
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 28, 2024

An error prediction framework for interferometric SAR data

Mohr, Johan Jacob; Merryman Boncori, John Peter

Published in:
I E E E Transactions on Geoscience and Remote Sensing

Link to article, DOI:
10.1109/TGRS.2008.916213

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Mohr, J. J., & Merryman Boncori, J. P. (2008). An error prediction framework for interferometric SAR data. I E E
E Transactions on Geoscience and Remote Sensing, 46(6), 1600-1613.
https://doi.org/10.1109/TGRS.2008.916213

https://doi.org/10.1109/TGRS.2008.916213
https://orbit.dtu.dk/en/publications/1c1d877e-5224-4b25-a0f9-3d5fe8d1c78e
https://doi.org/10.1109/TGRS.2008.916213


1600 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 6, JUNE 2008

An Error Prediction Framework
for Interferometric SAR Data

Johan Jacob Mohr and John Peter Merryman Boncori

Abstract—Three of the major error sources in interferometric
synthetic aperture radar measurements of terrain elevation and
displacement are baseline errors, atmospheric path length errors,
and phase unwrapping errors. In many processing schemes, these
errors are calibrated out by using ground control points (GCPs)
(or an external digital elevation model). In this paper, a simple
framework for the prediction of error standard deviation is out-
lined and investigated. Inputs are GCP position, a priori GCP
accuracy, baseline calibration method along with a closed-form
model for the covariance of atmospheric path length disturbances,
and a model for phase unwrapping errors. The procedure can be
implemented as a stand-alone add-on to standard interferometric
processors. It is validated by using a set of single-frame interfero-
grams acquired over Rome, Italy, and a double difference data set
over Flevoland, The Netherlands.

Index Terms—Atmospheric disturbances, baseline error, cali-
bration, interferometry, phase unwrapping error, synthetic aper-
ture radar (SAR), systematic errors.

I. INTRODUCTION

FOR USERS of interferometric radar measurements of ter-
rain elevation and displacement, estimates of accuracy are

important. The basic error source is atmospheric path length
disturbances. When many interferograms of the area of interest
are available, the permanent scatterer technique [1] can be used
to reach very good accuracies with associated error estimates by
using assumptions of atmospheric statistics (low temporal cor-
relation and high spatial correlation) and displacement statistics
(high temporal correlation and low spatial correlation).

The topic of this paper, though, is focused on cases where
only a few interferograms are available, e.g., due to the dynam-
ics of the phenonema of interest (summer/winter velocities of
glaciers), due to processing limitations (large area mapping),
or even data availability limitation as is often the case in arctic
areas. Here, classical radar interferometric techniques, typically
including baseline calibration and phase unwrapping, must
be used.

In these cases, a priori accuracy estimates may also be
needed during product generation to ensure a proper mosaick-
ing [2]. Attempts to quantify the errors are sparse (see, for
example, [3] and [4]), but none of these take into account
the correlation introduced by the use of ground control points
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(GCPs). When a few GCPs are available, as is often the case
for glacier applications, key characteristics of the baseline
calibrated products are that errors depend on GCP position and
strongly depend on distance to GCPs. Alternatively, precision
orbit data could be used, and a reference phase could be
estimated. For single-frame images, this may lead to acceptable,
and quantifiable, accuracies for elevation measurements if large
baselines are used [5, p. 128], but for displacement measure-
ments, accuracies would most often be too poor.

In this paper, an approach to provide a priori error estimates
of elevation and displacement accuracy is presented. An esti-
mation procedure is outlined, and simple models are provided
to demonstrate its functionality.

Even the simple models presented here, in our opinion,
improve the error prediction compared with the schemes only
accounting for loss of coherence and GCP uncertainty. The
framework, however, allows for the substitution of the error
models should new algorithms or additional information to tune
them become available, e.g., on the atmospheric states at the
time of acquisitions.

The method was tested on a number of data sets, and results
from three are presented and discussed. It is noted that even
though the single-interferogram case is investigated in a digital
elevation model (DEM) generation context, the framework
applies equally well to the single-interferogram displacement
measurement case, for which the necessary equations are
reported.

II. ERROR MODELS

The unwrapped interferometric phase ϕ(x, y) is assumed to
be composed of the following terms:

ϕ(x, y) = ϕtopo + ϕdisp + ϕbase + ϕatmo + ϕnoise + ϕunw.
(1)

For clarity, the image coordinate (x, y) dependence has been
left out on all the terms on the right-hand side. In sequence, the
terms represent terrain topography, terrain displacement, base-
line error, atmospheric path length delay, thermal noise, and
phase unwrapping error.

The topography term includes the flat-Earth component as
well as the additional phase caused by the elevation above the
reference surface. In principle, this definition introduces a cou-
pling between the baseline and elevation errors. However, we
assume here that if elevation is known, ϕtopo can be calculated
and that ϕbase does not depend on terrain elevation.

0196-2892/$25.00 © 2008 IEEE
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Note that a repeat-pass configuration is assumed. This im-
plies that an interferometric phase (in radians) ϕ corresponds to
a slant range difference (in meters) δ of

δ = − λ

4π
ϕ (2)

where λ denotes wavelength, and the minus sign is ignored in
the error analysis. In the remaining part of this paper, δ will be
denoted as “interferometric path length.”

Usually, the terms of interest in (1) are ϕtopo and/or ϕdisp,
whereas ϕbase, ϕunw, ϕatmo, and ϕnoise are regarded as un-
wanted noise. The usual procedure, therefore, is to eliminate or
minimize the noise terms and then attribute the remaining part
of the interferometric phase to topography and/or deformation.

For our error analysis, it is sufficient to assume that there is
a linear relation between an error in a measured interferometric
path length δtopo and the inferred elevation h. For the single-
interferogram case, the relation is

σh ≈ (R sin θ/B⊥)σδ,topo (3)

where R is the slant range, θ is the nominal angle of incidence,
B⊥ is the perpendicular baseline, σh is the elevation standard
deviation, and σδ is the standard deviation of the interferometric
path length. The corresponding displacement error relation
simply is

σd ≈ σδ,disp (4)

where σd denotes the line-of-sight displacement standard de-
viation. Relations (3) and (4) are linear also in the double-
difference case (Section III-E).

