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Abstract—A fast algorithm for multiscale representation and 

segmentation of hyperspectral imagery is introduced in this 
paper. The multiscale/scale-space representation is obtained by 
solving a nonlinear diffusion Partial Differential Equation (PDE) 
for vector-valued images. We use Algebraic Multigrid (AMG) 
techniques to obtain a fast and scalable solution of the PDE and 
to segment the hyperspectral image following the intrinsic 
multigrid structure. We test our algorithm on four standard 
hyperspectral images that represent different environments 
commonly found in remote sensing applications: agricultural, 
urban, mining, and marine. The experimental results show that 
the segmented images lead to better classification than  using the 
original data directly, in spite of the use of  simple similarity 
metrics and piecewise constant approximations obtained from 
the segmentation maps. 

Index Terms—Multigrid, multiscale, geometric partial 
differential equations, segmentation, hyperspectral images. 
 

I. INTRODUCTION 
HE INFORMATION required for critical image analysis 
and understanding is usually not represented in terms of 
pixels, but in the spatial structures, i.e., the homogeneous 

regions (objects) and their spatial relationships at different 
image scales. Scale-space theory (multiscale analysis) aims to 
obtain this structure within a formal and well-sounded theory 
that enables multi-resolution image analysis and multiscale 
segmentation. Nevertheless, the scale-space theory and the 
derived multiscale segmentation have been introduced 
relatively late for multi and hyperspectral imagery, in part due 
to the high dimensionality of the data and heterogeneity 
(spatial and spectral) of remote sensed images.      
 This paper introduces a fast and scalable algorithm for 
multiscale representation and segmentation of hyperspectral 
imagery. The scale-space representation of the image is 

obtained as the solution of a vector-valued nonlinear diffusion 
Partial Differential Equation (PDE), with the image as its 
initial condition. We use Algebraic Multigrid (AMG) methods 
to solve the nonlinear diffusion PDE, with good accuracy and 
scalability. AMG also provides a multiscale representation of 
the image that enables its subsequent multiscale segmentation. 
In addition to the presentation of the new framework, we 
evaluate the performance of AMG as a solver of the nonlinear 
diffusion equation and the quality of the segmentation 
obtained. For this purpose, we use four hyperspectral images, 
the Indian Pines test site (NW Indiana), the Cuprite mining 
district (Nevada), the Enrique Cay image (SW Puerto Rico)  
taken with the AVIRIS and the Washington DC mall area 
taken with the HYDICE sensor. These images represent very 
different image environments often found in remote sensing: 
agricultural, mining, marine, and urban.   
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 The main contribution of this work consists in the 
introduction of AMG to solve the vector-valued nonlinear 
diffusion PDE and from there to naturally obtain a multiscale 
segmentation of hyperspectral imagery. To the best of our 
knowledge, this is the first time that AMG is used to obtain a 
multiscale representation and segmentation of hyperspectral 
imagery.   

The remainder of this paper is organized as follows. Section 
II defines in general terms the notation used here, Section III 
presents a brief review of the state of the art on nonlinear 
diffusion of hyperspectral imagery, Algebraic Multigrid, and 
segmentation of hyperspectral imagery, with emphasis on 
AMG-based segmentation. Section IV introduces the 
algorithm for nonlinear diffusion PDE and segmentation of 
hyperspectral imagery. Section V presents implementation 
details of the algorithm and complexity analysis. Section VI 
presents the performance tests and segmentation results using 
the four hyperspectral images mentioned above. The 
conclusions of this work are presented in Section VII. 

II. NOTATION 
We use lower case bold (as in u) for vectors (such as a 

hyperspectral pixel), and uppercase bold (as in U) for matrices 
(such as the whole hyperspectral image).  The individual 
elements of a matrix are noted with the same letter as the 
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matrix, but in lowercase cursive with the row and column 
indices as subscripts in cursive, for instance, gij is an element 
of matrix G. Matrix G can also be represented in terms of its 
elements as G = [g]ij. 

All variables and parameters are in lowercase cursive (as 
variable indices i, j, parameters α, µ) some parameters that are 
considered as constant such as the image dimensions (M, N) 
and fixed labels are in uppercase cursive (S representing the 
coarsest grid). The sets are always represented here in 
uppercase, and the usual set operations between sets A an B 
are the union A∪B, the intersection A∩B and the set 
difference, A\B.  The set elements are considered as variables, 
hence, we say i∈V.     

 Finally, subscripts and superscripts follows the same 
notation indicated here. Superscripts are used here mainly to 
indicate a grid, within the multigrid structure, for instance Vs 
means the set of vertices V at grid s. 

III. BACKGROUND AND STATE OF THE ART 

A. Nonlinear Diffusion for Hyperspectral imagery 
The classical nonlinear diffusion PDE for vector-valued 

images is given by [1, 2], 
( ) ( ) ( )( ) ,,,1,,

,
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where, g is the diffusion function (coefficient), U = [u1 u2 … 
uM] is the MxN matrix representation of an M-band image 
with N vector valued pixels, t is the scale parameter and θ is a 
measure of the vector-valued edge strength, which is given [1, 
3, 4] as,  

( ) .,1
1

2

,∑
=

∇=
M

j
j tu

M
xσθ                            (2) 

where, uσ is a smoothed version of u obtained by convolving u 
with a Gaussian of standard deviation σ [1]. For simplicity, 
from now on, we will omit the subscript σ on u in θ. By a 
convenient selection of the diffusion coefficient in (1), the 
intensity of the image is allowed to diffuse within the image 
structures, reducing the intra-object variability, while 
preventing diffusion across the edges, characterized by a high 
vector gradient.  
 Alvarez et al. [5] showed that all scale-spaces satisfying 
natural physical principles are governed by parabolic Partial 
Differential Equations (PDEs), as is the case of (1). The scale-
space generated by a parabolic PDE can be seen as a 
continuous transformation of the image into a space of 
progressively “smoother” images, identified by the parameter 
or scale t. Adequate selection of the scale reduces nuisance 
variability in the image, facilitating the extraction of 
homogeneous regions, i.e., segmenting the image.  

The explicit discretization of (1) is given by [3, 4, 6, 7], 
( ) ,1 nnn UGIU µ+=+        (3) 

where, µ = ∆t/(∆x∆y), being ∆t the discretization of the scale, 
∆x and ∆y the discretization of the spatial coordinates, I the 
identity matrix, G is the matrix of diffusion coefficients, and n 

is shortcut notation for the discretized scale, n∆t. Lennon et al. 
[8, 9] use (3) to smooth multispectral imagery showing that 
classification accuracy increases after the nonlinear 
smoothing. However, Equation (3) is limited to small scale 
steps, µ ≤ ¼, due to numerical stability, which constitutes a 
serious limitation for most practical scales and large data sets, 
as is the case of hyperspectral imagery.  

