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Fusing AMSR-E and QuikSCAT imagery for
improved sea ice recognition

Peter Yu, David A. Clausi, Senior Member, IEEE, Stephen E. L. Howell

Abstract—The benefits of augmenting AMSR-E image data
with QuikSCAT image data for supervised sea ice classification
in the Western Arctic region are investigated. Experiments com-
pared the performance of a maximum likelihood classifier when
used with the AMSR-E only data set against using the combined
data. The preferred number of bands to use for classification was
examined, as well as whether principal components analysis can
be used to reduce the dimensionality of the data. The reliability of
training data over time was also investigated. Adding QuikSCAT
often improves classifier accuracy in a statistically significant
manner and never decreased it significantly when a sufficient
number of bands are used. Combining these data sets is beneficial
for sea ice mapping. Using all available bands is recommended,
data fusion with principal components analysis does not offer
any benefit for these data and training data from a specific date
remains reliable within 30 days.

Index Terms—data fusion, classification, scatterometer, passive
microwave, Beaufort Sea, ice mapping, multisensor, principal
component analysis

I. INTRODUCTION

S INCE the late 1970s, Arctic sea ice extent during the
summertime has decreased by approximately 6% per

decade [1]. Simulations by global climate models predict
continued and potentially rapid decreases in sea ice [2]. Com-
pared to observational records, climate model simulations may
actually be far too conservative at predicting a summertime
sea ice free Arctic [3] as witnessed by the rapid reduction of
Arctic sea ice in 2007 [4]. These decreases in sea ice have
raised many questions about the increased usage of Northwest
Passage located in the middle of the Canadian Arctic as a
viable shipping route. The mapping of sea ice is therefore an
important task for understanding the global climate system and
as well as for providing safe navigation, especially in Canadian
Arctic waters.

In this work, the combination of data from the AMSR-
E passive microwave and SeaWinds/QuikSCAT (QuikSCAT)
for supervised sea ice classification within Canadian Arctic
waters is considered. Both sensors have been investigated for
their use in providing sea ice type information in sea ice type
segmentation algorithms. The QuikSCAT sensor has shown
promising results for sea ice typing [5] [6], monitoring sea
ice extent [7]–[9], sea ice edge detection [10] [11], sea ice
melt detection [12] [13], and monitoring sea ice drift [14].
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Passive microwave data from the SSM/I sensor (a predecessor
of AMSR-E) has been used for ice typing [15] and AMSR-E
data has been used in ice concentration computations that can
distinguish between multiyear and first year ice in the Arctic
and Antarctic [16] [17].

Recent work has found that combining passive microwave
and scatterometer data is useful for sea ice classification and
mapping. Remund et al. [18] used principal component analy-
sis (PCA) to combine data from two scatterometer sensors (the
NASA NSCAT and the European ERS-2 scatterometer) with
data from the SSM/I satellite for use in an iterative maximum
likelihood (ML) classifier. Other studies have combined SSM/I
with QuikSCAT to classify new ice in Greenland [19] and
to improve detection of one type of multiyear ice during the
winter [20].

Although previous work has shown that both passive mi-
crowave and scatterometer data is useful regardless of whether
they are used separately or together, little work has specifically
combined AMSR-E and QuikSCAT data or compared the
performance of using the multisensor data set against the
individual data sets. These issues are examined here with a
pattern recognition framework to generate quantitative results
that can lead to developing an automated ice mapping system.
In particular, the following research questions are posed:

1) Does adding QuikSCAT to AMSR-E provide a signifi-
cant improvement in sea ice classification?

2) How does the number of preferred bands used in clas-
sification affect results?

3) Can principal component analysis (PCA) be used to
reduce feature space dimensionality and improve the
classification rate?

4) How reliable is the training data over time?

The answers to these questions will indicate whether the
AMSR-E and QuikSCAT sensor combination should be in-
vestigated in more detail for use in sea ice classification.
Questions 2 and 3 relate to the dimensionality of the combined
data set, while Question 4 is relevant when considering the
design of a database of training data to automatically classify
new scenes.