For the error analysis, we can disregard the ϕtopo and ϕdisp

terms in (1), which expressed in interferometric path lengh
becomes

δ(x, y) = δbase + δatmo + δnoise + δunw. (5)

Any deviations of δ(x, y) from zero will translate into geo-
physical measurement errors through the linear relations pre-
viously described. A model for each of the four components is
provided next.

A. Baseline Errors (δbase)

In this paper, only linear baseline errors will be considered.
Following the procedure of [4], a linear baseline variation in
azimuth is approximated by a path length variation of the form

δbase(x, y) = b1 + b2x + b3y + b4xy

=p · b (6)

where p = [1, x, y, xy]′, b = [b1, b2, b3, b4]′, x is the along-
track coordinate, y is the across-track coordinate, and bi’s are
the constants to be determined by baseline calibration.

B. Atmospheric Path Length Variations (δatmo)

Synthetic aperture radar (SAR) interferometers are known to
be sensitive to temporal variations in the spatial distribution
of water vapor in the troposphere [6]–[9] and of free electron
density in the ionosphere [10]–[12]. Furthermore, for scenes
encompassing significant elevation differences, changes in the
vertical profile of the refractive index may also cause nonnegli-
gible artifacts [5], [13].

In this paragraph, only water-vapor fluctuations shall be con-
sidered. The error-estimation framework of this paper makes
use of the second-order statistics of error sources, as de-
tailed in Section III. Concerning water-vapor-induced delay
fluctuations, several models based on turbulence theory have
been developed within the radio propagation [17], atmospheric
science [18], very long baseline interferometry [14], Global-
Positioning-System (GPS) [13], and SAR [5] communities over
the past 30 years. These were validated against independent
measurement techniques and, nevertheless, share important
common features, particularly a zenith-delay structure function
with a power index mainly in the [2/3, 5/3] interval for typical
SAR scales (from 100 to 400 km) and a correlation length in the
[700 km, 3000 km] range (this does not apply for [5] in which
shorter distances were considered). To demonstrate the impact
on the error prediction framework of including atmospheric
delay among the error sources, we shall make use of the model
derived in [16] and reported in the Appendix. This is based
on and in agreement with all the aforementioned studies and
shares the hypotheses of wide-sense stationarity and circular
symmetry of the delay. We prefer it here because it provides a
closed-form expression for the second-order delay statistics and
a tunable scale factor.

In the following, results useful for the error-estimation
framework of this paper shall be recalled, assuming wide-
sense stationarity and circular symmetry for the delay statistics,
although these assumptions are not strictly required by the
framework.

In [15], delay is discussed in a GPS context, where one-way
zenith delay (in meters) τ is the basic quantity. Delay at off-
nadir angles and zenith delay are proportional, and for a plane-
parallel refractive medium, the scaling factor is stated to be

m(θ) =
1

cos θ
(7)

where θ is the off-nadir angle, i.e., approximately the nominal
angle of incidence on ground. It is also noted that with the
chosen definition (2), one-way delays should not be multiplied
by two when interferometric path lengths are calculated (see
also [15, eqs. (10) and (11)]).

According to Williams et al. [15], the covariance between
zenith delays at two points (i, j) separated in space and/or time
can be calculated by using

Cov{τi, τj} =
1
2

(D(∞) − D(R)) (8a)

where

R2 = |�ri − �rj |2 + |s(Ti − Tj)|2 . (8b)
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In (8b), �r represents the point positions, T represents the times
of interest, and s represents the wind speed at a reference
tropospheric height. In [16], the zenith-delay structure function
D(R) is approximated by

D(R) = P0C0

[
C1I1

(
R
h

)
R2/3

1 +
(

R
L

)2/3
+ C2I2

(
R

h

)
R5/3

]
. (9)

The values of the constants P0, L, h, C0, C1, and C2 and
the expressions of I1(·) and I2(·), which are the polynomial
functions of R/h, are reported in the Appendix. For the globally
representative atmospheric statistics chosen in [16], D(∞) =
11.52 cm2, and it is also noted that D(0) = 0.

By using (8a), the variance of the interferometric path length
δi = m(θ)(τ2,i − τ1,i) in one pixel i, in one interferogram
formed from the Single Look Complex (SLC) images 1 and
2, is found to be

Var{δi} =m2(θ)Var{τ2,i − τ1,i}
=m2(θ) (Var{τ1,i} + Var{τ2,i} − 2Cov{τ2,i, τ1,i})

≈m2(θ)
(

1
2
D(∞) +

1
2
D(∞) − 2 · 0

)

=m2(θ)D(∞)

=σ2
tropo. (10)

In the aforementioned equation, a time separation between SLC
acquisitions of a day or more is assumed, ensuring that the
distance (8b) between one pixel in the two SLCs is very large
even with an s having a value of a few meters per second.

Similarly, assuming a statistically similar atmospheric state
at the two acquisitions, the covariance between interferometric
path lengths at two points (i, j) in one interferogram, which are
separated by the distance r, is found to be

Cov{δi, δj} = m2(θ) (D(∞) − D(r))

= Ctropo(r) (11)

which states that the atmospheric interferometric path length
at two closely separated interferogram pixels has a high co-
variance which decreases toward zero as the pixel distance
increases. The variance of the difference between interfero-
metric path lengths at two points (i, j) in one interferogram is
found to be

Var{δi − δj} = 2m2(θ)D(r). (12)

C. Noise (δnoise)

We use the standard formula for phase noise

σϕ =
1√
2N

√
1 − γ2

γ
(13)

where N is the number of looks, and γ is the correlation
coefficient [19]. Phase noise is converted to interferometric path
length by using (2). In many situations, though, noise has a

small impact on the final accuracy, implying that the use of
a single average value for all pixels in the entire image may
suffice.

