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Model-Based Satellite Image Fusion
Henrik Aanæs, Johannes R. Sveinsson, Senior Member, IEEE, Allan Aasbjerg Nielsen,

Thomas Bøvith, and Jón Atli Benediktsson, Fellow, IEEE

Abstract—A method is proposed for pixel-level satellite image
fusion derived directly from a model of the imaging sensor. By
design, the proposed method is spectrally consistent. It is argued
that the proposed method needs regularization, as is the case for
any method for this problem. A framework for pixel neighborhood
regularization is presented. This framework enables the formu-
lation of the regularization in a way that corresponds well with
our prior assumptions of the image data. The proposed method
is validated and compared with other approaches on several data
sets. Lastly, the intensity-hue-saturation method is revisited in
order to gain additional insight of what implications the spectral
consistency has for an image fusion method.

Index Terms—Generative model, image fusion, satellite images,
sensor fusion, spectral consistency.

I. INTRODUCTION

SATELLITES provide very valuable data about the Earth,
e.g., for environmental monitoring, weather forecasting,

map making, and military intelligence. Satellites are expensive
both to build and operate. This implies that we are somehow
obliged to do the best with the data we get from existing
satellites, e.g., by combining the output from different sensors
and to increase the knowledge we can infer. In this paper, we
deal with the merging of low spatial and high spectral resolution
satellite images with high spatial and low spectral ones with
the aim of creating high spatial and high spectral images. This
is also known as image fusion, which is a subset of sensor or
data fusion.

Image fusion can be done at several levels: pixel, feature,
object, and decision levels, depending on the intended use of the
fused image. In this paper, we are only concerned about pixel-
level fusion, and when the terms “image fusion” or “fusion”
are used, pixel-level fusion is intended. In the current context,
fusion is the next step after preprocessing and the step before
further processing, such as segmentation and classification.

As argued hereafter, satellite image fusion is an ill-posed
inverse problem, implying that we do not have enough informa-
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tion to solve the problem. Thus, in a sense, we have to “make
up” the missing pieces of information, which, in practice, im-
plies the use of prior knowledge either implicitly or explicitly.
To address this problem, the approach taken in this paper is to
consider the generative models of the data, i.e., models of how
the images are formed. This, in turn, allows us to distinguish
between exactly what we do know and what we do not know
regarding the desired fused image. This has the advantage that
the proposed method uses the available information and we can
deliberately construct prior models dealing with what we do
not know.

A. Relation to Other Works

During the past two decades, several fusion techniques have
been proposed. Most of these techniques are based on the com-
promise between the desired spatial enhancement and the spec-
tral consistency. The intensity-hue-saturation (IHS) method
[1]–[4] has been widely used for red, green, and blue (RGB)
color-composite fusion. The IHS is probably the most popular
image fusion approach because of its low computational cost.
The Brovey [5] sharpening method is a simple technique, and
it can be performed on individual bands. Principal-component-
analysis [6] and wavelet-based fusion methods [7]–[10] have
also been proposed. All these methods fall in the category of
component-substitution methods. All of them can cause color
distortion if the spectral range of the intensity replacement
image is different from the spectral range covered by the bands
used in a color composite. That is to say, the fused images
obtained by these methods have high spatial quality, but they
suffer from spectral distortions. To achieve an image with high
fidelity to the original spectral information, the smoothing filter-
based intensity modulation fusion technique was proposed by
Liu [8]. However, the images obtained by using that method are
blurred compared with other fusion techniques. It was observed
that this blurring was a direct result of inaccurate coregistration
between the up-scaled multispectral and captured panchromatic
images. A good introduction to satellite image fusion can be
found in [11].

In this paper, a novel multisensor image fusion technique is
presented. The method is model based, and the fused images
obtained spectrally are consistent by design. The problem of
satellite image fusion is an ill-posed problem, and therefore,
regularization is necessary for its solution. For this purpose,
the framework for pixel neighborhood regularization is pre-
sented in this paper. Using this framework, we can do the
regularization consciously and also formulate it in a way that
corresponds well with our prior assumptions on the image data.