II. DATA

Three sources of data were used in this study: AMSR-
E passive microwave image data, Seawinds/QuikSCAT scat-
terometer data and Canadian Ice Service (CIS) ice charts. Each
data source is described in this section.
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A. AMSR-E

The AMSR-E sensor is a passive microwave radiometer on
the Aqua satellite that measures the radiance of microwave
radiation from the Earth’s surface [21]. The AMSR-E sensor
itself has many advantages that make it suitable for ice
monitoring, including the ability to image without illumination
(since the microwave radiation is emitted by the Earth’s
surface) and the ability to image through cloud cover [22]. The
AMSR-E data used here is the daily average Level 3, 12.5 km
daily brightness temperature product [23]. This product has
a polar stereographic projection and consists of 8 bands: 18
GHz, 23 GHz, 36 GHz and 89 GHz in both horizontal and
vertical polarizations.

B. Seawinds/QuikSCAT (QuikSCAT)

QuikSCAT data for the period September 2004 to August
2005 was obtained from the NASA Scatterometer Climate
Record Pathfinder (SCP) project (see Acknowledgments for
full attribution). The SeaWinds scatterometer on board the
QuikSCAT satellite is a dual-polarized real aperture radar
operating at 13.4 GHz (Ku-band). QuikSCAT provides normal-
ized cross-section backscatter values at fixed incident angles
of 46◦ (HH) and 54.1◦ (VV) over a swath width of 1800 km
with twice daily temporal resolution (i.e. daily ascending and
descending passes). QuikSCAT data is available in two image
products, eggs and slices, at Scatterometer Image Recon-
struction (SIR) enhanced and non-enhanced grid resolution.
The spatial resolution for the non-enhanced grid products is
11.125 km for slices and 22.25 km for eggs while the spatial
resolution of SIR enhanced is 8-10 km and 4 km for eggs
and slices, respectively [24].

The limitation with the higher resolution SIR products is
that the resolution enhancement has a tendency to amplify
noise [25]. Non-enhanced QuikSCAT data are produced us-
ing the “drop-in-the-bucket” technique, whereby the assigned
backscatter value is the average of the measurements falling
within the centre of the grid cell. This has the potential to
contaminate backscatter returns with contributions from the
shoreline, islands, and ice deformation features. Enhanced
QuikSCAT data are produced from the SIR algorithm that was
developed for multivariate scatterometer image reconstruction
with noisy measurements by taking advantage of the spatial
overlapping backscatter measurements taken at different times,
thus increasing the sampling density in order to increase the
spatial resolution [25], [26]. Early and Long [25] point out
that there is a trade off between resolution enhancement and
existing noise levels because high frequency noise will be
amplified in the re-construction process. The SIR enhanced
slice products further increase the spatial resolution ( 4 km)
and the trade off between noise and resolution over sea ice is
more strongly apparent [12]. For this study, we have chosen to
use the combined ascending/descending pass egg products at
both HH and VV polarizations to further increase the sampling
density of the SIR data (i.e. maximizing spatial resolution) and
minimize noise.

The projection of the AMSR-E data already matches the
QuikSCAT egg data product so the only registration needed is

TABLE I
THE CIS STAGE OF DEVELOPMENT CODES MAPPED TO CLASS NAME USED

IN THIS PAPER. STAGE OF DEVELOPMENT CODES WITH A PERIOD (.)
AFTER THE NUMBER ARE DISTINCT ICE CLASSES FROM THOSE WITHOUT

THE PERIOD.

CIS Stage of Development Code Class Name
1, 2 New Ice

3, 4, 5 Young Ice
6, 7, 4., 1., 8, 9 First Year Ice

7., 8., 9. Multiyear Ice
Open Water Open Water

to scale the products to a common resolution, which is done
via nearest neighbour interpolation to preserve the original
data values.

C. Canadian Ice Service Digital Database

Sea ice concentration and type data was obtained from
the Canadian Ice Service Digital Archive (CISDA) in order
to provide ground truth for this study. These digital ice
charts are topologically complete polygon ArcInfo Geographic
Information Systems coverages and are available through the
Canadian Ice Service (CIS). The ice charts define polygons
which indicate the type and concentration of ice contained
within the polygon region. The regional digital ice charts are
derived weekly, from the integration of data from a variety of
sources including surface observations and aerial and satellite
reconnaissance (with the primary source being RADARSAT-1
since 1996), and represent the best estimate of ice conditions
based on all available information at the time [27]. Agnew
and Howell [28] compared the CIS digital ice charts to
passive microwave concentration estimates from the National
Aeronautics and Space Administration (NASA) Team algo-
rithm [29]. They found the CIS digital ice charts to be a more
accurate representation of ice coverage within the Canadian
Arctic Archipelago compared to the NASA Team algorithm
which can underestimate ice coverage between -7.1% and -
32.6% during the spring-melt and fall-freeze seasons.