Another option to discretize (1) is to use semi-implicit 
schemes [10], which are numerically stable for all values of µ. 
The semi-implicit discretization of (1) is given by [3, 4, 6, 7], 

 ( ) .1 nnn UUGI =− +µ       (4) 
However, the numerical stability of (4) comes at a price, we 
have to solve a linear system of equations at each iteration 
step and the accuracy of the computed solution decreases as µ 
increase. As Duarte et al. [3, 4] showed, semi-implicit 
schemes such as Alternating Direction Implicit (ADI) and 
Additive Operator Splitting (AOS) schemes can solve the 
nonlinear diffusion in hyperspectral imagery 20 times faster 
than using explicit schemes. ADI and AOS schemes provide 
an approximation to the exact solution of (4) that can be 
obtained in linear time complexity. They also showed that (4) 
can be solved with higher accuracy using Preconditioned 
Conjugated Gradient (PCG) methods. Even tough the 
preconditioners analyzed did not scale well; they obtained the 
best classification accuracies with this method. Thereby, 
solving (4) with higher accuracy might be worth the effort. 
The solution presented here is fast and accurate, and naturally 
leads to multiscale segmentation as discussed later.     
 Regarding g, several diffusion coefficients have been 
proposed in the past for the nonlinear diffusion PDE [2]. In 
our experience, the diffusion coefficient proposed by 
Weickert [7] produces segmentation-like images, and it is 
given by, 
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where, 3.31488 is the value that makes the flux g(θ)θ 
increasing for θ ∈ [0, α] and decreasing for θ ∈ (α, ∞), α is a 
threshold parameter that controls the amount of diffusion in 
terms of θ, which in general can be viewed as a similarity 
metric, for vector valued images. As shown in [3, 4], the 
discretization of θ corresponds to the Euclidean distance 
between spectral vectors. On the other hand, we can use a 
different similarity metric for vector-valued images like the 
spectral angle [11] (see also [36]). From now on, whenever 
we refer to θ as the Euclidean distance, we are referring to the 
discrete version of the vector valued gradient as defined in (2).  

B. Algebraic Multigrid Methods 
Multigrid methods [12] come from the analysis of classic 

relaxation methods for solving linear systems of equations. 
Classic iterative methods reduce efficiently the high frequency 
components of the error, although they are extremely 
inefficient to reduce the low frequency components. Multigrid 
methods aim to reduce the error at all frequencies, in linear 
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time complexity. Multigrid includes two complementary 
processes: relaxation and coarse-grid correction. Coarse-grid 
correction involves transferring information from a fine to a 
coarse grid via a sampling operation. The coarsening process 
is continued until a relatively small grid is reached where the 
linear system can be solved exactly with little computational 
cost. The solution is then propagated back to the finer level 
via interpolation operations. The coarsening operation 
displaces the low frequency components of the error to higher 
frequencies in the coarse grid, where classical relaxation 
methods reduce them efficiently [12]. The relaxation can be 
accomplished by a simple iterative method such as Jacobi or 
Gauss-Seidel. 

The method used to coarsening the grid defines if the 
multigrid method is geometric or algebraic. Geometric 
multigrid samples the previous grid uniformly. Algebraic 
multigrid uses an algebraic coarsening, i.e. the grid is sampled 
non-uniformly, according to the structure of a matrix, which 
in our case is the diffusion matrix G. It is well known that 
classical geometric multigrid is not robust on PDEs with 
highly nonlinear coefficients, as is the case of the nonlinear 
diffusion PDE [13]. As Kimmel and Yavneh [14] had shown, 
algebraic multigrid is more robust for image analysis using 
geometric PDEs.     

We then use an algebraic multigrid (AMG) method to solve 
the semi-implicit Equation (4), i.e. the nonlinear diffusion 
PDE on hyperspectral imagery. The complete description of 
our AMG algorithm is presented in detail on Section IV. 

C. Segmentation of Hyperspectral Imagery 
In the past few years, several multiscale object-oriented 

approaches have been proposed for segmenting multispectral 
imagery, such as the Fractal Net Evolution Approach (FNEA), 
the linear scale-space of Lindeberg, and Multiscale Object 
Specific Analysis (MOSA) [15]. The object-oriented approach 
consists in generating a scale-space representation of the 
image based on similarity metrics and hierarchical clustering. 
The practical application of object-based segmentation has 
been limited so far to high spatial resolution images from 
IKONOS2 (4 bands) and multispectral images from 
LANDSAT (7 bands)1. In addition to the object-oriented 
approach, other algorithms have been proposed in the past for 
high spatial resolution multispectral imagery, based on level 
sets [16], Markov Random Fields [17], and histograms-based 
segmentation [18], to name just a few.  

Here, we use a modified version of a fast segmentation 
algorithm for grayscale images proposed by E. Sharon, et al. 
[19], inspired by AMG and normalized cuts, the later a 
segmentation algorithm proposed by Cox et al. [20] and 
improved later by Shi and Malik [21]. Recently, an extension 
of Sharon’s segmentation algorithm has also been proposed 
for multispectral imagery [22].  

The segmentation algorithm in [19] is based on hierarchical 
clustering, rather than on the formal scale-space representation 
of the image using geometric PDEs. We propose here to 
integrate the well-founded scale-space representation of an 

image using geometric PDEs, with a modified version of the 
AMG-based segmentation algorithm that naturally fits within 
this framework.  

 
1 See http://www.definiens.com/documents/publications_earth.php 

The segmentation problem can be cast into the problem of 
graph partitioning. An image can be represented by a graph, 
where the pixels are the vertices and the edges connect each 
vertex to their closest neighbors (e.g., 4 or 8 neighborhood). 
Associated to the edges there is a weight function that 
indicates the degree of similarity between the vertices. The 
segmentation problem can be expressed now as finding the 
optimal graph cut that minimizes the weight of the edges 
removed [21]. The optimal graph cut is in general an NP-hard 
problem [21] and hence, fast suboptimal solutions are used. 
The contribution of Sharon et al. [19] consists into obtaining 
an approximation to the optimal graph cut, not in the original 
(large) grid of the image; but as in AMG, on a much coarser 
scale, where a suboptimal solution can be found easily and 
then propagated back to the finer level. In this way, they 
achieved image segmentation in linear time complexity, and it 
is often better than those obtained with (single-scale) 
normalized cuts [19]. In addition, as the multiscale 
representation of the image is constructed, statistics can be 
computed recursively from the different regions in the image, 
introducing global measures in the segmentation process that 
are not available at the finer grid [23]. 

IV. AMG-BASED SCALE-SPACE REPRESENTATION AND 
SEGMENTATION OF HYPERSPECTRAL IMAGERY  

AMG requires the construction of a multigrid structure that 
starts with the finer grid of the original image on its base and 
coarser grids are added “below it” forming an inverted 
pyramid, as shown on Figure 1.  