D. Phase Unwrapping Errors (δunw)

Unwrapping errors are known to be caused by phase noise,
phase undersampling, and phase discontinuities [20]. Phase
noise appears in areas with temporal decorrelation, low SNR,
and radar shadow [21]. Phase undersampling occurs when
the phase gradient is greater than π in magnitude due to the
underlying topography or due to displacement gradients. Phase
noise, however, causes undersampling to also occur at lower
gradients [20], [21]. Finally, phase discontinuities are due to
discontinuous surface deformation (e.g., at sliding faults or at
glacier–rock interfaces) and to radar layover [20], [22].

Local indicators of potentially critical unwrapping situations
are known to be residue density, coherence, wrapped phase
gradient, image intensity, and estimated slope. Some of these
are strongly correlated, namely, residue density and coherence
[23], [24] and intensity and topographic slope [25]. Errors may,
however, also propagate into locally noncritical regions, during
phase-gradient integration, leading to medium- and large-scale
errors.

For the framework of this paper, a model of the covariance of
phase unwrapping errors for any pair of interferogram pixels is
required. This problem is split into two subproblems. The first is
to obtain a segmentation mask of consistently unwrapped areas.
The second is to assign variance and covariance values to points
belonging to the same region and to different regions.

Two procedures can be found in the literature to automat-
ically produce a map of reliably unwrapped areas, namely,
[26] and [27]. Both account for scene-specific parameters,
namely, residue density and coherence, respectively, as well
as algorithm-specific ones, i.e., the position of branch cuts.
We chose to test the application of the method of [26]. In
this procedure, the unwrapped phase field is needed as input.
Residue density is estimated on an Nr × Nr window. Pixels ex-
ceeding a threshold ts are assigned to a masked-out region, and
the remaining ones are assigned to a valid one. Holes smaller
than a specified size Nh are filled in both regions. Second,
pixels neighboring phase jumps greater than π (branch cuts)
are assigned to the masked-out region. Finally, the valid pixels
are divided into connected regions, allegedly the consistently
unwrapped ones, creating a segmentation mask.

For the application at hand, we added two steps to the
algorithm, which are aimed at improving the identification of
medium- to large-scale segments. Before connected regions are
identified, we perform a binary erosion of the valid region by
using a square structure element of size Ne × Ne. We then
identify connected regions and perform a binary dilation of
each connected region by using a square structure element of
size Nd × Nd. The purpose of the erosion is to join branch cuts
to residue-dense areas if these lie within a range of Ne pixels
from each other. The dilation which follows is carried out with
Nd ≥ Ne and is used to compensate for the erosion, particularly
at the border of water bodies and decorrelated pixels, and to fill
holes in each segment of size Nd − Ne.
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The derived segmentation mask, denoted by seg(q) in the
following, is used to compute error statistics for a pair of pixels,
i.e., q1 = (x1, y1) and q2 = (x2, y2). It is assumed that the
values in seg(q) are integers, with zero denoting the masked-
out region and positive values denoting the connected segments.
The rationale is that if q1 and q2 belong to the same seg-
ment, their phase unwrapping error will be highly (maximally)
correlated; otherwise, they are assumed to be decorrelated.
Denoting with C12 the covariance between the phase unwrap-
ping error at q1 and q2, max(C12) = σ1σ2, where σ1 and
σ2 are the standard deviations of the phase unwrapping error
at q1 and q2. These values are unknown however. Without
any further knowledge, the single-cycle error variance is as-
sumed, i.e., σ1 = σ2 = σs = ((0 + (2π)2 + (−2π)2)/3)1/2 =
0.82 · 2π. If q1 and q2 belong to different segments, or if one
falls in the masked-out region (where local errors might occur),
we do not know anything about C12. We state this ignorance
by setting C12 = 0, although this may not always be the case
(probably, two adjacent segments have actually a correlated
phase unwrapping error since error might have propagated from
one region into the other). Therefore, we write

C12 =




σ2
s , q1 = q2

σ2
s , seg(q1) = seg(q2) ∧ seg(q1)seg(q2) �= 0

0, otherwise.
(14)

For the test cases described in Section IV, we set Nr = 7,
Nh = 20, ts = 0.05, Ne = 3, and Nd = 13. As discussed in
Section V-B and in the conclusion, a finer tuning of these
parameters may lead to an improved performance.

III. DEVELOPED ALGORITHM

A. Baseline Calibration and Absolute Phase

Usually, the interferometric path length has to be calibrated
before it is used to derive elevation and/or displacement. A
common approach is to attribute all (slow-varying) errors to
baseline uncertainties, which are estimated by using GCPs,
with known elevation and displacement (often equal to zero).
For each GCP, the expected topographic and displacement
interferometric path lengths are calculated and subtracted from
the measured path length. The resulting interferometric path
length δobs is then composed of the following terms:

δobs = δbase + (δatmo + δnoise + δunw + δgcp). (15)

The first term on the right-hand side is the deterministic base-
line error, which may be modeled by (6). The remaining four
terms are realizations of stochastic processes with zero means.
The last term δgcp represents the error of the GCP elevation
and displacement terms, with standard deviations which may
be calculated from

σ2
gcp =

(
B⊥

R sin θ

)2

σ2
h + σ2

d. (16)

The parameter σd is typically used when the GCPs situated in
terrain with displacement are used for calibration. One example

could be the GCPs on ice divides, where the velocity is believed
to be zero. In that case, the user should specify the accuracy of
this assumption through σd.

At first, it might seem problematic to annihilate the phase
unwrapping constant into the baseline estimate since a con-
stant phase (often denoted as “the absolute phase”) cannot be
modeled exactly by a baseline error. In practice, however, it
is very difficult to distinguish an absolute phase error from a
baseline error in the midswath line-of-sight direction. This is
particularly true for satellite geometries having small variations
in look angle from near to far range. This is also highlighted by
(6), where the b1 term is equivalent to an absolute phase term.
Similarly, a constant interferometric path length caused by the
atmosphere is annihilated into the baseline error. The use of the
simplified baseline model thus allows (forces) us to assume a
zero mean for the error terms δatmo, δnoise, δunw, and δgcp. For
simplicity, they are also assumed to be normally distributed and
mutually independent.