The CIS ice charts are provided in a vector format that are
then rasterized to the same projection as the image data before
use. Additionally, the CIS defined ice types were aggregated
into five classes for these experiments by grouping together
similar CIS stage of development codes. Table I maps the CIS
codes that were aggregated into each of the class names used
in this study. The aggregation is done to ensure that there are
sufficient ground truth samples for each class since individual
stage of development codes may occur in only a few pixels in
the image. Since the ice chart polygon regions can have stage
of development codes that belong to more than one of the
classes in Table I, only regions with ≥ 70% total concentration
of one of the classes are considered ground truth to ensure that
only representative samples are used. The exception to this is
open water: only CIS regions that are explicitly marked as
open water were used as ground truth samples.

D. Study Period and Area

The study period covers a full year from September 2004
to August 2005. The specific dates used here were chosen
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because the associated CIS ice charts provide sufficient ground
truth samples for training (≥ 100 samples per class since
there are 10 bands available in the AMSR-E and QuikSCAT
combined data set, following the guideline of having at least
10 samples per band used in classification [30]) in the study
area of the Western Arctic around the Beaufort sea.

III. METHODS

A maximum likelihood (ML) classifier was used for all
experiments. The intent is to evaluate the data sources under a
common classifier rather than designing the best classifier for
the data. AMSR-E and QuikSCAT data have different units
so the bands must be scaled before being used as features,
ensuring that each feature is weighted fairly in distance
calculations [31]. In a classification context, features refer to
the properties of an object that help a classifier determine
the object’s class and they can be either direct measurements
of the object or can be extracted by some operation on the
measurements [31]. For the purposes of this study, a band
of AMSR-E or QuikSCAT data is a feature as the bands
are measurements of either the radiometric return or the
backscatter at different locations in the scene and hence can
be used by a classifier to help identify the type of ice that
exists there. Since there are multiple bands in the data set,
each spatial location has a feature vector, which consists of
the values of all the bands at that location.

To minimize the distortion of the data, rather than scaling of
all bands to a common range, the QuikSCAT dynamic range
was linearly scaled to the full range of the AMSR-E data.
Once the data are scaled, the combined feature set is created
by stacking the data values from each AMSR-E band and the
QuikSCAT bands into a ten dimensional feature vector at each
spatial location. Except for tests in Section IV-D (explained
later), each date was trained and validated independently with
random selection of training and testing samples by consulting
the CIS chart for that date.

The experiments required selecting feature (or band) subsets
to use in classification. This refers to selecting a subset of
the available bands to use in classification rather than all the
bands. Feature selection methods attempt to select the best
band subset of a given size based on some criterion J(X),
where X is the candidate subset [32]. For example, choosing
the best 3 bands to use in classification from the set of 10
bands in the AMSR-E and QuikSCAT combined data set could
be accomplished by exhaustively forming all possible 3 band
subsets and evaluating J(X) for each, picking the subset
that best satisfies the criteria. Exhaustive searching is not
computationally feasible so various non-exhaustive methods
have been devised [32]. A simple method is sequential forward
search (SFS) [33], which takes as input the desired number
of bands to use and starts by picking the one band that best
satisfies the criterion. It then searches the remaining bands
and finds the one that, together with the first selected band,
forms the best two band subset that satisfies the criterion. The
process continues until the desired number of bands to include
in the subset is reached.