We use standard graph theory notation (Vs, Es) to identify 
the set of vertices (Vs) and edges (Es) of the multigrid 
structure, where the superscript index s indicates the grid 
level, starting with s=0 for the finer grid and s = S for the 
coarsest one. On this setting, the original hyperspectral image 
is represented by an undirected graph (V0, E0), where the set 
of vertices V0 corresponds to the vector-valued pixels in the 
image, and E0 is the set of edges connecting each node to its 
four closest neighbors with weights  given by (5). 0

ijg
 Grid 0 

Grid S 

Grid s 

. 

. 

. 

. 

. 

. 
c
fH

f
cH

 
Figure 1 Typical Multigrid structure. Note that the structure is not 

necessary of a Cartesian grid. 
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The sampling (restriction) operation, denoted here as , 

and the interpolation (prolongation) operation, denoted as 
, are also indicated on Figure 1. Associated to the graph, 

there is a similarity function g that assigns a weight to each 
edge (i, j) ∈ E

c
fH

f
cH

s on each grid with 0 ≤ s ≤ S, being S the 
coarsest grid. The nonlinear diffusion coefficient, given by 
(4), corresponds to the similarity function g at the finest grid, s 
= 0.  

A. Multigrid Structure 
 The construction of the multigrid structure requires two 
main steps: selection of the next set of vertices Vs+1 from the 
current grid (Vs, Es), 0 ≤ s ≤ S-1, and the connection of the 
nodes in Vs+1 to obtain Es+1. In AMG, the vertices Vs+1 must 
be sparse in Vs and independent of each other as much as 
possible. We use the selection mechanism described in [19], 
since it satisfies these requirements. For completeness, we 
describe it here in detail.  
 The mechanism used to select which vertices from (Vs, Es) 
will form the next grid is a greedy strategy, where the vertices 
are first sorted in decreasing order, according to their mass 

. The mass is a measure of how many pixels in the finer 
grid can be assigned to a given vertex on a coarse grid. At grid 
s=0 the mass of all vertices is defined as . The idea of 
sorting the vertices is that vertices that are representative of a 
large number of pixels on the finer grid; would be more likely 
selected for the next grid. The selection process consists of the 
following three steps, 

s
im

10 =im

• Sort in decreasing order of mass the set of vertices Vs. 
• Initialize Vs+1 = {i0}, where i0 is the first element in the 

ordered set Vs. 
• For each i ∈ Vs\Vs+1:  

       if 
( )

τ≤∑∑
∈∈ + ss ji

s
ij

j

s
ij gg

E,V 1
 ⇒ Vs+1 = Vs+1 ∪ {i}, 

where, 0 < τ < 1 is a threshold value below which we say that 
vertex i is independent of the vertices selected, Vs+1, so far. 
Notice that the first coarse grid can be obtained now with the 
previous algorithm, since we have already defined ,  

and E

0
im 0

ijg
0 and there is no needed to sort the finest grid, since all 

masses are equal. To obtain the coarser grids, we require to 
compute ,  and the set of edges Es

im s
ijg s for s>0. We will 

explain this in detail and the criteria to stop coarsening, after 
introducing first some important comments on the sorting 
algorithm.  

The sorting algorithm must run in linear time to keep the 
overall complexity of the algorithm also linear. The sorting 
algorithm used in [19] is a bucket sort [24], which runs in 
linear time, on average, assuming a uniform distribution of the 
mass in the [0 1] range, after normalization. We used instead 
radix-sort [24], which always runs in linear time, 
irrespectively of the distribution of the data. Since, radix-sort 

only works with integer values, we approximate  to its 
nearest integer value. This way, radix-sort orders the masses 
with little selectivity at first, since initially the differences are 
mainly fractional, but as we coarsen the grid, radix-sort 
becomes much more selective. We can make more selective 
radix-sort on the first levels by multiplying the mass by a 
constant factor of 100, for instance. However, experimentally, 
we found segmentation results being less sensitive to the small 
differences in the first levels, instead of using an absolute 
ordering of the masses, as bucket sort does.   

s
im

 Once the vertices of the first coarse grid are selected, we 
can compute the dependences of the vertices in Vs \ Vs+1 to the 
vertices in Vs+1 and the masses, for s = 0, …, S-1 as, 

( )

,:V,V\V
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1s1ss
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s
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where, indicates how much vertex i∈Vs
ijw s\Vs+1 depends on 

vertex j∈Vs+1. Notice that (6) naturally enables a multiscale 
soft-segmentation of the image, where pixels on each grid 
have a degree of attachment  to pixels selected at 

coarser levels. Also, notice that if i, j ∈ V

10 ≤≤ s
ijw

s+1 or i, j ∈ Vs then 
. This way, the vertices in V0=s

ijw s\Vs+1 depend only on 

vertices in Vs+1, which intends to translate the fine grid 
problem to the coarse grid. 
 One can think here in gathering statistics from the previous 
levels as in [23]. However, given the little development of 
texture measures for hyperspectral imagery and the difficulty 
of obtaining second and higher order statistics for 
hyperspectral data from small, fuzzy segments, we only use 
first order statistics, i.e. mean intensities.  

Let the hyperspectral image at grid s be 
[ ]T21

ssss
sνuuuU L= , where νs is the number of vertices at 

grid s and ui is the spectral vector at pixel ith. The mean 
spectral intensity at grid s+1 is given by 

.
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Notice that (8) corresponds to the weighted mean vector-
valued intensity, where the spectral signatures of vertices j∈ 
Vs\Vs+1 influenced by pixel i∈Vs+1 are weighted according to 
their dependence on i. Notice also that (8) defines the 
restriction operation (coarsening of the pyramid), , which 

in matrix format is given by 

c
fH

[ ]
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where, we had defined, for convenience, , since it 1=s
iiw
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provides a more compact representation for . c
fH

 We need now to connect the vertices in Vs+1. This is done 
by first defining the interpolation operator and the 
corresponding geometric weighting g for all the vertices in the 
new level s+1.  

By the Garlekin condition [12], , so we 

need to define the interpolation operation, . Since, we are 
working with mean spectrums; the simplest linear 
interpolation operation is given by, 

f
c
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which, in matrix-vector notation is given by, 
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From (9) and (10), 
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 Sharon et al. [19] proposed a very similar equation called 
Iterated Weighted Aggregation (IWA) to connect the vertices 
on the coarse grid. However, while IWA was proposed as an 
approximation to Gs+1 within a minimization problem, 
Equation (12) corresponds exactly to Gs+1, as given by the 
Garlekin condition, in our AMG setup. It can be noticed that 
as in IWA, (12) only considers local measures accumulated 
from grid 0 up to the coarser grids.  