It is noted that although a simplified baseline model is used
for error estimation, it is recommended to use a physically
based model for the actual baseline estimation. One commonly
used option is a four-parameter model (offset and skew in
the horizontal and vertical directions). In this case, it is also
recommended to remove the bulk part of the absolute phase
before the baseline calibration, leave out the absolute phase
estimation, and thus let the baseline estimate account for the
absolute phase.

B. Baseline Solution

With the assumptions previously outlined, the baseline-error-
estimation problem with N GCPs may be stated as

y = Xb + ε (17a)

where

y = [δ1, . . . , δN ]′ (17b)

X =


 1 x1 y1 x1y1

...
...

...
...

1 xN yN xNyN


 (17c)

ε ∈N (0,Σε) (17d)

Σε =Σatmo + Σnoise + Σunw + Σgcp. (17e)

The standard linear least square estimate b̂ is

b̂ =
(
X ′Σ−1

ε X
)−1

X ′Σ−1
ε y

=Wy. (18)

A baseline estimation using a (linearized) physically based
model would use a different X and b but an identical
variance–covariance matrix Σε.

C. Calibrated Path Length Uncertainty

The next step is to calculate the variance of interferometric
path length δ∗p at a pixel with the coordinates (x, y) after the
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baseline calibration. This section concerns the case where the
simplified model (6) is actually used for the baseline calibra-
tion. In this case, the calibrated path length is δ∗p = δp − p · b̂.
The residual error includes errors on the observation δp itself,
namely, δp,atmo, δp,noise, and δp,unw, as well as errors of
the baseline calibration term p · b̂, which is correlated with
(δp,atmo, δp,noise, δp,unw)—particularly in the vicinity of GCPs.
The variance of δ∗p is rewritten as

Var{δ∗p} = Var{δp − p · b̂}
= Var{δp − p · Wy}
= Var{wp · yp} (19a)

where

wp = [1, wp,1, . . . , wp,N ]′ (19b)

wp,i =
4∑

j=1

pjWj,i (19c)

yp = [δp,−δ1, . . . ,−δN ]′ (19d)

yp ∈N (0,Σp) (19e)

Σp =




Vp −Cp,1 · · · −Cp,N

−Cp,1

... Σε

−Cp,N


 (19f)

Vp = Var{δp} = σ2
atmo + σ2

unw + σ2
noise (19g)

Cp,i = Cov{δp, δi} = Catmo(rp,i) + Cunw(rp,i) (19h)

rp,i =
(
(xi − xp)2 + (yi − yp)2

)1/2
. (19i)

Now, the standard deviation σp∗ of the calibrated single-pixel
interferometric path length can be calculated from

σ2
p∗ = w′

pΣpwp. (20)

To summarize, the following information is needed to calculate
the uncertainty.

1) The weight matrix W used to calculate the baseline
estimate.

2) The variance–covariance matrix Σp for observations yp

used. To calculate that, the position of all GCPs must be
available.

Note that the baseline estimate itself b̂ is not needed.
Either the W matrix should be output from the baseline cal-

ibration module or sufficient information about the procedure
should be available, so that it can be recalculated. If W is
output, the (x, y) coordinate system should also be specified,
whereas any (x, y) coordinate system (e.g., pixel numbers) can
be used if W is recalculated.

Methods for calculating the variances (19g) and covariances
(19h) are proposed in Sections II-B to D, but if more accurate
information is somehow available, it should be used. Note that
the Σε part of (19f) does not need to be identical to the one used
for the baseline estimation. A common situation is that a unity

variance–covariance matrix is used for the baseline estimation,
but this should not prevent the use of a better covariance
model for error prediction. Also note that sequence and (x, y)
positions of used GCPs are needed to calculate Σp.

D. Height and Displacement From a Single Interferogram

To estimate the standard deviation of the height measured
from a single interferogram, that of the calibrated path length
(20) can be substituted to the right-hand side of (3).

Concerning displacement measurement from a single in-
terferogram, an external DEM is required in general [28].
Typically, in this case, the GCPs used from the baseline cali-
bration are extracted from the available DEM. This introduces
a correlation between DEM height errors and calibrated path
length, for pixels colocated with an extracted GCP. By using the
notation of Section III-C, the following equation can be proved:

σd =




√
σ2

p∗ +
σ2

h,DEM

k2
h

(1 + 2wp,i), (xp, yp) = (xi, yi)√
σ2

p∗ +
σ2

h,DEM

k2
h

, otherwise

(21)

where kh = −R sin θ/B⊥. The DEM height standard deviation
at the pixel position is represented by σh,DEM. The correlation
between the DEM height error and the calibrated pixel path
length depends on wp,i defined in (19c). If several GCPs are
used, this term is expected to be small since a robust calibration
should not assign a high weight to any single GCP.

E. Double-Difference Case

The framework previously presented can be extended to
more complicated scenarios where the elevation or displace-
ment for a pixel gp is derived from a linear combination of
calibrated interferogram values, i.e.,

gp = k1δ
∗
p,1 + k2δ

∗
p,2 + · · · . (22)

Examples are differential interferometry and stacking of inter-
ferograms. Even for the simple double-difference case, though,
different scenarios exist (e.g., continuous motion versus abrupt
motion), leading to slightly different results, and thus, it is left
to the reader to adapt the method to his particular needs.

To demonstrate the principle, the double-difference, tandem,
and continuous motion case is described next. The key issue
is that the δgcp errors are correlated from interferogram to
interferogram, leading to the surprising result that the final
velocity accuracy under certain circumstances is independent
of the GCP elevation accuracy.