0196-2892/$25.00 © 2008 IEEE
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B. Notation and Paper Outline

The scope of this paper is to estimate a high-resolution
multichannel image from both low-resolution multichannel and
high-resolution panchromatic images. The presented theory and
methodology are valid for an arbitrary number of channels
and an arbitrary ratio between the spatial resolution of the low-
and high-resolution images. For ease of presentation and with-
out loss of generality, it is assumed (if nothing else is stated)
that, in this paper, we work with three channels (red, green,
and blue) and the ratio between high and low spatial resolution
pixels is one to four by four, i.e., 1 : 16. The notation used in this
paper is as follows: We want to estimate (Rhigh

ij ,Ghigh
ij ,Bhigh

ij )
from a low-resolution RGB image (Rlow

i ,Glow
i ,Blow

i ) and a
high-resolution panchromatic image Phigh

ij . The indices are
such that the first one i enumerates the low-resolution pixels
and the second one j ∈ {1, . . . , 16} enumerates the associated
high-resolution pixels.

The outline of this paper is as follows. In Section II, it is
argued that the satellite image fusion is inherently ill posed. In
Section III, this is followed by the introduction of our sensor or
observation model with the constraints that we draw from it. An
initial solution applying these constraints is given in Section IV.
Section V presents additional ways of regularizing the solution
by neighborhood comparison. In Section VI, the IHS method
is set in the context of this paper, giving additional insight. An
experimental comparison of our proposed method and a few
selected other approaches from the literature are reported in
Section VII. This is followed by a conclusion of this paper and
an Appendix dealing with computational issues relating to the
proposed method.

II. ILL-POSED PROBLEM

As mentioned earlier, we argue that any satellite image fusion
method needs regularization. This is due to the image fusion
problem being ill posed or under constraint, which can be seen
by simple variable counting. That is, for each low-resolution-
image pixel i, we have three values from the low-resolution
pixel (Rlow

i ,Glow
i ,Blow

i ) and 16 panchromatic values, i.e.,
19(= 16 + 3) in all. On the other hand, we need to estimate
16 RGB values, i.e., 48(= 16 · 3), which give us a shortage
of 29(= 48 − 19) values. Because no other information is
available, we have to produce these 29 dimensions or values by
regularization, preferably by modeling our prior assumption of
the data. This regularization can either be explicit or implicit.
For example, in the IHS method, regularization is implicitly
done by assuming that the hue and saturation values of all high-
resolution pixels are equal to the low-resolution pixel. That is
not necessarily the right solution, and probably, it is not.

III. OBSERVATION MODEL

The methods presented here take their outset in an “assumed”
observation model for the satellite image sensor, which is also
seen as a generative model of the data.

This observation model, which is based on the response of
a given pixel and a data channel, is given by the frequency

composition and intensity of the incoming light L(x, ω), where
x and ω denote position and frequency, respectively, and the
spectral response function for that channel F (ω),1 cf., Fig. 1.
This response can be expressed as∫

A

∫
Ω

L(x, ω)F (ω) dω dx (1)

the frequency runs over a relevant spectral range Ω. The integral
(1) runs over the area A corresponding to the sensor area related
to the pixel.

A. Inner Product Space

The response in (1) is a convolution between the spectrum
of the incoming light L(x, ω) and the response function of the
channels F (ω). This induces an inner product, e.g.,2

〈F red, F pan〉 =
∫
Ω

F red(ω)F pan(ω) dω (2)

corresponding to the L2 norm3 [13] which introduces a measure
of angle and distance. In using this, we are only interested in
the observable 4-D subspace spanned by the R, G, B, and P
channels. Therefore, as an example, a measure of how much
information about Ghigh is contained in Phigh is given by4

α(G,P ) =
〈F green, F pan〉√〈F green, F green〉〈F pan, F pan〉 (3)

which is equal to the cosine of the angle between the two
spectra. Collecting these normalized inner products between all
channels gives

Σ =

⎡
⎢⎣

α(R,R) α(R,G) α(R,B) α(R,P )
α(G,R) α(G,G) α(G,B) α(G,P )
α(B,R) α(B,G) α(B,B) α(B,P )
α(P,R) α(P,G) α(P,B) α(P, P )

⎤
⎥⎦ (4)

which, in some sense, describes the information between the
different channels. In Section IV, this matrix will be interpreted
as a correlation matrix, for ease of computation, without us
claiming that the spectra are normally distributed.