As in [19], we introduce a global measure to steer the 
segmentation processes, which depends on the mean 
spectrums computed for each coarse vertex, 

{ }
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    (13)     

where, θ  is in general a similarity metric that depends on 
vectors  and corresponds to the discretization of θ as 
defined on Section III.  

11
,

++ s

l

s

k uu

Experimentally (see Section VI), we found that using (13) 
improves the rate of convergence of AMG over (12). This 
result demostrates the synergy that exists between the 
smoothing and segmentation processes. We are translating the 
PDE and segmentation problems to coarser grids, but on 
coarser grids, the relationship between the vertices are not 
completely expressed by local measures, and also include 
global measures. Notice here that global measures alone are 
not enough to discriminate between different segments with 
similar mean spectrums.  

Finally, once Gs+1 is computed, we can determine the set of 
edges on grid s+1 as, 

( ){ .0V,:,E 11
>∧∈= ++ s

ij
ss

gjiji     (14) 

B. AMG Solver 
Figure 2 shows a schematic of the same multigrid structure 

presented in Figure 1, showing more clearly the V-cycle. As 
Figure 2 shows, the V-cycle consists in coarsening the image 
downto grid S, solves exactly for the error, and then 
propagates back the solution to the finer grid. In the 
following, we call X0 the approximation to the exact solution 
we are looking for (see Equation 3), Un+1, and Xs the 
approximation to the error at grids s > 0. We omit subscript n 
on  and call it simply Gs

nG s.  

Grid 0 
. 
. 
. 

Grid s Prolongation Coarsening . 
. 
. 

Grid S 
 

Figure 2 Schematics for a V-cycle in Multigrid. 

The V-cycle algorithm is given by, 
• Grid 0:  

 Relax υ0 times ( ) nUXGI −− 00µ with initial guess Un. 
 Compute the error ( ) nUXGIX −−= 000 µ , the residual 

( ) 000 XGIF µ−= , and restrict it as . 01 FHF f
c=

… 
• Grid s: 

 Relax υs times ( ) sss FXGI =− µ , with initial 
guess 0. 

 Compute the error ( ) ssss XGIFX µ−−= , the 
residual ( ) sss XGIF µ−= , and restrict it as 

. sc
f

s FHF =+1

… 
• Grid S: Solve exactly ( ) SSS FXGI =− µ  to 

obtain XS. 
… 

• Grid s: 
 Correct . 1++= sf

c
ss XHXX

 Relax υs times ( ) sss FXGI =− µ , with initial 
guess Xs. 

… 
• Grid 0: 

 Correct . 100 XHXX f
c+=

 Relax υ0 times ( ) nUXGI −− 00µ with initial guess X0 to 
obtain X0≈Un+1. 

The V-cycle algorithm can be divided in three phases. In 
the coarsening phase [12] (Figure 2), the different components 
of the error, represented by Xs, s > 0, are estimated by 
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relaxation of the residual equation ( ) sss FXGI =− µ , where 
Fs, s > 0, is the residual. In the coarsest grid, S, the component 
of the error XS is computed exactly by Gaussian elimination. 
In the prolongation phase, the different components of the 
error are accumulated back to the finest grid as 

, while the residual equation is relaxed 
again to better approximate the error. After a V-cycle, X

1++= sf
c

ss XHXX
0 

receives the accumulated error from previous grids and the 
initial estimate of Un+1 can be corrected 
as . Usually, a single V-cycle is not 
enough to achieve good accuracy, and a few extra V-cycles 
might be needed. However, the extra V-cycles are 
computationally faster than the first one, since they use the  
AMG structure constructed on the first V-cycle.  

1
100

+≈+= n
f
c UXHXX

The restriction and prolongation operators, as well as the 
coarsening of matrix G, needed by the V-cycle, were already 
defined in the previous section. The remaining operations, 
including relaxation are simply sparse matrix operations (see 
Section VI for an analysis of their complexity). The relaxation 
method chosen here is Gauss-Seidel (GS) [25]. We achieved 
the best rates of convergence for AMG using an 
implementation that on the finest grid corresponds to a 
Symmetric-Red-Black GS, while on the other grids we 
alternate the order of relaxation as we did on the finest grid, 
but based only on the order assigned by the sorting algorithm. 

It remains to define now when we stop coarsening the grid. 
Since, on each coarsening step, we reduce the grid size to less 
than half the size of the previous grid (assuming sparsity and 
independence of the new grid), we can say that grid S would 
have ~ log2N vertices, where N is the number of vertices at 
grid 0 (the original picture size). Hence, we decided to stop 
coarsening the grid, when the number of vertices is equal or 
less than log2N. 

Notice that on Equation (4) we are estimating only one step 
of the semi-implicit nonlinear diffusion PDE. The solution of 
the PDE for a given scale may require repeating the process 
described earlier several times, i.e. for each scale-step we 
construct the multigrid structure and run several extra V-
cycles. However, thanks to the numerical stability of the semi-
implicit scheme and the linear time complexity (Section VI) of 
AMG, we can use large values of µ, which means that few 
steps would suffice for most applications and the overall 
complexity remains scalable algorithmically.   

C. Segmentation Algorithm 
We can directly use the AMG structure to segment the 

image. This approach actually works reasonably well, and it is 
very flexible, since we use the same parameters to solve the 
PDE and to segment the image. A better approach is to solve 
the PDE and then segment the smoothed image using different 
(updated) parameters to construct the final multigrid structure. 
We can create an AMG structure over the smoothed image 
that stops the coarsening process when all the vertices are 
segment representatives. The basic AMG structure for the 
segmentation algorithm is constructed as explained before, but 

we now use (3) or 
( ),:V,

00 ,0 jiegji ij
uuθβ−=∈∀       (15) 

which is the similarity metric proposed by [19] extended to 
hyperspectral imagery. We can also change the parameter α 
by a parameter γ on the coarsening Equation (13).  

The saliency Γ of a vertex is determined as in [19], for s=0, 
…, S-1 as, 

.:V
sV

s s
i

j

s
iji mgi ∑

∈

=Γ∈∀          (16) 

Equation (16) measures the dependence of a vertex i on its 
neighboring vertices, at a given grid level, normalized by its 
mass. Hence, a salient segment would be a vertex with very 
low dependence on its neighborhood, but also influent on the 
previous grids. Notice that this measure of saliency is the 
same used in normalized cuts [21], but on coarse scales. We 
define a vertex as a salient segment if its saliency is Γi ≤ ε, 
where ε is a threshold parameter. The coarsening stops as 
soon as all the vertices in the grid satisfy the saliency criteria.  
 Once we had detected the representatives at different grid 
levels, we must go back to the finest grid to segment the 
image at the finest resolution. This process is called 
sharpening in [19], a hard segmentation is obtained from the 
fuzzy dependences that exist between the vertices at the 
different levels in the AMG structure. The sharpening 
algorithm of [19] works fine if we start from the coarsest grid, 
but if we start from lower levels (lower scales), the algorithm 
may leave large regions of the image un-segmented. The 
reason is that as we go down, there are much more vertices 
un-labeled than representatives, in fact, some vertices cannot 
be labeled on a coarse scale, since they are on islands, i.e. 
pockets of vertices, isolated from the remaining vertices. 
Sharon et al recognized this fact in [26], where they proposed 
another approach that includes boundary tracing.  

