current retrieval [58].
Vice versa, this may also open a new opportunity for wind speed
measurements.

Another potential of ATI with TanDEM-X is the moni-
toring of moving objects on the ground. The employment
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of this technique from spaceborne sensors recently received
much interest with regard to applications like wide-area traffic
monitoring, ship detection, and ground surveillance [59]-[62].
The feasibility of spaceborne traffic monitoring was first
demonstrated during the SRTM mission where an evalua-
tion of the interferometric phase enabled the detection of
large vehicles [63]. The cross-track velocity was then indi-
rectly derived from the azimuth displacement by exploiting
the train-off-the-track effect which requires the availability
of an accurate road database [59]. TanDEM-X has the po-
tential to significantly improve the detection, velocity esti-
mation, and localization of moving objects by exploiting,
in addition, the along-track baseline between the two satel-
lites. An along-track baseline of 50 m yields for 6; = 40°
a cross-track sensitivity of 0.05 km/h/deg. By noting that
a car with a RCS of 0 dBm? yields a phase error below
10°, one may arrive at velocity accuracies on the order of
1 km/h, depending on the actual along-track baseline. The
feasibility of ground-moving target indication in a bista-
tic airborne SAR configuration has already been demon-
strated in [64]. The HELIX formation allows not only for
an adaptation of the along-track separation with regard to
the specific application, but it is also possible to simultane-
ously minimize the across-track component for a given lat-
itude and incident angle range, as shown in the lower right
of Fig. 22. This is important for demonstration purposes,
since it significantly alleviates the processing by reducing
the phase contamination from topography. Even more infor-
mation about the moving object and its direction could, in
principle, be obtained by employing the simultaneous transmit
mode® which enables the acquisition of coherent information
from pointlike targets even in case of nonoverlapping fre-
quency bands (cf., [65]). The availability of multiple base-
lines will then help to derive highly accurate velocity and
position estimates without explicit recourse to a road data-
base [66].

The ATI mode is, moreover, of high value for coherence
analyses in the vegetated areas, where decorrelation times
below 100 ms have been observed in the X-band in case of
moderate to strong wind conditions [38]. By employing the
alternating bistatic mode, one will obtain accurate estimates of
the decorrelation times for the vegetated areas in a way that is
similar to the multibaseline coherence time measurements for
oceanographic mapping [57]. The coherence maps may then
be used to improve land cover classification and/or to get first-
order wind speed estimates. A further promising application to
be demonstrated with TanDEM-X is the monitoring of sea ice
drift which will presumably require large baselines in combi-
nation with an operation in the pursuit monostatic mode. The
along-track baselines of several kilometers will be available in
the beginning and at the end of the mission. The large along-
track baselines could also be of benefit for traffic monitoring,
since they will enable an estimation of the velocity vector from

8The employment of the alternating transmit mode has the disadvantage of
reducing the effective PRF for each channel. A high PRF on the order of 6 kHz
is, however, desired for the unambiguous azimuth focusing of fast vehicles.
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the relative displacement of the moving objects in the two SAR
images, while the detection could be based on the split antennas
in each satellite.

B. Very Large Baseline Cross-Track Interferometry

Very large baseline interferometry takes advantage of the
high RF bandwidth of the TSX and TDX satellites which allows
for coherent data acquisitions with baselines of up to 5 km and
more. Note in this context that less than 5% of the maximum
possible (critical) baseline length is used during the nominal
DEM data acquisition (cf., Fig. 15) which is, furthermore, based
on a reduced chirp bandwidth to limit the overall data rate
as required for global multibaseline coverage. Large baseline
interferograms with higher bandwidth can hence significantly
improve the height accuracy for local areas, but the associated
low height of ambiguity requires a combination of multiple
interferograms with different baseline lengths to resolve phase
ambiguities [49], [67], [68]. By using this technique, it becomes
possible to derive DEMs with HRTI-4-like accuracy on a local
or even regional scale.