Following the approach in [4], the temporal baseline is
denoted by T , the perpendicular baselines by B1 and B2, the
slant range by R, and the angle of incidence by θ. The elevation
product constants in (22) are

kh,1 = − R sin θ

B1 − B2
∧ kh,2 = −kh,1 (23a)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 6, 2009 at 07:12 from IEEE Xplore.  Restrictions apply. 



MOHR AND MERRYMAN BONCORI: ERROR PREDICTION FRAMEWORK 1605

and the corresponding velocity product constants are

kv,1 =
−B2

T (B1 − B2)
∧ kv,2 =

B1

T (B1 − B2)
. (23b)

To simplify the notation, the pixel position dependence on
(B1, B2, R, θ) has been left out, but when the quantities are
used for a specific pixel, the corresponding values should be
used. An expression for the variance of (22) simply is

Var{gp} = k2
1w

′
p,1Σp,1wp,1 + k2

2w
′
p,2Σp,2wp,2

+ 2k1k2Cov{δp,1 − p1 · b̂1, δp,2 − p2 · b̂2}. (24)

The first two terms can be calculated from (19). To calculate
the last term, the covariances Cov{yp,1,i, yp,2,j} are needed.
For the tandem case, it is reasonable to assume that the error on
the observation δp,1 in one interferogram is uncorrelated with
the observation δp,2 in the other. Likewise, it is reasonable to
assume that the error on δp,1 is uncorrelated with the errors on
the pixels used for GCP calibration in the other interferogram
δ2,j . The correlation between the atmospheric, the unwrapping,
and the noise errors in pixels used for the baseline calibration
in the two interferograms is also most likely uncorrelated. The
errors on elevation and displacement for a GCP used in both
interferograms, though, are not uncorrelated. An interesting
special case is when the following conditions are achieved.

1) The same GCPs are used for both interferograms (for
clarity, the same sequence is also assumed);

2) There is no uncertainty on the displacement term of the
GCPs (which, in this case, are typically stationary).

In that case, the last term can be calculated from

2k1k2Cov{δp,1 − p1 · b̂1, δp,2 − p2 · b̂2}
= 2k1k2w

′
p,1Σp,12wp,2 (25)

where

Σp,12 =




0 0 · · · 0

0 B1B2
(R sin θ)2 σ2

h,1 · · · 0
...

...
. . .

...
0 0 · · · B1B2

(R sin θ)2 σ2
h,N


 . (26)

By using (23b), it is now seen that the GCP elevation errors in
the last term of (25) cancel the elevation errors in the first two
terms. In other words, in the special case previously outlined,
the combined velocity error is independent of the accuracy of
the GCP elevations. The combined velocity error, though, is
still dependent on the number of GCPs and their distribution.
Many and well-distributed GCPs are still advantageous in order
to reduce the general influence of atmosphere, unwrapping,
and noise.

IV. DEMONSTRATION AND VALIDATION

A. Application to Elevation Measurement

The framework of Section III-C was applied to predict the
elevation error in two DEMs obtained from single interfero-
metric pairs, namely, ascending European Remote Sensing 1
and 2 satellite (ERS) tandem e1_20701/e2_01028, frame 837
(referred to as I7 in the following) and descending ERS-
tandem e1_39646/e2_19973, frame 2763 (referred to as I5
in the following), both covering the city of Rome, Italy, and
surroundings. For I7, B⊥ = −50 m, whereas B⊥ = −211 m
for I5, corresponding to heights of ambiguity of 188 and 45 m,
respectively. GCPs for the baseline calibration were extracted
from an Istituto Geografico Militare DEM, with a 10-m error
standard deviation. The interferometric DEMs were generated
by using DTU’s InSAR Postprocessing Software.

The obtained elevations were compared with a Shuttle Radar
Topography Mission (SRTM) DEM of the same area, with
an expected 13-m error standard deviation. In the following,
errors in the SRTM DEM shall not be explicitly taken into
account. In comparing height differences, it should therefore
be borne in mind that (uncorrelated) disagreements of the order
of magnitude of the SRTM accuracy are not significant.

The I7 test case is analyzed in Fig. 1. Fig. 1(a) plots the
observed height difference with the SRTM DEM, together with
the GCP configuration. The image is dominated by widespread
correlated error structures, which resemble atmospheric propa-
gation artifacts observed in other studies. In the area covered by
the GCPs, there is a rapid, yet not abrupt, transition from posi-
tive to negative height differences (red to yellow), indicating a
wavelike disturbance. In the top-left corner, a height difference
of −400 m is found.

The predicted error standard deviation accounting for all
error sources is shown in Fig. 1(b). In most of the image,
observations fall within two predicted standard deviations, as
shown in Fig. 1(c). It can also be noted by comparing Fig. 1(c)
and (d) that the main contribution to the error prediction is
given by the atmospheric model. Based on coherence and
GCP height uncertainty only, the predicted values significantly
underestimate the observed ones in all areas of the image, as
shown in Fig. 1(f). For this test case, the phase unwrapping error
model predicts some local errors only, such as the one marked
within a rectangle in the top-right part of Fig. 1(e) and (a).
Indeed, no medium- or large-scale unwrapping error is apparent
however in Fig. 1(a).

A more challenging test case for the phase unwrapping
error model is provided by the I5 data, as analyzed in Fig. 2.
Fig. 2(a) plots the observed height difference with the SRTM
DEM, together with the GCP configuration. In this case, the
image is dominated by patches of highly correlated errors,
with abrupt transitions of multiples of the height of ambiguity
(45 m). These are clearly phase unwrapping errors. The seg-
mentation mask shown in Fig. 2(b) attempts to identify these
regions, following the procedure described in Section II-D. It
can be seen that it is only partially successful. It has been
seen that incrementing the erosion window size allows more
segments to be identified, at the price, however, of overseg-
mentation of already existing regions. Furthermore, erroneous
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Fig. 1. (a) Difference between I7 DEM and SRTM DEM. (b) Predicted height error standard deviation, accounting for all error sources. Height difference
compared with SRTM DEM/predicted standard deviation accounting for (c) all error sources, (d) atmospheric propagation, (e) phase unwrapping errors, and
(f) coherence and GCP height uncertainty.
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Fig. 2. (a) Difference between I5 DEM and SRTM DEM. (b) Segmentation mask used by the phase unwrapping error model. Height difference compared with
SRTM DEM/predicted standard deviation accounting for (c) all error sources, (d) atmospheric propagation, (e) phase unwrapping errors, and (f) coherence and
GCP height uncertainty.
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Fig. 3. Probability densities of the observed height difference compared with SRTM DEM/predicted standard deviation, respectively, for (a) I7 and (b) I5. The
continuous curves represent the best fit Gaussian densities, with mean and variance reported in the top-right corner of each plot.

segments may be created in areas dense with poorly correlated
pixels.