We use here a simpler approach that already produces good 
segmentation results. Let us call r1, r2, …, rK the K 
representatives accumulated from levels s, s+1,…, S, and let 

( )Kr
i

r
ii pp ,,1 L=p  be a vector of probabilities indicating that 

vertex i∈V0 has probabilities  of belonging to the 
segments represented by r

Kr
i

r
i pp ,,1 L

1,…,rK, respectively. Hence, 
( )0,,,,0 LL k

kk

r
rr p=p , with , and 1=k

k

r
rp ( )0,,0 L=ip  for 

i∉{r1, …, rK}. Let us also call the set of vertices in Vs
iN s that 

are close neighbors to vertex i. The sharpening algorithm is 
given by,  

For levels s down to 0: 

• ∀i∈Vs: if max{pi}<1, 
∑

∑

∈

∈

+

+
=

s
i

s
i

j
ij

j
jiji

i w

w

N

N

1

pp
p  .   

If  max{ } δ−≥= 1kr
ii pp  then ( )0,,1,,0 i LL == kr

ipp . 

• ∀i∈Vs: if max{pi}<1, perform υ Gauss-Seidel relaxations 
on vertices i∈Vs where  of the form,  { } 1max <ip
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1

pp
p .  

If  max{ }  thenδ−≥= 1kr
ii pp ( )0,,1,,0 i LL == kr

ipp . 

• ∀i∈Vs: if max{pi}<1, find the closest representative rk with 
the largest as defined in (13) and make  

kirg

( )0,,1,,0i LL == kr
ipp . 

 The three steps indicated in the sharpening algorithm 
attempt to assign a segment representative to each vertex at 
grid s. The first step uses the fact that most vertices from grid 
s must be strongly dependant on vertices from grids s+1 to S, 
hence, might be high for some representative r

kirw k. 

However, vertices that were chosen from s to the next grids 
and are not representatives have  for k = 1,.., K, since 

both i and r
0=

kirw
k are in Vs+1. Nevertheless, their neighbors that are 

in Vs\Vs+1 might have been labeled in this step. Hence, the 
next step is the same as in [19], we perform υ Gauss-Seidel 
relaxations allowing than the probabilities of the neighbors 
affect the probabilities of each vertex, based now on their 
similarities. As noted in [19], υ=2 GS relaxations suffices, 
since a higher number of relaxations does not produce any 
change on vertices located on isolated pockets or on vertices 
that have nearly the same probability of belonging to two 
different segments. The third step assigns the vertices that 
have not been labeled yet to the closest representative, in 
terms of similarity. Also as in [19], probabilities higher than a 
given threshold, 1-δ, are set to one, in order to speedup the 
sharpening process. 

V. IMPLEMENTATION DETAILS AND COMPLEXITY  
 Most of the algorithm’s parameters are set by 

experimentation, see for e.g. [19, 22, 23, 27]. In particular we 
use τ = 0.2,  δ = 0.2,  ε = 10-5, the number of GS relaxations 
for the sharpening algorithm is υ=2, and the number of GS 
relaxations in AMG is simply υ0 = υ1 = … = υS = 1. 
Experimentally (see next section), we also found that two V-
cycles suffice to achieve good accuracy for scale-steps µ ≤ 5, 
which corresponds to 20 times the maximum stable scale-step 
that can be used with the explicit scheme. The remaining 
parameters α, β, and γ depends on the image and the 
application itself, since they define the level of smoothing (α) 
and the threshold in similarity (β, γ) that is acceptable within a 
homogenous region. In all our experiments, 0.005 ≤ α ≤ 
0.015, γ ≤ β ≤ α, which indicates that the range of variability 
is relatively small and can be set according to the scene at 
hand and the scale needed. Notice that thanks to the 
smoothing provided by the nonlinear diffusion PDE, β and γ  
can be set to lower values allowing greater discrimination 
between the more homogeneous regions in the smoothed 
image.  
 We introduce some additional changes in the 
implementation in order to improve the running time and 
scalability of the algorithm for hyperspectral imagery. In 

particular, we made the following changes, 
• Sharon’s algorithm, [19], uses state vectors of the same size 

as the number of pixels in the image. Since at first there are 
as many segments as pixels in the image, there is an 
enormous waste of disk space, mostly filled with zeros. A 
better approach for large sparse graphs is to use Red-Black 
trees, [24], to store the neighborhood of each vertex, which 
also provides fast searches within each neighborhood. 

• The time complexity of the segmentation algorithm is 
linear, but the constant of linearity grows exponentially with 
the size of the neighborhood [28]. We reduce the 
neighborhood size by two mechanisms. First, we eliminate 
vertices with weights lower than 0.1. Second, we limit the 
number of neighbors to 10, reducing considerably the 
running time of the algorithm, without affecting negatively 
the accuracy of the AMG solver or the segmentation 
algorithm.  

• In [19], the pixels are assigned to each representative one at 
a time. That is, they perform a top-down sharpening on each 
representative. This segmentation is time consuming 
(especially with many segments). We sharpen the image, 
with all the representatives at the same time, as indicated on 
Figure 4. The segmentation results are the same, but with an 
improvement in running time.     

•  The vector of probabilities indicated on Figure 4 is not 
practical for implementation purposes, since most of its 
entries are always zero. We use instead variable length 
vectors that store only the indices of the representatives and 
their corresponding probability. On any scale, a given 
vertex may be related to a few representatives, and since it 
is always labeled on that scale, there is no storage overhead. 
All the algorithms were implemented in C++ on a Linux 

platform, under the Cygwin2 environment. We used the 
Geospatial Data Abstraction Library (GDAL3) which supports 
more than 50 raster image formats, including BIL, BSQ and 
BIP formats, commonly used in hyperspectral imagery, 
without limit in the size of the image. We used GDAL to read 
the hyperspectral images and to write the smoothed 
hyperspectral images and segmentation results. We also used 
LAPACK4 to obtain an accurate solution of the PDE at the 
coarsest level S, using LU factorization with pivoting first and 
then Gaussian elimination. An accurate solution of (4) can be 
always found using Gaussian elimination, since the matrix I-
µG is diagonally dominant [29]. Gaussian elimination has 
time complexity O(Mνs