Further opportunities arise from the comparison of multiple
very large baseline TanDEM-X interferograms acquired during
different formation passes. This provides a sensitive measure
for vertical scene and structure changes. Potential applications
are a detection of the grounding line which separates the shelf
from the inland ice in polar regions, monitoring of vegetation
growth, mapping of atmospheric water vapor with high spatial
resolution, measurement of snow accumulation, and detection
of anthropogenic changes of the environment, e.g., due to
deforestation. Note that most of these combinations rely on a
comparison of two or more single-pass (large baseline) cross-
track interferograms and do not require coherence between the
different passes (cf., Fig. 23).

Further information can be gained from an evaluation
of coherence changes between different passes—potentially
augmented by polarimetric information. This could, for in-
stance, reveal even slight changes in the soil and vegeta-
tion structure, reflecting vegetation growth and loss, freezing
and thawing, fire destruction, human activities, and so on.
Another, and in some sense, complementary opportunity is
the demonstration of a quasi-tomographic mapping of, for
example, loose vegetation. For this, we note first that it is
unlikely to obtain in the X-band a sufficient coherence between
subsequent passes as required to employ classical tomogra-
phy via a linear beamforming process [69]. An alternative is
the combination of multiple single-pass SAR interferograms
acquired with different baseline lengths. This enables then
a reconstruction of the vertical layer structure by employing
the Van Cittert Zernike theorem [cf., (29)]. Such a partially
coherent tomographic mapping technique could also incorpo-
rate vertical structure functions, as suggested recently in [70]
for polarization coherent tomography, thereby improving the
reconstruction results in case of a limited number of single-pass
SAR interferograms. The systematic combination of multiple
single-pass SAR interferograms acquired by TanDEM-X is
hence likely to pave the way to a new age of interferometric
and tomographic processing techniques and applications as it
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Fig. 24. Vertical separation of interferometric phase centers in TanDEM-X as
a function of the ground-to-volume scattering ratios p (cf., [74]). The vegetation
height is 0.6 m, the ground-to-volume ratio y varies from —6 to 0 dB, and the
extinction is assumed to be 10 dB/m.

was ERS-1/2 for the development of classical repeat-pass SAR
interferometry.

C. Polarimetric SAR Interferometry

Polarimetric SAR interferometry combines interferometric
with polarimetric measurements to gain additional informa-
tion from semitransparent volume scatterers [15], [71]. This
allows, for example, the extraction of important biophysical
parameters like vegetation density and vegetation height [72].
Fully polarimetric operation uses the split antenna and is
susceptible to ambiguities similar to the alternating bistatic
mode (cf., Fig. 3). This can be avoided by employing steep

incident angles, reducing the processed azimuth bandwidth,
and/or by limiting the swath width. Fig. 24 shows the achiev-
able performance of a simulated scenario for TanDEM-X.
This analysis is based on the Random Volume over Ground
model [15], [71], [72] assuming a vegetation layer with a
height of 0.6 m and an extinction coefficient of 10 dB/m,
which are typical values in an agriculture scenario [73]. The
dashed line indicates the height variation of the interferomet-
ric phase center with different polarizations (corresponding
to a variation of u on the abscissa). The inner tube shows
the height errors due to volume decorrelation for an effec-
tive baseline of 5 km and an independent postspacing of
30 m x 30 m. The middle tube shows additional errors due
to the limited system accuracy, and the outer tube indicates
potential errors in case of temporal decorrelation caused by
a possible along-track separation between the two satellites
(here, yTemp = 0.7). The performance analysis predicts, for
this example, a sufficient vertical phase center separation to
enable a successful retrieval of important vegetation parameters
like volume height, extinction, etc. Note in this context that
there may be a significant difference between the vertical
coherence loci of mono- and bistatic SAR interferograms if
the ground returns are dominated by a double-bounce scattering
mechanism [16]. TanDEM-X offers the opportunity to acquire
interferograms in both the bistatic and the pursuit monostatic
mode, and a comparison of both types of interferograms pro-
vides a valuable insight into the dominant ground scattering
process. Such a comparison could, in principle, also be based
on the alternating transmit mode, but in this case, one will
be restricted to one co- and one cross-polarized component
since the SAR ambiguities prevent a simultaneous operation
in fully polarimetric and alternating bistatic mode. Another
opportunity to be investigated with TanDEM-X is the use
of the simultaneous transmit mode in combination with a
large interferometric baseline as required for low vegetation.
This will allow for the acquisition of fully polarized inter-
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ferometric data with two baselines. TanDEM-X will be the
first mission to demonstrate such innovative techniques from
space.