B. Spectral Consistency

Assuming that the low- and high-resolution pixels are per-
fectly aligned, i.e., the areas associated with the different pixels

1F (ω) is usually supplied by the sensor manufacturer.
2The response functions are independent of position. Therefore, there is no

need to integrate over area.
3This is an extension of the regular two-norm to an infinite dimensional

space. Later, we will just refer to this as the two-norm.
4We assume that there is an individual linear stretch of each channel, such

that it best fits the dynamic range. Thus, we normalize this criterion to account
for this.
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Fig. 1. Spectral response of the IKONOS spectral bands in [12].

satisfy (see Fig. 2)

Ai =
⋃
j

Aij and ∅ =
⋂
j

Aij .

Another property derived from (1) is that of spectral consis-
tency. This property is very important for satellite image fusion
because spectral distortion may result in unreliable interpreta-
tion for applications. By considering any channel, e.g., the blue,
spectral consistency can be derived as follows:

Blow
i =

∫
Ai

∫
Ω

L(x, ω)F (ω) dω dx

=
16∑

j=1

∫
Aij

∫
Ω

L(x, ω)F (ω) dω dx

=
16∑

j=1

Bhigh
ij .

Therefore, the spectral consistency constraint states that5

⎡
⎣ Rlow

i

Glow
i

Blow
i

⎤
⎦ =

1
16

16∑
j=1

⎡
⎢⎣ Rhigh

ij

Ghigh
ij

Bhigh
ij

⎤
⎥⎦ . (5)

IV. INITIAL SOLUTION

Deriving an image fusion method from the aforementioned
observation model is hindered by (Rhigh,Ghigh,Bhigh), not
being fully observable from the data, as argued in Section II.
Therefore, regularization is required. The same is also illus-
trated by the spectral response functions of the sensor, cf.,
Fig. 1. Here, it is seen that there are several compositions of
incoming light, giving the same response on the panchromatic

51/16 is due to the appropriate normalization of the channels.

Fig. 2. Here, it is illustrated that, because the same light is supposedly hitting
the low and high spatial resolution sensors, the color of the low-resolution
pixel is equal to the average of the corresponding high-resolution pixels, as
expressed in (5).

channel but highly different on, e.g., the red channel. Thus,
Phigh and (5) do not give enough information to fully determine
the individual high-resolution multispectral components, e.g.,
Rhigh.

Here, it is assumed that the “unknown” part6 of the signal
is small. Therefore, we regularize the solution by penalizing
it with the two-norm, because this is the norm induced by
the inner product. This implicitly corresponds to casting the
problem in a statistical setting, assuming that an “observation”
in (Rhigh,Ghigh,Bhigh,Phigh) space is normally distributed
with covariance Σ (4). Thus, the conditional means method [14]
is used to solve the problem. Due to the spectral consistency,
we know that the mean of (Rhigh

ij ,Ghigh
ij ,Bhigh

ij ) is equal to
(Rlow

i ,Glow
i ,Blow

i ). This gives the following solution to the
fusion problem:

̂

⎡
⎢⎣ Rhigh

ij

Ghigh
ij

Bhigh
ij

⎤
⎥⎦ = F̂ij =

⎡
⎣ Rlow

i

Glow
i

Blow
i

⎤
⎦ +

⎡
⎣ α(R,P )

α(G,P )
α(B,P )

⎤
⎦(

Phigh
ij − Pμ

i

)
(6)

where Pμ
i denotes the mean of the Phigh

ij w.r.t. the low-
resolution pixel i. For ease of notation, this solution is denoted
by F̂ij . The results of this proposed method can be seen in
Figs. 5–7 (where this solution is referred to as no smoothing).
A couple of comments should be made w.r.t. the solution in
(6). First, we do not claim that the observations are normally
distributed, just that a reasonable regularization corresponds
to it. Second, if there is no “overlap” between the spectral
responses of the panchromatic and one of the low-resolution
channels, then α(·, P ) will be zero. This indicates that there
is no information between the two channels and, in effect,
omits the last term in (6) for the channel in question. Lastly,
it is seen that the solution is spectrally consistent, cf., (5), by
construction, because

Pμ
i =

1
16

16∑
j=1

Phigh
ij ⇒

16∑
j=1

(
Phigh

ij − Pμ
i

)
= 0.