3), where νs is the number of vertices at 
scale s and M the number of bands in the image, and it is only 
used for the coarsest scale, where the number of vertices is νs 
= O(logN). We used Gaussian elimination on the finest grid, 
but just for comparison purposes and independently of the 
AMG framework here proposed (see Section VI). 
 From the previous section, it can be seen that for both the 
AMG and the segmentation algorithm, there are just a few 
number of operations for each vertex on Equations (4)-(14). 
As indicated before, the sorting algorithm runs in linear time 
 

2 http://www.cygwin.com/ 
3 http://www.gdal.org/ 
4 http://www.netlib.org/lapack/ 
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on the number of vertices at each grid. Also, and since a fixed 
number of relaxation sweeps are made on each level, 
relaxation is linear in the number of vertices, at each grid. The 
matrix operations indicated on Figure 4 have also linear time 
complexity; since, matrix I-µGs is sparse, with at most 10 off-
diagonal (neighbors) elements and there are νs diagonal 
elements (vertices) at scale s. Hence, the product (I-µGs)Xs 
takes ~10Mνs = O(Mνs) time. Also, the exact solution of (3), 
using Gaussian elimination takes O(Mlog3νS) time which is 
O(MνS), for sufficiently large νS. On the other hand, since νs  ≤  
½νs+1, 0 ≤ s < S, with ν0 = N, the running time of the complete 
AMG-segmentation algorithm is linear in the number of pixels 
and hyperspectral bands, 

(MNOMNNMM
s

s

s
s =≤⎟

⎠
⎞

⎜
⎝
⎛≤ ∑∑ κκνκ 2

2
1 )   (17) 

where, κ is the number of operations on each vertex.  
 Let us analyze now the storage space requirements for our 
proposed algorithm. AMG requires storing only two matrices 
at each level: X and F, with the original image stored in F0.  
At each scale, X and F require both 2Mνs storage space. By 
the same reasoning as before, the disk space required is given 
by  

.4
2
122 MNNMM

s

s

s
s ∑∑ ≤⎟

⎠
⎞

⎜
⎝
⎛≤ν       (18) 

Hence, the disk requirements are ~4MN, with additional 
temporal variables of size O(N). For sufficiently large M, as is 
the case of hyperspectral imagery, the disk requirements are 
dominated by the ~4MN term, again linear in the number of 
pixels and hyperspectral bands. The segmentation algorithm 
does not require additional storage. The disk requirements for 
ADI and AOS are ~2MN, and PCG methods require ~4MN 
(see [4] for details). Since, AMG is scalable and can have 
greater accuracy than traditional relaxation methods and the 
approximated solutions provided by AOS and ADI schemes, 
we have achieved significant improvement with respect to 
previous work in terms of scalability, while keeping storage 
requirements equivalent to PCG methods. It should be also 
noticed here that even tough the storage requirements of AMG 
can be excessive to process large hyperspectral images in a 
PC; proper processing of these images requires parallel 
processing capabilities and storage far beyond the capability 
of a single PC, where the extra storage needed by AMG can 
be satisfied, making this approach practical for large datasets.   

VI. EXPERIMENTS 
We use four hyperspectral images in our experiments, 

representing different environments in remote sensing,  
• Indian Pines image (Figure 3a), taken with the AVIRIS 

(Airborne Visible/Infrared Imaging Spectrometer) sensor, 
on June 12, 1992, over an agricultural area 6 miles west of 
West Lafayette. This image contains 145x145 pixels and 
220 spectral bands in the 400-2500 nm range, for which 
ground truth exists5 (see Figure 4a). We disregard 35 bands 

from the original image, either because they were too noisy 
or because they present strong illumination differences. 
Hence, our Indian Pines image has 145x145 pixels and 185 
spectral bands in the 410-2430 nm range. 

  
5 http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/ 

• Cuprite image (Figure 3b), taken over a mining district, 2 
km north of Cuprite, Nevada, with the AVIRIS sensor, 
flown on June 19, 1997. We selected a portion of the image 
of size 500x500 pixels and 224 bands that corresponds to 
part of the mineral mapping reported by the US Geological 
Survey (USGS) spectroscopy laboratory in 1995, using the 
expert system algorithm Tetracorder [30] and signatures of 
60 sampled fields in the region6. We use the classification 
map reported by the USGS as our ground truth (see Figure 
4b). We selected from this image 50 bands, 172-221, that 
corresponds to the 2000-2480 nm vibrational absorption 
region used by the USGS for mapping minerals in the 
Cuprite image. 

• A high spatial-spectral resolution image of the Washington 
DC Mall area taken by the Hyperspectral Digital Imagery 
Collection Experiment (HYDICE) sensor on August 23, 
1995. This image contains 1280x307 pixels and 224 bands. 
Several bands are eliminated because they do not contain 
information or they are too noisy, leaving 191 bands in the 
400-2480 nm range. We choose a sub-image of 282x307 
pixels and 191 bands (Figure 5a) as representative in our 
experiments. There is no need for ground truth on this 
image, given its high spatial resolution (3m) that allows 
identifying the different objects in the image by simple 
visual inspection. We use the same classes indicated by 
previous studies of this image, [31], [32] directly marked on 
Figure 5a.  

• The Enrique Reef image (Figure 5b), that corresponds to a 
small part of the AVIRIS image taken over the south-west 
coast of Puerto Rico in 2005. We use this image because the 
Enrique Reef environment is a well-known area of study for 
the marine science department at the UPRM. Hence, we 
used their expertise to identify training and testing samples 
on the image. The ground truth of this image is directly 
marked on Figure 5b. We eliminated spectral bands in this 
image that contained just noise, so that our Enrique reef 
image consists of 46x90 pixels and 146 bands in the 414-
2310 nm range. 
Our first set of experiments consist into test the 

performance of AMG as a solver of (4) using a large scale 
step, µ = 5. This scale-step is typically the largest value for µ, 
such that the solution obtained does not fall away from the 
more accurate solution that would be found using a much 
smaller scale step [3, 4].  

6 http://speclab.cr.usgs.gov/PAPERS/tetracorder 



 9

  
Figure 3 RGB composite of a) Indian Pines and b) Cuprite images. 

 
Figure 4 Ground truth of a) Indian Pines and b) Cuprite images. 

  
Figure 5 RGB composite of a) Washington DC and b) Enrique Reef 

images, showing also their ground truth. 

A. Performance of the AMG as a Solver 
We compute first the sum of square errors between the 

computed solution of (4) using AMG and the solution 
obtained using LAPACK at the finest grid, with α=0.015 in 
(4), which is the largest value of α we had used in these and 
previous experiments [3, 4]. We test AMG using local 
measures only, i.e. Equation (12), and incorporating the mean 
spectrum, i.e. Equation (13), where θ can be either the 
Euclidean distance or the spectral angle. 