SFS is not an optimal feature selection algorithm and can
choose suboptimal band subsets [34]. For the purposes of

this study, however, SFS was preferred because differences in
classification results between the combined data set and the in-
dividual data sets are easier to interpret with SFS. For example,
in a comparison between the best 4 bands selected from the
set of 8 AMSR-E bands and the best 4 bands selected from the
set of 10 AMSR-E and QuikSCAT bands, SFS guarantees that
if there is a difference in the results, the difference is directly
due to the QuikSCAT band(s) being included in lieu of some
AMSR-E band(s). This is because with the SFS algorithm,
the same 4 AMSR-E bands selected from the AMSR-E only
data set will be chosen from the combined data set if the
QuikSCAT bands are not part of the best subset selected from
the combined data set. More sophisticated feature selection
methods do not have this property due to how they work: they
might choose 4 AMSR-E bands from the AMSR-E only data
set and then a different subset of 4 AMSR-E bands from the
combined data set if the QuikSCAT bands are not part of the
best subset. In this case, differences in the classification results
will appear but these are differences between two different
subsets of AMSR-E bands rather than differences between
a subset of AMSR-E bands and a subset of AMSR-E and
QuikSCAT bands. Since the accuracy difference between SFS
and a more sophisticated method (Sequential Floating Forward
Search [34]) was not statistically significant for the data used
here, SFS was chosen to simplify interpretation.

As mentioned earlier, a criterion J(X) needs to be evaluated
in order to choose the best subset of bands to use. In this study,
the transformed divergence [35], a measure of how separable
two classes are based on the training data, between the two
least separable classes is maximized.

The κ (Kappa) coefficient and its confidence interval σ [36]
are used to evaluate classifier accuracy. κ is a measure of
overall classifier accuracy and is calculated from the error
matrix of the classification result being evaluated [37]. κ = 1
indicates that the classification result has perfect accuracy,
κ = 0 indicates that the result is no different than random
assignment and κ = −1 indicates that the classification
result is biased to be worse than random assignment. The κ
coeofficient is attractive for this study because the difference
between two κ values can be converted to a Z-value (a
normalized score with zero mean and unit standard deviation,
as seen in statistics), which can indicate whether the difference
in accuracy between two classification results is statistically
significant [37]. Z-values above 1.96 or below -1.96 can be
considered statistically significant differences at the 95% level.

In order to answer Research Question 3, PCA is used
as the data fusion method. Briefly, PCA involves using a
transformation on the original feature vectors as follows [35]:

y = Wx (1)

where x is the feature vector, W is the PCA transformation
matrix and y is the PCA transformed feature vector. The
matrix W is the matrix that diagonalizes the covariance matrix
of the original data and is formed by writing the eigenvectors
of the covariance matrix as rows [35].

Previous studies have used PCA as a data dimensionality
reduction method by keeping only the top few principal
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component bands which contain most of the variance of the
original data, such as in [18]. In this study, the use of principal
component analysis is investigated by comparing classification
results using a given number of principal component bands to
classification results using the same number of original bands.
This will determine whether PCA is a good method of data
fusion for the AMSR-E and QuikSCAT data set.

IV. RESULTS

A. Question 1: Augmenting AMSR-E with QuikSCAT

Table II shows Z-values which compare the classification
using only AMSR-E data and using combined AMSR-E +
QuikSCAT data at each band subset size. It compares the
“best” (as chosen by SFS) n bands chosen from the AMSR-E
data set against the best n bands of AMSR-E + QuikSCAT,
where n is the size of the band subset. The last two columns
compare all eight AMSR-E with the nine or ten combined
AMSR-E + QuikSCAT bands. The Z-values, as explained
in Section III, indicate whether the difference between the
AMSR-E only classification and the combined data set clas-
sification is statistically significant. For the most part, adding
QuikSCAT either makes a statistically significant (at the 95%
level) improvement over AMSR-E alone or does not hurt the
performance. A few rare cases show a significant decrease
but these are for smaller band subset sizes, which (as shown
later) perform worse than using all bands. The last column
shows that when all ten bands from the combined data set
are used, adding QuikSCAT improves the classification rate,
with more than half showing a statistically significant increase.
There is a very clear trend in July and August where AMSR-E
+ QuikSCAT shows no significant improvements over AMSR-
E alone. It appears that the benefits of augmenting AMSR-E
with QuikSCAT data for ice classification are eroded during
the summer.