V. SMOOTHING PRIORS

Although the aforementioned initial solution is spectrally
consistent, it still leaves something to be desired, particularly
because there is a pronounced blocking effect originating from

6This “unknown” part is orthogonal to the panchromatic channel.
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the low-resolution pixels, as seen in Figs. 5–7. As argued in
Section VI, this is likely to be the best that can be done on a
pixelwise basis. In order to improve this, we propose the aug-
mentation of the method with a spatial prior. This spatial prior
should express our expectation that the fused image should be
homogeneous or piecewise homogeneous, which corresponds
to our general expectation of images.

Specifically, by applying a Markov random-field setting [15],
[16] to the problem, the (conditional) smoothing of the image
can be expressed as penalizing deviations between neighboring
pixels. That is, define the errors

εijk =

⎡
⎢⎣ Rhigh

ij

Ghigh
ij

Bhigh
ij

⎤
⎥⎦ −

⎡
⎣ Rhigh

k

Ghigh
k

Bhigh
k

⎤
⎦ , k ∈ Nij (7)

where Nij is the four neighborhood of pixel ij. We then
regularize by adding the term∑

i,j

∑
k∈Nij

ρ(εijk)wijk (8)

to (6), where the wijk denotes appropriate weights, and ρ is the
error function

ρ(εijk) = εT
ijkΣ̃−1εijk. (9)

Here, Σ̃ is the RGB part of Σ, cf., (4). This regularizer is seen
as a wijk-dependent smoothing of the image. The reason that
Σ̃ is included in (8) is that ρ(εijk) should measure differences
in incoming light and not be biased by the correlation of the
measured channels.

The spatial prior is merged with the solution in (6) by
combining (6) and (8), i.e., define the deviation from F̂ij by

Dij =

⎛
⎜⎝

⎡
⎢⎣ Rhigh

ij

Ghigh
ij

Bhigh
ij

⎤
⎥⎦ − F̂ij

⎞
⎟⎠

T

Σ̃−1

⎛
⎜⎝

⎡
⎢⎣ Rhigh

ij

Ghigh
ij

Bhigh
ij

⎤
⎥⎦ − F̂ij

⎞
⎟⎠ (10)

then, the combined objective function becomes

min
Rhigh,Ghigh,Bhigh

∑
ij

⎛
⎝Dij + γ

∑
k∈Nij

ρ(εijk)wijk

⎞
⎠ (11)

where γ is a tuning parameter encapsulating the weight of the
smoothness term that is relative to the data term. Note that this
is a least squares (LS) problem in Rhigh,Ghigh,Bhigh and (11)
is under the condition that the solution is spectrally consistent.
This latter characteristic is dealt with in Section V-A. In the
experiments relating to this paper, γ was selected in the range
of one to five. The value of γ, however, depends highly on the
intrinsic scaling of the two combined terms. Different range for
the γ may be appropriate in other problems.

The problem is now reduced to setting the appropriate
weights wijk to best capture the prior assumption of the fused
image. Usually, these weights are set simultaneously with solv-
ing (11), because the smoothed solution is the best clue to where

the edges in the image should be, cf., e.g., [15] and [16]. In
general, the optimization problem in (11) is thus “big” and
nonlinear. This is not the case here because we have the high-
resolution panchromatic image, which is a very good source of
information on where edges should be. Here, the weights wijk

are thus based on the panchromatic image, such that the fused
image shall have homogeneous regions where the panchromatic
image has them. To illustrate this, we have tried two general
approaches, cf., Sections V-B and C. The results with uniform
smoothing (all wijk = 1) are also presented for comparison.
The results are given in Section VII. By general approaches,
we mean that the two investigated approaches are good typ-
ical examples of what might be used; thus, they are not the
results of a long investigation of what is the best weighting
scheme.