Given that Gauss-Seidel elimination for banded matrices, as 
is the case of G on the finer grid, requires to store vectors of 
size O(N 3/2), it easily overcomes the memory available on an 
average PC. In particular, we could not obtain the solution of 
(4) using LAPACK on the finer grid, for the Cuprite image, 
given its size. Hence, we use instead the first 300x300 pixels 
(50 bands) of the Cuprite image, which we call here, small 
Cuprite.  
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Figure 6 Performance of AMG vs. the number of V-cycles. 

First, Figure 6 shows, in semi-logarithmic scale, the sum of 
square errors as a function of the number of V-cycles, using 
(13) and θ being the spectral angle. The error reduces at a rate 
of r = 10-d, where d is the slope of the line shown on Figure 6. 
From this figure, the rate-of-convergence range is r = 0.013-
0.032. This is quite good, since it compare well with the 
reported convergence rates for well-tuned AMG algorithms 
(r∼0.05) [12], [14]. The rates of convergence for α<0.015 
should be even better, since the matrix I-µG tends to the 
identity as α decreases. The rate of convergence indicates that 
the error is reduced by a factor r on each V-cycle, so that if 
r=0.05, the error is 5% of its initial value on the first V-cycle 
and 0.025% on the next V-cycle. Experimentally, we found 
that 2-V-cycles are sufficient to provide accuracies superior to  
the ones obtained using PCG schemes (see Figure 7) with a 
tolerance of 10-3, which is the same tolerance used in [3, 4], 
with very good results in terms of the solution of the 
geometric PDE and classification accuracy.  

Table 1 AMG Rates of Convergence 
Equation Indian Pines small Cuprite Washington DC Enrique Reef

(12) 0.032 0.051 0.079 0.051
(13)-ED 0.016 0.020 0.050 0.032
(13)-SA 0.013 0.016 0.032 0.016  
Table 1 compares the rates of convergence of AMG using 

only accumulated local measures, i.e. Equation (12), and the 
rates of convergence of AMG using local measures and 
Euclidean distance (ED) or spectral angle (SA) between mean 
spectrums, i.e. Equation (13). It can be noticed that 
introducing simple global measures as the mean spectral 
intensity reduces the error at least two times faster than using 
accumulated local measures only. It can be also noticed that 
the spectral angle converges faster than using Euclidean 
distances, tough the comparison may be not completely fair, 
since defining θ as the spectral angle means changing the 
PDE, which is not longer the exact Equation (1).  

Notice also that the slowest rate of convergence 
corresponds to the Washington DC image, followed by the 
Enrique reef image. This is due to the high number of objects 
with strong vectorial boundaries in these images. This implies 
that g(θ) varies strongly on a wide region within the image, 
and the simple non-uniform sampling used here is less 
effective to translate the problem to the coarser grids. 
Nevertheless, the rates of convergence of the proposed AMG 
for these images are still quite good, and there is no need for 
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using more precise, but computationally expensive, non-
uniform sampling methods such as those indicated in [28].  
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Figure 7 Performance of AMG vs. other solvers 

Figure 7 compares the sum of square errors relative to the 
exact solution obtained with LAPACK on the finer grid, for 
four methods: ADI and AOS schemes, the Conjugated 
Gradient method, preconditioned with incomplete Cholesky 
factorization (PCG-Cholesky), and AMG using two V-cycles. 
It can be noticed from this figure that the sum of squared 
errors with the proposed AMG is always lower than the error 
of the other solvers. In particular, the error in AMG is three to 
four orders of magnitude lower than in ADI and AOS 
schemes, and even lower than PCG with a tolerance of 10-3, 
which is the tolerance used in [3, 4].  
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Figure 8 CPU time vs. the size of the image 

In order to test the performance of AMG in terms of CPU 
time versus the size of the image (scalability), we selected 
four sub-images of size 50x50, 100x100, 200x200, and 
282x307 pixels from the Washington DC image, with all its 
191 bands. Figure 8 shows the CPU time of AMG for a scale-
step of µ = 5, α=0.015 and 2 V-cycles, vs. the size of the 
image, relative to the smallest image, i.e. the image of 50x50 
pixels.  

Figure 8 shows, for comparison purposes, the CPU time 
required to solve (4) for ADI, PCG-Cholesky, and Gaussian 
elimination. From this figure, we can say that our 
implementation of AMG is four times slower than ADI, but 
AMG is significantly more accurate than ADI and it also 
naturally enables the segmentation of the image. Further 
reductions in the running time of AMG can be obtained by 
using single Red-Black GS relaxation sweeps, instead of the 
symmetric Red-Black relaxation used here, at the expense of 
increasing the convergence rates by a factor of 2 (which are 

still good, see [14]). However, we prefer here to trade speed 
for accuracy of the computed solution for the nonlinear 
diffusion PDE, since this also affects classification accuracy, 
maintaining nevertheless a reasonable computational cost.  

Figure 9 shows the CPU time of AMG as a solver of (3) 
and the total CPU time of AMG to both solve (4) and segment 
the hyperspectral imagery, as a function of the image size. 
From this figure it is clear that solving (4) with AMG and 
segmenting the images has linear time complexity, and that 
the segmentation step takes approximately a 25% of the total 
smoothing and segmentation time. 
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Figure 9 CPU time for AMG smoothing and segmentation 

B. Performance of the AMG-based Segmentation 
We now evaluate the quality of the segmentation algorithm 

for classification accuracy. It is clear that over-segmentation 
affects the quality of classification algorithms, since small 
regions provide less statistical information than larger ones. 
On the other hand, under-segmentation might be even worse, 
since portions of objects belonging to different classes may be 
passed to the classification algorithm as single objects, 
precluding the possibility of classifying them correctly. 
Hence, classification accuracy provides a measure of 
segmentation quality that corresponds well with the 
requirements of a good segmentation, and also permits to use 
real hyperspectral images with ground truth classification, 
instead of synthetic test images as often required by current 
methods that measure the quality of segmented images [33]. 

We use the segmentation map to produce a piecewise 
segmented hyperspectral image, where each segment has the 
spectral signature corresponding to the mean spectrum in the 
segmented region. We select training and testing samples on 
each one of the four hyperspectral images considered here 
(see Figures 10 and 11). The labels on Figures 10 and 11 
indicates if the fields correspond to training (tr) or testing (te) 
samples and the numbers indicated are used simply to 
distinguish them. We choose ECHO, [34], spectral-spatial as 
our classifier, provided by MultiSpec7, freeware software 
developed by D. A. Landgrebe.  

 
7 http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/ 
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Figure 10 Training and testing samples on a) Indian Pines and b) Cuprite 

images  

  
Figure 11 Training and testing samples on a) Washington DC mall and b) 

Enrique reef images 
We cannot use simpler classifiers such as Euclidean 

Distance or Spectral Angle Mapper (SAM), since they do not 
take into account the spatial domain, which is critical to 
evaluate the quality of segmentation. Also, we cannot use 
Maximum Likelihood or other second order statistical 
classifiers, since they cannot compute accurate covariance 
matrices with few pixels. Hence, we use ECHO, with a small 
window of 2x2 pixels that uses Fisher Linear Discriminant. 
ECHO clusters the segments into different classes, according 
to their distance (in terms of the Fisher) and according to the 
homogeneity of the neighborhood, computing likelihoods, 
whenever possible. 