Table III shows the κ of the classification results for
three different cases: using all eight AMSR-E, using both
QuikSCAT bands and using all ten combined bands. This gives
an idea of the classification performance via κ and shows
that the combined data set is better than either AMSR-E or
QuikSCAT alone. The combined data set provides a slight
increase in κ over the AMSR-E only data set for July and
August but, as discussed earlier, this increase is not large
enough to be statistically significant. Also of note in Table III
is that QuikSCAT alone cannot match the accuracy of AMSR-
E or the combined data set.

Table IV shows the percentage of the ground truth test-
ing samples of each individual ice class that was correctly
identified (the producer’s classification accuracy) on each
date, comparing the results from all 8 AMSR-E bands and
all 10 combined bands. The AMSR-E + QuikSCAT data set
shows improvements (in bold text) for all classes, presenting a
strong case that QuikSCAT is a good complement to AMSR-
E. During the summer months of July and August, however,
including QuikSCAT negatively influences the classification of
multiyear ice and open water. This is consistent with previous
results that indicate a weakness in the QuikSCAT data for
these months. In these cases, the weaker classification results

made the overall classification accuracy indistinguishable from
a statistical significance standpoint from the AMSR-E only
results.

Spatially, the AMSR-E 8 band and AMSR-E + QuikSCAT
10 band results are compared in Figure 1(a) for several dates.
Both data sets allow correct identification of many pixels
(gray) and incorrect identification of others (red). However,
AMSR-E + QuikSCAT is more often correct (blue) than
AMSR-E alone (yellow). The appearance of areas in yellow,
indicating that AMSR-E alone was correct for those pixels,
shows that the improvement due to QuikSCAT in some scenes
(such as 20050620 and 20050815) is only a net gain in
correctly identified pixels rather than an augmentation of the
AMSR-E data set. Inspection of QuikSCAT images from the
day before and the day after the date in question confirmed that
the problem is a transient weather phenomenon in the yellow
areas biasing the classification result towards the wrong class.

This weather effect is shown in Figure 2, which is a com-
parison of the 20050815 QuikSCAT image with the 20050816
image. QuikSCAT is susceptible to these transient weather
changes because of its high sensitivity to melt and wind rough-
ening of melt ponds on the surface causing large changes in
backscatter. This may lead to false ice typing with QuikSCAT
during freeze-thaw events and during the periods when melt
ponds have formed. The sensitivity of QuikSCAT backscatter
to wind-wave roughness means that wind roughened melt
ponds will contribute even more to the overall backscatter. This
wind roughness causes QuikSCAT backscatter intensities over
both FYI and MYI to be high and similar. The high backscatter
intensity can also be similar to an open water wind roughened
surface, making it difficult to distinguish between FYI, MYI
and open water. This appears to be the case in Figure 2 with
20050815 exhibiting strong backscatter intensities (i.e. a wind
roughened melt pond surface) and 20050816 low backscat-
ter intensities (i.e. calm weather conditions). The associated
AMSR-E images are less affected by this problem because the
physical temperature change due to the transient weather is not
large, so the measured brightness temperature does not change
much. When this weather induced problem does not exist,
the improvements due to QuikSCAT are complementary to
the AMSR-E only results (such as 20041004 and 20050829).
These results indicate that a method is needed to exclude
using QuikSCAT data when it is being disturbed by weather
phenomena.

A large amount of incorrectly identified pixels (red) in the
June and August results in Figure 1(a) correspond to multiyear
ice being incorrectly classified. This can be seen by comparing
the classification results in Figure 1(b) with the CIS ice charts
in Figure 1(c). These dates are well into the melt season for
2005 [13] so the classification is likely being affected by the
changing signature of the melting multiyear ice.

B. Question 2: Number of preferred bands
This section examines how the number of bands used affect

classification with the AMSR-E + QuikSCAT data set. Table V
shows Z-value comparisons between classifications using all
10 bands and those using subsets of 1 to 9 bands. The classifi-
cations using all 10 bands never have a statistically significant



5

TABLE II
Z-VALUES COMPARING THE CLASSIFICATION RESULT USING THE SPECIFIED NUMBER OF BANDS CHOSEN FROM THE AMSR-E ONLY DATA SET AGAINST

THE SPECIFIED NUMBER OF BANDS CHOSEN FROM THE COMBINED DATA SET. EACH VALUE COMPARES THE CLASSIFICATION PERFORMANCE OF THE
BEST (AS CHOSEN BY THE SFS ALGORITHM) SET OF BANDS FROM EACH DATA SET, WITH POSITIVE VALUES INDICATING THAT THE COMBINED DATA SET
HAS HIGHER ACCURACY AND NEGATIVE VALUES INDICATING THAT THE COMBINED DATA SET HAS LOWER ACCURACY. THE LAST TWO COLUMNS (9 VS 8
AND 10 VS 8) COMPARE THE RESULTS WITH 9 OR 10 BANDS CHOSEN FROM THE COMBINED DATA SET WITH THE RESULTS FROM ALL 8 AMSR-E BANDS.