A. Ensuring Spectral Consistency

Extending (6)–(11) implies that the LS solution is not spec-
trally consistent, cf., (5), and has to be added as a specific
condition to the solution. This is done by noting that (5) defines
a 15-D hyperplane in 16 dimensions on which the solution
should be located. We can thus reparameterize the solution
space such that the only possible values are on this hyperplane.
This is accomplished by introducing

Rhigh
ij ,Ghigh

ij ,Bhigh
ij , j ∈ {1, . . . , 15}

which map to the pixel of the fused image and variables in (1)
as follows:⎡

⎢⎣Rhigh
ij

Ghigh
ij

Bhigh
ij

⎤
⎥⎦ =

⎡
⎢⎣ Rhigh

ij

Ghigh
ij

Bhigh
ij

⎤
⎥⎦ , j ∈ {1, . . . , 15}

⎡
⎢⎣Rhigh

i,16

Ghigh
i,16

Bhigh
i,16

⎤
⎥⎦ = 16

⎡
⎣ Rlow

i

Glow
i

Blow
i

⎤
⎦ −

15∑
j=1

⎡
⎢⎣Rhigh

ij

Ghigh
ij

Bhigh
ij

⎤
⎥⎦ . (12)

An important property of this mapping is that it is affine.
By plugging (12) into (11), a new objective function
in Rhigh

ij ,Ghigh
ij ,Bhigh

ij , which is spectrally consistent by design,
and an LS system are obtained. This, in turn, has nice impli-
cations for computing a solution (see Appendix). It should be
noted that solving (11) without this parameterization (or an-
other expression of the spectral consistency constraint) will, in
general, yield nonspectrally consistent solutions. It is noted that
this parameterization is intrinsic in the predictor for satellite
image fusion presented in [17], where it is also noted that it
has the desirable characteristic of spectral consistency.

B. Edge-Induced Weights

We are, in a sense, trying to transfer edges from the panchro-
matic image to the fused RGB image. Thus, the first of the
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Fig. 3. Sample from satellite image data set. (Top left) Panchromatic image. (Top center) Extracted edges via the Canny edge detector. (Top right) Weight set via
(13) with white being zero. Here, a λ of 0.05 is used. (Bottom left) Low-resolution multispectral image. (Bottom center) Resulting fused image with weight set
according to the Canny weights—see top center. (Bottom right) Resulting fused image with weight set via (13)—see top right.

general approaches we use for setting the weights in (11) are
as follows.

1) Extract edges in the panchromatic image, see Fig. 3, top
center.

2) If there is an edge between pixel ij and its kth neighbor,
set the weight to zero, or else, set the appropriate weight
to one.

The extracted edges are obtained via the Canny edge de-
tector [18]. There are, however, a multitude of methods for
edge extraction, many of which could be used successfully,
e.g., via the total variation method [19], as used in [20].
The results using the Canny edges are shown in Fig. 3 and
Figs. 5–7.

C. Gradient-Induced Weights

Setting the weights via edge extraction gives results that are
somewhat blocky to sharp edges, as can be seen in Fig. 3 and
Figs. 5–7. This is partly due to the weights being either zero
or one. Therefore, the algorithm either smooths fully the one
between two pixels or does not smooth at all. Thus, it seems
natural to let the weights have a continuous transition from
zero to one and, by that, introducing the concept of “degree
of edginess.” That is the basis for our second general weighting
scheme.

The simplest form of the second weighting scheme would
be letting the weights be proportional to the inverse gradient
magnitude of the panchromatic image, i.e.,

wijk ∝ 1∥∥∥∇Phigh
ij

∥∥∥
which however did not turn out too successful on our data.
Instead, we adapted a method from nonlinear image diffusion

Fig. 4. Function in (13) as a function of the gradient magnitude ‖∇Phigh
ij ‖

with λ = 0.5, which is denoted by the dotted line.

[21], which is proposed in [22]. Here, the amount of smoothing
is a nonlinear function of the image gradient magnitude—here,
the panchromatic image. The function in question is

wijk = 1 − exp

⎛
⎜⎜⎜⎝ −3.31488(‖∇Phigh

ij ‖
λ

)4

⎞
⎟⎟⎟⎠ (13)

where λ is a steering parameter, indicating how large the
gradient should be in order to be an edge, see Fig. 4. The results
of this scheme can be seen in Fig. 3 and Figs. 5–7. A note
on (13): This function, including the −3.31488, has proven
successful in the nonlinear diffusion literature; for more on
this matter, see [21].
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Fig. 5. Results of the image fusion strategies. A sample of the resulting
images of the IKONOS data set. (Top left) Input panchromatic image. (Top
right) No smoothing. (Row 2 left) Uniform weights. (Row 2 right) Edge-
induced weighting. (Row 3 left) Gradient-induced weighting. (Row 3 right)
IHS method. (Bottom left) Mean-corrected IHS method. (Bottom right) Brovey
method. The images have been stretched for better visualization.