Table 2 Best classification accuracies 
Training Testing Training Testing Training Testing Training Testing

Original 90.8 71.8 98.8 93.5 100 86.2 100 93.7*
Smoothed 99.9 81.3 99.9 95.2 100 87.8 100 95.6
Segmented 97.4 85.6 99.9 95.8 100 85.5 100 96.8
Smoothed and Segmented ED 95.1 88.8 99.7 96.8 100 91.2 100 98.1
Smoothed and Segmented SA 98.6 90.2 99.7 97.5 100 92.2 100 98.5

Enrique reef
Classification Accuracy (%)

Indian Pines Cuprite Washington DC

 
Table 2 shows the best classification accuracies obtained by 

simply smoothing with AMG, segmenting only with the 
AMG-based segmentation algorithm, and smoothing first and 
then segmentation using AMG. Table 2 also includes the 
classification accuracies of the original image, for comparison 
purposes. We could not obtain a classification of the original 
Enrique reef image using ECHO, probably due to the noise 
present in the image. Hence, the accuracy reported in Table 2 
for this image corresponds to the highest classification 
accuracy, which was obtained using the Spectral Angle 
Mapper (SAM), considering all bands. As can be seen from 
this table, just by smoothing the image, we already achieve an 
improvement in the classification accuracy. Also, segmenting 
the image usually achieves even better classification 
accuracies than just smoothing, but not in all the cases. If both 
smoothing and segmentation are performed, better 
classification accuracies are obtained than using the 

smoothing or the segmentation processes alone. The main 
reason is that nonlinear diffusion reduces the intra-region 
variability, while keeping the object’s boundaries, which 
improves global separability, while maintaining local 
information (boundaries) almost intact.  

We must emphasize here that we are classifying the piece-
wise spectrally-constant hyperspectral images with the sole 
purpose of testing the quality of the segmentation. A more 
advanced classification of the image would take into account 
the segmentation maps to extract information from the 
smoothed image. Future work on this area should also 
consider the introduction of spectral-spatial similarity metrics 
or texture and unsupervised classification of the homogeneous 
regions segmented. Finally, we must also emphasize that the 
scale space is not only a vehicle to achieve better 
segmentation results, but also provides smoother images that 
can provide better results for other hyperspectral image 
processing algorithms such as classification, registration, and 
impainting, in conjunction with the reported segmentation 
maps.  

Figures 12 and 13 show RGB composites of the smoothed 
hyperspectral images that produced the best classification 
accuracies, as indicated in Table 2. 

  
Figure 12 Smoothed a) Indian Pines and b) Cuprite images with AMG. 

  
Figure 13 Smoothed a) Washington DC and b) Enrique reef with AMG. 

Figures 14 and 15 show the RGB composites of the 
segmented hyperspectral images that resulted on the best 
classification accuracies, indicated in Table 2. It should be 
noticed here that with exception of the Indian Pines image, the 
segmented images shown in Figures 14 and 15 were obtained 
using smoothed images with a different α value than those in 
Figures 12 and 13. The α value that produces the best 
classification results using only nonlinear diffusion is not 
necessarily the best parameter for obtaining the best 
accuracies using both smoothing and then segmentation.  
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Figure 14 Segmented a) Indian Pines and b) Cuprite images with AMG. 

  
Figure 15 Segmented a) Washington DC and b) Enrique reef with AMG. 

 Table 3 shows the parameters corresponding to the 
results indicated in Table 2. It can be noticed that the value of 
α for the best classification accuracies using only smoothing 
differs slightly from the value of α that produces the best 
accuracies using both smoothing and segmentation. Also, it 
can be noticed from Table 1 that the range of variability of 
parameters α, β, and γ is reduced, even tough the four images 
differ greatly in size and number and type of regions in the 
image, the level of noise, and the strength of the edges. 

Table 3 Algorithm parameters 

α β γ α β γ α β γ α β γ
Smoothed 0.010 - - 0.010 - - 0.011 - - 0.008 - -
Segmented - 0.008 0.006 - 0.007 0.003 - 0.010 0.007 - 0.008 0.005
Smoothed and Segmented ED 0.012 0.011 0.004 0.008 0.008 0.002 0.012 0.007 0.006 0.010 0.003 0.003
Smoothed and Segmented SA 0.008 0.007 0.003 0.006 0.003 0.001 0.011 0.011 0.009 0.010 0.008 0.003

Enrique reef
Algorithm parameters

Indian Pines Cuprite Washington DC

 
Finally, and for completeness, we should mention that the 

scale used to nonlinearly smooth all the images was 10, with 
scale-steps of 5 for all the images. Using this scale, the 
number of AMG scale-steps required was only two. 

The Indian Pines image is a patchy image, for which many 
objects are difficult to differentiate due to the variability of the 
spectral signatures within each region and the similarity 
between different classes (see [3] for more detail in this 
regard). However, the boundaries of the different regions in 
the Indian Pines image are relatively strong and help the 
segmentation process. The separability of classes is higher on 
the Cuprite image, as can be seen from the training and testing 
accuracies, but the edges between the different regions are 
weak. The classes in the Washington DC image are also easier 
to separate and the edges are strong, but the number of objects 
in this image is very high, which may present a problem for 
segmentation. Finally, the Enrique reef image is very easy to 
classify and segment, but it contains the highest level of noise 
(even after eliminating noisy bands), which can be appreciated 
on the visible variability of the seawater in Figure 5b. Hence, 
even tough each image presents different challenges, we could 

successfully smooth, segment and classify all of them using 
the proposed AMG framework, with the parameters indicated 
on Table 3, which shows a relatively low range of variability.  

VII. CONCLUSION 
We have integrated here geometric scale-space theories and 

algebraic multigrid solvers for the analysis and processing of 
hyperspectral images. We have shown that a geometric scale-
space representation of hyperspectral images can be efficiently 
generated combining nonlinear PDEs and AMG methods, 
with good accuracy and scalability. Additionally, AMG 
provides the necessary structure to naturally obtain a 
hierarchical segmentation of the image. As our results 
indicate, the segmentation achieved using the smoothed image 
is better than just segmenting the original, probably noisy, 
image.  

We should note that a number of techniques are currently 
being developed for the fast computation of geometric PDEs, 
see for example [35] and references there in. The extension of 
those approaches for hyperspectral data, as well as the use of 
our proposed framework for generically solving such PDEs, is 
the subject of current efforts in our group. 
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