Number of Bands Used For Classification
Dates 1 2 3 4 5 6 7 8 9 vs 8 10 vs 8

20040906 -3.34 -0.29 -0.02 0.78 1.00 0.52 -0.80 0.43 0.23 0.14
20041004 -7.31 4.57 2.79 6.91 4.16 1.50 3.03 4.45 4.82 3.92
20041025 24.11 4.73 1.00 2.20 2.20 1.95 1.84 1.78 2.28 2.53
20041108 - - - - - - 1.59 1.71 2.46 3.62
20050301 - -1.36 0.56 1.81 0.14 0.23 1.21 0.76 0.89 0.94
20050601 -0.73 0.51 2.05 0.36 0.26 0.80 -1.52 -0.06 1.65 2.57
20050613 - 1.32 3.09 1.30 3.30 3.44 4.48 3.89 4.83 4.62
20050620 - 9.20 10.05 10.33 12.89 10.08 10.90 11.04 11.79 12.04
20050704 4.72 7.99 1.78 2.41 3.87 3.36 4.04 3.44 4.36 4.78
20050711 - 3.15 0.36 1.20 3.41 3.78 4.12 3.77 3.99 4.91
20050718 - - - - - -1.78 -0.41 -0.37 -0.16 0.06
20050725 - - -1.79 1.80 0.15 1.55 1.02 0.56 0.46 0.51
20050801 - - -1.43 1.13 0.33 -0.07 -0.81 -0.44 -0.39 0.29
20050808 - - -0.75 1.50 0.50 2.03 0.41 1.87 1.91 1.63
20050815 - - -0.22 -0.88 0.19 -0.11 -0.22 1.27 0.83 1.04
20050822 4.29 -1.64 -1.07 1.67 2.13 0.46 0.24 1.14 2.10 2.50
20050829 - - - 0.38 2.66 1.21 2.04 5.42 5.68 5.81

Bold = AMSR-E + QS has higher accuracy (95% significance level)
Italic = AMSR-E has higher accuracy (95% significance level)

Plain = Not significant; Dash = QS not chosen by SFS.

TABLE III
κ VALUES OBTAINED FOR THREE CASES OF CLASSIFICATION RESULTS:
USING ALL 8 AMSR-E BANDS, USING BOTH QUIKSCAT BANDS AND

USING ALL 10 AMSR-E + QUIKSCAT (10 BANDS) DATA SETS.

κ
Dates AMSR-E QS AMSR-E + QS

20040906 0.87 0.81 0.87
20041004 0.78 0.67 0.82
20041025 0.62 0.60 0.65
20041108 0.57 0.56 0.64
20050301 0.88 0.88 0.89
20050601 0.63 0.49 0.67
20050613 0.59 0.30 0.66
20050620 0.40 0.44 0.60
20050704 0.51 0.46 0.59
20050711 0.55 0.46 0.64
20050718 0.73 0.42 0.73
20050725 0.68 0.43 0.69
20050801 0.68 0.43 0.69
20050808 0.69 0.50 0.71
20050815 0.71 0.52 0.73
20050822 0.62 0.43 0.66
20050829 0.66 0.43 0.74

Bold = AMSR-E+QS has higher accuracy (statistically significant)

reduction in accuracy compared to classifications using any
subset of the 10 bands. With a reduced number of bands,
there are more cases of significant increases in accuracy due
to using the full set of bands. Table V indicates that the data is
not suffering from the “curse of dimensionality” [38], which
refers to the problem where increasing the number of features
(in this case bands) used in classification results in lower
classification accuracy. The classification using all 10 available
bands results in improvements over the smaller subsets or does
not make a statistically significant difference. Therefore, the
full set of bands should be used to take maximum advantage of
all the information available. This is important because feature
selection does not always choose the QuikSCAT band even

though it offers additional information, as shown earlier by
the dashes in Table II.