VI. NOTE ON THE IHS METHOD

Probably, the most popular method for image fusion is the
IHS method, where the fusion is performed in IHS space by
letting the hue and saturation of a fused pixel be equal to
the corresponding low-resolution pixel and the intensity Iij be
equal to the panchromatic channel, i.e.,

Iij =
Rhigh

ij + Ghigh
ij + Bhigh

ij

3
= Phigh

ij . (14)

Fig. 6. Results of the image fusion strategies. A sample of the resulting
images of the QuickBird data set. (Top left) Input panchromatic image. (Top
right) No smoothing. (Row 2 left) Uniform weights. (Row 2 right) Edge-
induced weighting. (Row 3 left) Gradient-induced weighting. (Row 3 right)
IHS method. (Bottom left) Mean-corrected IHS method. (Bottom right) Brovey
method. The images have been stretched for better visualization.

Combining (5) and (14), it is seen that

1
16

16∑
j=1

Phigh
ij =

1
16

16∑
j=1

Rhigh
ij + Ghigh

ij + Bhigh
ij

3

=
Rlow

i + Glow
i + Blow

i

3
= Ii. (15)
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Fig. 7. Results of the image fusion strategies. A sample of the resulting
images of the Meteosat data set. (Top left) Input panchromatic image. (Top
right) No smoothing. (Row 2 left) Uniform weights. (Row 2 right) Edge-
induced weighting. (Row 3 left) Gradient-induced weighting. (Row 3 right)
IHS method. (Bottom left) Mean-corrected IHS method. (Bottom right) Brovey
method. The images have been stretched for better visualization.

This implies that if the IHS method should be spectrally
consistent, the mean of the panchromatic channel over a
low-resolution pixel should equal the corresponding low-
resolution intensity. This will generally not be the case, as
shown in Fig. 1, where the spectral response function of the
panchromatic channel is far from the sum of the red, green, and
blue response functions. This fact is also validated experimen-
tally, as reported in Table II.

That leads us to propose a modification of the IHS method,7

which consists of appropriately correcting the mean of the
panchromatic channel. The correction is done by using P̃high

ij

instead of Phigh
ij , where P̃high

ij is defined as follows:

P̃high
ij = Phigh

ij

Ii

1
16

∑16
j=1 Phigh

ij

= Iij . (16)

It is seen that using P̃high instead of Phigh in the IHS method
gives a spectrally consistent result.

The results of using this mean-corrected IHS method are seen
in Figs. 5–7. It is seen that this method, although spectrally
consistent, yields a blocky result that is similar to that of our
initial solution presented in Section IV. This seems to indicate
that in order to get a spectrally consistent result with a simple
per pixel method, you need to endure a blocking effect. An
explanation is that the discrepancy between the RGB response
functions and the panchromatic response function, as seen in
Fig. 1, gives a varying mean offset for each block.

This mean-corrected IHS method, in some sense, resembles
the Brovey method or transform, cf., [5] and [23], which is thus
included for experimental comparison. The Brovey method is
given by

̂

⎡
⎢⎣ Rhigh

ij

Ghigh
ij

Bhigh
ij

⎤
⎥⎦ =

⎡
⎣ Rlow

i

Glow
i

Blow
i

⎤
⎦ Phigh

ij

Rlow
i + Glow

i + Blow
i

. (17)

It should also be noted that other methods have been proposed
for addressing the issue of spectral consistency with the IHS
method, cf., e.g., [24].

VII. EXPERIMENTAL COMPARISONS AND DISCUSSION

To experimentally investigate and compare the proposed
methods, we have applied them to three different data sets from
three different types of satellites, each depicting a different
type of landscape. The proposed methods were compared with
the IHS and Brovey methods for comparison. The investigated
methods are summarized in Table I. The three data sets are as
follows.

1) IKONOS. An image of an urban area is taken by the
IKONOS earth imaging satellite [12]. The low-resolution
image consists of four bands R, G, B, and near infrared
(NIR) (in this paper, we only use R, G, and B), and
the ratio between the panchromatic and low-resolution
images is 16 or four by four.