The predicted error standard deviation accounting for all
error sources is shown in Fig. 2(c). In regions free from un-
wrapping errors, observations fall within two predicted standard
deviations. By comparing Fig. 2(d)–(f), it can be noted that
it is mainly the atmospheric error model which allows the
correct order of magnitude of the differences to be explained.
The phase unwrapping error model contributes by assigning
an error of about one height of ambiguity to the disconnected
segments it identifies. It is noted that the error model has no
means of distinguishing single-cycle errors from multiple-cycle
ones. For pixels lying in the main segment, where most of
the GCPs are, the phase unwrapping error model assumes a
maximum correlation with the GCP errors and, thus, a good cal-
ibration of this error source, from which a low predicted error
follows.

The overall performance of the error prediction algorithm for
I7 and I5 is summarized by the probability densities shown in
Fig. 3. Ideally, the observed height differences normalized to
the predicted standard deviation are expected to give a zero
mean and a unity standard deviation. Fig. 3(a) refers to the
I7 case and well approaches a Gaussian distribution with a
standard deviation of 1.21. A negative bias is present, probably
due to the fact that the tilt error along the image diagonal
in Fig. 1(a) is not captured perfectly by the error models.
This, in turn, might be due to the nonisotropic features of the
observed atmospheric disturbance. In Fig. 3(b) instead, which
refers to the I5 case, the distribution is not Gaussian, and the
underestimates are due to the multiple-cycle phase unwrapping
errors not predicted by our model.

B. Application to Displacement Measurement

The results of Section III-E were applied to predict the
displacement measurement error using two ERS tandem pairs

covering the province of Flevoland, The Netherlands, namely,
frame 2547 from e1_23185/e2_03512 (21/22-12-95, B⊥ =
173 m) and e1_21181/e2_01508 (03/04-08-95, B⊥ = 58 m).
Over one day, the displacement in this region is expected to
be close to zero, so that nonzero values in the velocity map
essentially are measurement errors. GCPs extracted from a
portion of the SRTM DEM of the region were used for the
baseline calibration.

The double-difference technique was used to obtain a ve-
locity map, as shown in Fig. 4(a) together with the GCPs
used to calibrate each interferogram (represented with circles
and asterisks, respectively). The observed deviations from the
expected zero value are mainly due to atmospheric artifacts. In
particular, in [9], it was concluded that the e1_21181/e2_01508
pair (referred to as FD1 in [9] and in the following) is affected
by moisture fluctuations which cause path length variations
up to half a wavelength (2.8 cm), whereas artefacts smaller
than 7 mm are found in the e1_23185/e2_03512 pair (hereafter
referred to as FD5).

A predicted error standard deviation was computed for each
pixel using (24). Fig. 4(b)–(d) shows the ratio of the observed
displacement to the predicted standard deviation, accounting,
respectively, for all error sources, atmospheric propagation
only, and coherence and GCP height uncertainty only. In
Fig. 4(b), an overestimate in the left portion of the image
is apparent. This is even more clear from the corresponding
histogram of Fig. 5(a). The overestimate is partially due to
the phase unwrapping error model, which incorrectly identifies
a disjoint segment in one of the interferograms. However,
elsewhere, this model also correctly flags unwrapping incon-
sistencies, as within the rectangular box on the top part of
Fig. 4(a) and (b). As for the height error test cases, the at-
mospheric error model appears to add realism to the predictions
compared with the case in which only coherence and GCP are
accounted for. This is apparent from Fig. 4(c) and (d) and the
histogram in Fig. 5(b).
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Fig. 4. (a) FD1/FD5 measured displacement. Measured displacement/predicted standard deviation accounting for (b) all error sources, (c) atmospheric
propagation, and (d) coherence and GCP height uncertainty.

C. Assessment of the Results

Height and displacement measurements from minimum in-
terferometric data sets were considered. The proposed frame-
work provided greatly improved error predictions compared
with the standard approach in which only the local coherence
value and the number of looks are considered.

Inclusion of an atmospheric error model, although just a
standard one (i.e., not scene specific), proved to be very useful
in predicting the correct magnitude of error standard deviations
faraway from GCPs. It also provided a much more realistic
prediction of the observed error magnitude compared with the
conventional approach. The number and the entity of error
underestimates and overestimates related to this error source
are expected to improve using a scene-specific error model.
Options for tuning the atmospheric model are discussed in
Section V-A.

Inclusion of the unwrapping error model appeared useful to
flag the presence of medium- to large-scale errors and did not
contribute significantly to the overall prediction in the absence
of apparent errors. However, only a part of the consistently un-
wrapped and disjoint segments were identified in our test cases.
Furthermore, multiple- and single-cycle errors were handled in
the same way by the model. Concerning the first issue, a further
tuning of the model’s parameters is expected to improve its
performance, as further discussed in Section V-B.

A final remark concerns the presence of disconnected seg-
ments in the unwrapped interferometric phase. Typically, co-
efficients of first order and higher in the baseline calibration
model, i.e., (b2, b3, b4) in (6), are estimated from the GCPs
in the largest segment, whereas only a bias b1 is estimated in
each smaller segment, provided that at least one GCP is avail-
able [26]. This occurred in the Flevoland e1_23185/e2_03512
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Fig. 5. Probability densities of the observed displacement/predicted standard deviation for FD1/FD5, respectively, (a) when all error sources are modeled and
(b) when only atmospheric propagation is modeled. The continuous curves represent the best fit Gaussian densities, with mean and variance reported in the
top-right corner of each plot.

interferogram, where only a subset of available GCPs was used
[the asterisks in Fig. 4(a)]. Strictly speaking, (19) should be
modified in each disconnected segment since the predicted
variance will depend also on the GCPs therein, besides those
in the largest one.