D. Bistatic SAR Imaging

Bistatic SAR imaging provides additional observables for
the extraction of important scene and target parameters [75],
[76]. TanDEM-X allows for the simultaneous acquisition of
bistatic and monostatic SAR images in a single data take to
obtain a highly informative set of multiangle observations.
Note that it is possible to collect up to two different monostatic
and bistatic SAR images during a single satellite formation pass
by employing either the alternating bistatic or the simultaneous
transmit mode. The acquisition of two bistatic SAR images in
identical geometry but with mutually interchanged transmitters
will also be of high interest for polarimetric analyses due to
the asymmetry between the cross-polarized channels. A quan-
titative evaluation of the bistatic RCS and a comparison with
its monostatic equivalents furthermore facilitate the detection
and recognition of targets. The segmentation and classification
in radar images are expected to be substantially improved by
comparing the spatial statistics of mono- and bistatic scattering
coefficients. This is also supported by the joint airborne bistatic
radar experiments performed by DLR and ONERA, which
revealed significant changes of the scattering behavior for
both artificial and natural targets even in case of rather small
bistatic angles [77]. A joint evaluation of mono- and bistatic
SAR images could furthermore be used to isolate different
scattering mechanisms, like, for example, a distinction between
highly directive dihedral returns from more isotropic volume
scattering. The bistatic SAR imaging moreover has a potential
for the retrieval of sea state parameters, the estimation of sur-
face roughness and terrain slope, as well as stereogrammetric,
meteorological, and atmospheric applications [75]. Innovative
processing algorithms will be required to exploit all these capa-
bilities. The bistatic data acquired with TanDEM-X will hence
provide a unique data source to improve our understanding of
bistatic imaging and its exploitation for future remote-sensing
applications. Data takes with large bistatic angles are planned at
the beginning and at the end of the TanDEM-X mission where
the satellites are separated from each other by several tenths of
kilometers.

E. Superresolution and Digital Beamforming

Another promising technique is superresolution [78]. This
technique exploits the fact that the signals received by the two
satellites have different aspect angles for each scattering point
on the ground. In consequence, the two ground range and/or
azimuth spectra are shifted relative to each other. A coherent
combination of the signals yields then a wider spectrum which
corresponds to an improved spatial resolution. This technique
requires a cross-track and/or along-track separation on the order
of 5 to 10 km. The large cross-track baselines will be available
in later mission phases after the standard DEM data acquisition
has been completed. The application of the superresolution
technique in range may furthermore take advantage of the al-
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ternating bistatic mode, where the bistatic interferograms serve
as a “phase bridge” to link two nonoverlapping monostatic SAR
spectra.

A complementary technique to superresolution is digital
beamforming on receive which combines the RF signals from
multiple antennas to simulate a large directional antenna. Due
to the split antennas and dual receiver channels of TSX and
TDX, up to four phase centers can be obtained in the standard
bistatic stripmap mode. A combination of the multiple Rx
signals enables then an efficient suppression of azimuth ambi-
guities [79]. In this way, it becomes possible to demonstrate the
capabilities of high-resolution wide-swath SAR imaging [80].
Digital beamforming on receive is also of interest for advanced
interferometric SAR modes like the alternating bistatic mode
where it allows for a reduction of the PRF, thereby resolving
potential timing and ambiguity conflicts. While it is straight-
forward to combine the recorded signals from the split antenna
in each of the two receiver satellites independently [79], new
algorithms will be required to combine the signals from the two
satellites for advanced azimuth ambiguity suppression in case
of a nonvanishing cross-track separation between the platforms.
The latter requires a compensation of the topographic phase
and will lead to a new class of SAR processing techniques
which combine the cross-track interferometry with the along-
track digital beamforming [76]. TanDEM-X will be the first
configuration to demonstrate this highly innovative technique
from space.