2) QuickBird. An image of a forest landscape is bisected
by roads, and it contained a few large buildings. A city
emerges toward the right side. This image is taken by
the QuickBird satellite [25]. The low-resolution image
consists of four bands R, G, B, and NIR (in this pa-
per, we use only R, G, and B), and the ratio between

7Partly for gaining insight into what spectral consistency implies for satellite
image fusion methods.
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TABLE I
FOLLOWING METHODS WERE APPLIED IN THE EXPERIMENTS

TABLE II
SPECTRAL CONSISTENCY OF THE IHS AND BROVEY METHODS,

WHICH IS MEASURED AS THE CROSS CORRELATION BETWEEN THE

LOW-RESOLUTION RGB AND APPROPRIATELY DOWN-SAMPLED

FUSED IMAGES. ALL OTHER APPLIED METHODS, CF., TABLE I,
ARE SPECTRALLY CONSISTENT BY DESIGN, WHICH HAS

BEEN CONFIRMED EXPERIMENTALLY

the panchromatic and low-resolution images is 16 or
four by four.

3) Meteosat. A weather satellite image depicting Europe
from the Meteosat satellite [26]. We use the R, G, and
B bands of low resolution, and the ratio between the
panchromatic and low-resolution images is nine or three
by three.

Using these different data sets gives us an idea of how a given
method will work on data sets with different contents. The
reason that we did not use the fourth band in the IKONOS and
QuickBird cases was for visualization purposes. We have, how-
ever, implemented and applied our fusion methods successfully
to all four bands.

In evaluating the different methods, we were faced with
the problem that we did not have any ground truth data, i.e.,
a high-resolution color image, to compare with. Due to this
shortcoming, we have chosen two different strategies. First, we
have applied the methods to the original data sets, computed
the spectral consistency, see Table II, and visually evaluated
the results, see Figs. 5–7. Second, we have down-sampled the
original data to generate a new data set with ground truth,
albeit with different intrinsic scale. The difference between this
ground truth and the fused results was compared with different
metrics, see Table III.

In the experiments, the γ in (11) was set to five and one
for the original and down-sampled data,8 respectively. In the
Canny edge detector, which was used for generating the edge-
induced weights, the smoothing σ was set to one and 0.05 for
the original and down-sampled data, respectively. As for the
gradient-induced weights, the parameters σ and λ were selected

8This was used only to generate the values in Table III.

TABLE III
RESULT OF COMPARING THE FUSED RESULT WITH THE GROUND TRUTH

WITH THE DOWN-SAMPLED DATA. HERE, BOLD DENOTES THE BEST

RESULT FOR THE DATA SET; IF THIS IS NOT THE ONE DERIVED IN (11),
THE BEST OF THESE IS DENOTED BY ITALICS. SEE TABLE I

FOR A DESCRIPTION OF THE APPLIED METHODS

as (0.5, 0.05) and (0.5,0.007) for the original and down-sampled
data, respectively.9

We have chosen five different metrics in evaluating the down-
sampled experiments, as reported in Table III. Many of the pop-
ular metrics are further developments of each other, which, in
part, explain the strong correlation among the best performing

9The images are smoothed slightly with a Gaussian kernel before the gradient
is calculated.
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methods. None or all of these metrics, however, encompass the
ground truth of what a good fusion is; thus, visual inspection
also needs to be taken into account.10 The used metrics, which
are among the popular in the literature, are as follows (the
boldface acronym indicate its entry in Table III).

1) MSE is the mean square error on all bands. It takes on
values between zero and one with zero being the best
value.

2) CC is the mean cross correlation between bands. It takes
on values between zero and one with one being the best
value.

3) WB is the mean Wang and Bovik measure between
bands, cf., [27]. It takes on values between −1 and one
with one being the best value.

4) SSIM is a quality metric which measures the degrada-
tion of structural information between two images. This
metric combines three independent components of the
images: Luminance, contrast, and structure, and the value
one is only achieved if the compared images are identical.
The lowest value is zero if the images show no similarity
at all.

5) Q4 is an extension of the Wang and Bovik measure to
multiple dimensions, giving a combined metric, cf., [28].
It takes on values between zero and one with one being
the best value.