V. DISCUSSION

The outlined method produces a map of predicted error bars
on a pixel-by-pixel basis. The prediction includes the major
error sources and has proven to provide realistic estimates. This
is a significant step forward compared with the methods relying
solely on interferometric coherence.

Another aspect of error prediction is the correlation of errors
on measurements in two pixels (often close together). The
point is that even in areas with a large predicted error on
a single-pixel basis, the measurements may locally provide
results with good relative accuracy. The framework allows for
the calculation of the correlation between errors in two pixels.
The problem, however, is presentation since one, in principle,
has to compute an error correlation map for each pixel in the
image. Development of such error correlation products, e.g.,
useful for characterizing the terrain slope accuracies, is very
important but considered outside the scope of this paper. It is
also important to emphasize that the method is a framework,
where the different elements can be improved individually in
the future. In the remaining part of this section, shortcomings
of some of the elements are described, along with suggestions
for improvements.

A. Tuning of the Tropospheric Delay Model

The results of Section IV were obtained by using globally
expected values for the atmospheric model parameters P0, h,
and L in (9). Based on [5], different atmospheric states may

approximately be described by variations of P0 alone, which
can reach up to an order of magnitude, whereas h and L
may be considered fixed. Variations of P0 translate directly
into predicted error variances through (20). Acquisition-specific
values for this parameter should therefore be used whenever
available. These may be obtained from the SAR data itself if
signals of nonatmospheric origin are known or negligible in a
portion of the interferogram or from external systems.

Several techniques have been proved to provide zenith-delay
measurements and could therefore potentially be exploited,
particularly numerical weather models, microwave radiometers
[29], [30], imaging spectrometers (e.g., MERIS [31]), and GPS.
Preliminary experiments concerning the tuning of P0 using
GPS and microwave radiometer time series are reported in [32].

B. Unwrapping Error Model Limitations

The aim of the model in Section II-D is to account for
medium- to large-scale phase unwrapping errors. These impact
directly on the error budget as well as indirectly through the
baseline calibration whenever a significant number of tie points
are affected by phase unwrapping errors. The model is com-
posed of two steps, namely, the identification of consistently
unwrapped segments and the assignment of second-order error
statistics based on this segmentation mask. In our opinion,
this approach has the potential of flagging the majority of
areas where medium- to large-scale errors might have occurred,
whereas a good quantification of these errors still requires
significant work.

The first open problem concerns the optimal selection of the
parameters used to identify reliably unwrapped areas, particu-
larly the residue density threshold and the erosion window size.
As more conservative values are chosen (a lower threshold and
a larger window size), more segments are identified, but at the
same time, existing segments are typically further segmented,
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and the masked-out region grows. The values selected for this
paper were verified not to be extreme, which means that they
allow the identification of a part of the disconnected segments
but, at the same time, generate few false alarms. A larger
number of test cases than those considered so far should be
analyzed however to determine the optimal combination of
these parameters.

Second, in computing the covariance function, some over-
simplifications are present. The first is to consider complete
decorrelation between errors affecting pixels in different seg-
ments; the second is that the variance is assigned, assuming
only single-cycle errors to occur. The former assumption is
effective in confining the error prediction to where unwrap-
ping inconsistencies are expected; however, if the segmentation
mask is very conservative, several local false alarms may be
generated due to the large number of masked-out pixels. The
latter assumption is not trivial to overcome since knowledge
of the number of erroneous cycles added by the unwrapper,
if available, should be exploited by the unwrapping algorithm
itself.

C. Ionosphere

It is a common practice to include compensation for
ionospheric errors in the baseline calibration. Currently, orbit
data for the ERS/ENVISAT satellites have accuracies on the
order of 5-cm rms vertically and 15-cm rms horizontally [33],
[34]. The ionosphere, though, potentially causes a much larger
slant range uncertainty. The question discussed next is whether
it is reasonable to model ionospheric disturbances as baseline
uncertainties.

A good review of the influence of ionosphere is given in [5].
The additional zenith delay caused by the ionosphere is

δzenith
iono =

K

f2
· TEC K = −40.28 m3 · s−2 (27)

where TEC is the total electron content per square meter
(column). Introducing the mapping function 1/ cos θ to the
slant range geometry and the more practical TEC unit (TECU)
being 1016 electrons/m2 yields

∂δiono

∂TECU
≈ −0.015 m3 (for C-band at 23◦). (28)

Typical TECU values vary from 0 at night to 20 during daytime
in periods with minimum solar activity, increasing to 100 in
periods with intense solar activity. For interferometry, it is
not the TEC but the spatial variations of the differential TEC
during the time span of the interferogram that cause the path
length differences. Nevertheless, (28) indicates that even during
periods with little solar activity, the ionosphere may give path
length disturbances of the same order of magnitude as baseline
uncertainties.

Due to the varying angle of incidence from near to far range,
even a homogeneous electron layer will give a range phase
ramp [10]. It is noted, though, that for the narrow 100-km
swath of the C-band ERS system, this effect is small, and
consequently, only TEC variations (not a mean difference)
cause phase errors.

TABLE I
DEFINITIONS OF FOUR TEST SCENES. START AND END POSITIONS WERE

CHOSEN SO THAT NO SPATIAL INTERPOLATION IN THE GIMS IS

REQUIRED. IT IS NOT POSSIBLE TO AVOID TEMPORAL INTERPOLATION

AS GIMS BEFORE MID-2002 ARE PROVIDED AT ODD HOURS,
WHEREAS GIMS AFTER ARE PROVIDED AT EVEN HOURS.