VI. CONCLUSION

This paper demonstrated the capability of TanDEM-X to
acquire a global DEM in accordance with the HRTI-3 standard.
The achievable height accuracy for global DEM generation
is, in practice, mainly limited by the height of ambiguity
that can finally be processed during phase unwrapping. The
standard HRTI-3 DEM is a reasonable compromise between
performance, processing, and data acquisition effort. A mission
scenario has been developed which enables the acquisition of a
global HRTI-3 DEM within less than three years. This concept
includes several data takes with different baselines, different
incident angles, and data takes from ascending and descending
orbits to deal with difficult terrains, like mountains, valleys, tall
vegetation, etc. The TanDEM-X mission concept allocates also
sufficient acquisition time and satellite resources to secondary
mission goals like ATI or the demonstration of new bistatic
radar techniques.

In 2006, the TanDEM-X mission has been approved for
realization by means of a PPP between the DLR and the EADS
Astrium GmbH. The launch of the TanDEM-X satellite is
planned for summer 2009 which ensures at least three years
of joint operation with the TSX. Current work includes the
preparation of a robust data acquisition plan, which has also to
take into account potential conflicts between the TerraSAR-X
and the TanDEM-X mission objectives, the development of
an advanced DEM calibration concept, the design of a multi-
baseline InSAR processor, performance investigations for the
other innovative TanDEM-X imaging modes, as well as the
compilation of a detailed science plan.
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APPENDIX

Formula (36) yields a good approximation for TanDEM-X
in conjunction with the independent zero Doppler steering. In
the general case of different antenna patterns, it may, however,
underestimate the effective number of looks. This is particularly
pronounced if the spectral weightings of the two interferometric
channels significantly differ from each other, thereby reducing
also the coherence [cf., (27)]. The asymmetric spectral
weighting introduces systematic phase fluctuations in the inter-
ferogram which become the dominating error in case of a high
SNR where the superposition from the receiver noise with its
white power spectral density can be neglected. The smoothing
of the interferogram via multilooking will then remove this
systematic component with more efficiency than expected from
a mere superposition with independent white noise. In conse-
quence, the effective number of looks is no longer independent
from the actual SNR. Following the reasoning in [43], a good
approximation of the effective number of looks can be obtained
by comparing the error variances before and after the final
smoothing filter. The errors in our case can be approximated by
the power spectral densities of the interferogram’s imaginary
part where we assume, for convenience, zero topographic
phase. After some tedious algebra, the correlation ratio can be
derived as

naz=//H(f17f2)~df1-dfz///H(fufz)

CH2 oot (fo — f1) - dfy - df

where

H(fth) :ngoc(fl) : HIQ)roc(fQ)
- {SNR? [H, (f1)Ho(f2) — Ho(f2)Ho(f1)]?
+ SNR [H; (f1) + H; (f2) + Hj (f1)

+ HE(f2)] +2}

with Ha(f) = ATx(f) . ARxl(f) and Hb(f) = ATx(f) .
ARrx2(f). Formula (36) approximates this equation for
H,(f) = Hy(f) and SNR > 1. Computer simulations with
various antenna weightings and smoothing filters show that
the previous equations yield, in combination with (31), good
predictions for both the 90% errors and the standard deviations.
One has, however, also to be aware that the multilook phase
error pdf in (31) is, in a strict sense, no longer valid, since the
interferometric phase error pdf becomes slightly different in
shape, which is a fact that cannot be corrected for by a mere
adjustment of the number of looks.
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