In Table III, most of the metrics (MSE, CC, WB, and Q4)
give significant numerical differences for the individual meth-
ods which were applied on the different data sets. However, that
is not the case for the SSIM metric, which gives similar results
for all the methods that were applied on the different data sets.
As a general observation, it is seen that the proposed methods
work well. Specifically, the gradient-induced weight method
should be noted, in that, it gives good visual results. Also, it
performs well in the down-sample experiment. In comparison,
the mean-corrected IHS method performs excellently in the
down-sampled experiment but gives a too blocky result with
the visual comparison. The Brovey and IHS methods give a
very pleasing visual result but perform poorly with respect to
the down-sampled experiment and are clearly not spectrally
consistent.

Comparing the edge-induced and gradient-induced weight-
ing schemes visually, it is seen that the edge-induced scheme
gives an oversegmented image and the gradient-induced
scheme visually gives the best results, although the latter image
is a bit blurry. As mentioned in Section V, we have only
presented two general approaches, and the search for the best
weighting scheme is still ongoing. In this light, a mixture of the
edge-induced and gradient-induced schemes seems well worth
investigating.

The fact that the mean-corrected IHS method gives blocky
images and the gradient-induced weight method gives a some-
what smoothed image is well in line with our current experi-
ence. This experience states that with the proposed method,

10Note, for example, that the mean-corrected IHS method performs best
when the metrics are used for the comparison in our experiments, cf. Table III,
but its visual quality leaves a lot to be desired. This motivates further investiga-
tion into image metrics, which is beyond the scope of this paper.

if spectral consistency is sought, either a blocking effect is
endured, as discussed in Section VI, or a slightly blurred
image is obtained because of the removal of the blockiness by
smoothing. This can be explained by the panchromatic channel
containing information that is not present in the RGB channels,
cf., Fig. 1.

As a note for future work, neither our initial solution (also
termed as the “no weight” solution) nor the mean-corrected IHS
method uses a spatial prior, but both are spectrally consistent.
Comparing the two, it is seen that the mean-corrected IHS
method clearly outperforms the former in terms of the quality
measures. This indicates that F̂ij in (10) could possibly be
replaced with the result of the mean-corrected IHS method. On
the other hand, the IHS method is less related to the underlying
imaging physics. Also, the IHS method, in some sense, works in
the one-norm, see (14), instead of the induced two-norm. Using
different norms also seems worth investigating, although these
are also less tied to the imaging physics.

VIII. CONCLUSION

A framework has been presented for pixel-level fusion of
satellite images, which is derived by considering the underlying
imaging physics. This, among other characteristics, ensures
spectral consistency by design. We have also argued that the
satellite image fusion problem is inherently ill posed, and as
such, our framework explicitly states how regularization should
be performed to address that. Several schemes for regulariza-
tion have been presented in the proposed framework. These
schemes have been experimentally tested on several data sets.
For all these data sets, the methods gave good performance.
The schemes also held their ground when compared with other
popular methods for satellite image fusion. Also, in this paper,
the IHS method was revisited in order to gain additional insight
into the implications of spectral consistency for image fusion
methods. The results obtained with the proposed framework are
promising, and further research on the framework is ongoing.

APPENDIX

NUMERICAL SOLUTION

It is noted that (11) is an LS system, a property which is
retained after the reparameterization in (12) because it is just
an affine mapping. In principal, the solution can be obtained by
solving this LS system via the usual methods, e.g., the normal
equations in [30]. However, this poses the problem that the
dimension of the solution will often be very large. It can be
computed as the number of high-resolution pixels times the
number of bands. Therefore, LS methods become numerically
prohibitive. As an example, the IKONOS data set requires
1.873.920 variables with just three bands. Thus, something
else needs to be considered, e.g., exploiting the sparsity of the
problem. It is noted that the LS property in (11) ensures that a
nice and convex error surface is obtained with only one well-
defined optimum.11

11Since the problem is regularized properly, the optimum is unique. Other-
wise, the optimum would be a linear subspace.
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Our solution is solving (11) iteratively for all the high-
resolution pixels corresponding to a low-resolution pixel. Thus,
we keep all other pixels constant in relation to the neighborhood
term. The blocks were updated in a checkerboard fashion [31],
[32]. The process was run until convergence, i.e., it was stopped
when very small changes were observed in the solution.
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