TRACK REFERS TO ERS IN THE 35-DAY REPEAT CYCLE

Fig. 6. Yearly rms values of differential TEC over 2200-km example scenes
defined in Table I. Time separation: One day.

A good account of the different effects is given in [10]—a
design study for an L-band SAR for TECU measurements.
However, despite the fact that ionospheric effects on SAR
interferometry have been studied thoroughly theoretically, few
observations have actually been reported. A very convincing
proof for short-scale effects causing streaks with low interfer-
ometric coherence has been given by Gray et al. [12]. The
magnitude of the variations was about 0.1 TECU on a scale of
about 1 km. In [35], phase variations have been observed over
a 3000-km strip, although the contributions of the baseline and
ionospheric errors and of the proposed system drift error were
not separated.

Recently, global ionospheric maps (GIMs) of TEC have been
used in a sensitivity study for a future L-band single-pass
interferometric SAR mission [11]. The 15-min average TECU
values derived from about 100 GPS stations distributed glob-
ally, providing global maps with roughly 500-km resolution,
were used to estimate TEC at different times of the day and
different locations.

In order to estimate the ionospheric effect on repeat-pass
interferometric SAR, we used a similar approach based on the
time series of GIMs with two-hourly TEC averages publicly
available through the international GPS service network [36].
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Fig. 7. Flattened interferogram from ERS-1, orbits 1014 and 1100, frames 927–1287, processed with Delft orbits, Gamma RS MSP, and internal software for
interferogram formation.

Due to the rather poor spatial and temporal resolution of the
GPS derived data, only differential trends over long (2200 km)
strips are considered. Thus, the investigation gives a lower limit
on ionospheric influence (provided that the GIMs have suffi-
cient accuracy). Ascending and descending test scenes were
defined both over Europe and over the Arctic (see Table I). For
each possible SAR acquisition, the TEC trend was calculated
as the difference between the TEC values at the two ends of the
scene. Then, for a given time separation of SAR acquisitions,
the differential trend, which is denoted here as slope, was
calculated.

The first full year available is 1999. For each year, data are
available from at least five different data centers. Initially, slope
averages for year 2000 were calculated for time separations
of 1 and 35 days for each of the four scenes and for all data
centers. Since the Center for Orbit Determination in Europe
(CODE), Switzerland, data generally provided median results
for the EUR sites and the Jet Propulsion Laboratory provided
median results for the ARC sites (but with CODE results very
similar), we chose to continue solely with the CODE data.

The yearly slope rms for a one-day time separation is shown
in Fig. 6. The solar activity maximum around 2001 is clearly
seen to give larger slope variations. In addition, a clear dif-
ference between descending (local time 1050) and ascending
(local time 2210) tracks is seen for the European scenes as
opposed to the Arctic scenes where slope rms is similar for the
ascending and descending orbit tracks.

The 35-day time-separation results were more noisy due to
the reduced number of samples per year but showed a similar
behavior, which is just scaled by a factor of 1.25.

The conclusion is that for C-band, narrow swath, and stan-
dard scenes, it is reasonable to pool ionosphere and baseline.
For L-band or long strips, it seems more reasonable to include
the ionosphere as an error source using an approach similar to
the one used for the troposphere. Indications on the associated
power law and how it can be tuned are given in [11].

D. System Clock Drift

In [35], large along-track phase variations that were not
likely to originate from tropo-/ionosphere were reported. Drift
of the radar local oscillator was proposed as an explanation. A
reprocessing by using Delft orbits, the Modular SAR Processor
from Gamma Remote Sensing for SLC generation, and internal
software for interferogram formation and flattening showed a
much less pronounced phase variation (Fig. 7). The resulting
interferogram is similar to the one reported in [37, p. C-91]. The
reprocessed interferogram still exhibits large phase variations/
trends but not so large for an unusual combination of tro-
pospheric, ionospheric, and baseline errors to be ruled out as
an explanation. According to Fletcher [37, p. C-90], “Several
attempts to find more examples of the ‘clock artefact,’ particu-

larly for ERS-2, failed...” Thus, we suggest to ignore the system
clock drift, at least for short strips.

VI. CONCLUSION

A framework for providing a priori error estimates for satel-
lite interferometric radar elevation and displacement products
was developed, demonstrated, and discussed. The method ac-
counts for baseline, atmospheric, and phase unwrapping errors.
Compared with an approach relying solely on interferometric
coherence, the general error trends are better captured, and the
error estimates are significantly more realistic. Presently, the
framework uses a troposphere model with fixed parameters,
although additional information on the atmospheric state, if
available, could be used to tune the model. The unwrapping
error modeling approach has, in our opinion, the potential of
flagging, and partially of quantifying, the medium- to large-
scale errors. However, a dedicated study aimed at fine-tuning
the model’s parameters is required in order to find the best
compromise between the number of detected errors and that of
false alarms.

APPENDIX

STRUCTURE FUNCTION FOR TROPOSPHERIC DELAY

In [16], the following structure function for the zenith
tropospheric delay is proposed:

R′ =
R

h
u = π

R

h
(29a)

D(R) = P0C0

[
C1I1(R′)R2/3

1 +
(

R
L

)2/3
+ C2I2(R′)R5/3

]
(29b)

C0 = (λ/4π)2 (29c)

C1 = 4f
8/3
0 π2/3h (29d)

C2 = 4f
8/3
0 π5/3 (29e)

I1(R′) =
{

3
4u4/3 − 1

10u10/3, R′ ≤ A1

C3 − 3
4u−2/3, R′ > A1

(29f)

I2(R′) =
{

C4 − 3u1/3 + 1
7u7/3, R′ ≤ A2

3
10u−5/3, R′ > A2

(29g)

where P0 = 9 m, L = 2133 km, h = 3 km, f0 = 1 km−1,
A1 = 0.472, A2 = 0.466, C3 = 1.473, and C4 = 3.218. The
magnitude of the disturbance is tuned through P0. The tran-
sition between the two turbulence regimes is determined by h.
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