Table VI shows the order in which bands from the AMSR-
E + QuikSCAT data set were chosen by the SFS algorithm.
This shows the relative ranking of the bands in terms of
maximizing the minimum class separability for each date. The
QuikSCAT H-pol band is frequently chosen as one of the
first 3 bands which shows that it provides good separability.
The band scoring portion of the table takes the band order
and calculates a rough score that allows for ranking of the
bands over all dates. It shows that, overall, QuikSCAT-H is
a favoured band by the SFS algorithm to maximize class
separability. The second best is the 36-H band. Comparatively,
the QuikSCAT-V band is not as favourable to maximizing class
separability. Although these rankings show that some bands
offer more class separability, they are not necessarily indicative
of classifier performance. For example, the QuikSCAT band
was chosen as the first band from the combined data set
for 20040606 and 20041004 and yet it was shown earlier in
Table II that this had a worse classifier performance than using
the AMSR-E band that was chosen first using the AMSR-E
alone data set. These indicate that feature selection can be
wrong and provide further evidence that all the bands should
be chosen to ensure that the full amount of information is
used.

C. Question 3: PCA data fusion

The previous section has shown that increasing the number
of bands used in classification does not result in any loss
of classification accuracy. It also indicated that using an
insufficient number of bands for classification results in poorer
performance at a statistically significant level. This shows that
useful information in all the bands is not fully captured using
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Fig. 1. (a) A spatial comparison of accuracy between the 8 band AMSR-E only and the 10 band AMSR-E + QuikSCAT data set for 4 dates. Colours at each
pixel indicate how each data set performed when classifying that pixel. Although the combined data set improves classification overall (as indicated by the
abundance of blue pixels), there are cases such as for 20050815 where certain portions of the image (yellow) are more accurately classified by the AMSR-E
alone data set. (b) Classification results with the 10 band combined data for the same 4 dates. (c) Canadian Ice Service ice charts.

subsets of the original bands. In this section, PCA data fusion
is investigated to determine if it can extract useful information
from all the bands into a representation with fewer dimensions.
Previous research on multisensor sea ice classification has used
PCA data fusion in this manner [18] but it remains to be seen
whether the same technique will work for the AMSR-E +
QuikSCAT data set.

The PCA transform was applied to the combined AMSR-E
+ QuikSCAT data set. Table VII shows the Z-values which
compare the classification results which use the principal
component (PC) bands and classification results that simply
took subsets of the original bands. Each column indicates the

number of bands used for both the PCA transformed data
and the original data. For the PCA transformed data, the
specified number of PC bands corresponding to the largest
eigenvalues (and hence accounting for the greatest variance
information) were kept. For the original data, SFS was used
to select subsets of the specified size. The results show that
using PCA for dimensionality reduction does not result in any
clear advantage over using SFS alone. In some cases, PCA
provides better results but there are also a large number of
statistically significant decreases in classification performance
as compared to using the original bands. The majority of
cases when using only a single principal component shows



7

TABLE IV
PRODUCER’S CLASSIFICATION ACCURACY, WHICH INDICATES THE

PERCENTAGE OF GROUND TRUTH TESTING SAMPLES OF EACH INDIVIDUAL
ICE CLASS THAT WAS CORRECTLY IDENTIFIED, FOR EACH DATE USING
THE FULL 8 BAND AMSR-E (A) DATA SET AND USING THE COMBINED

10-BAND AMSR-E + QUIKSCAT (A+QS) DATA SET.

Accuracy (%)
Dates Data Set New Young FY MY Water

20040906 A - - 79 91 96
A+QS - - 74 92 96

20041004 A 70 87 - 85 92
A+QS 74 88 - 89 93

20041025 A 72 60 89 78 96
A+QS 75 67 91 78 96

20041108 A - 78 82 80 -
A+QS - 83 81 85 -

20050301 A - - 94 95 -
A+QS - - 94 95 -

20050601 A - - 85 73 95
A+QS - - 86 76 95

20050613 A - - 69 77 97
A+QS - - 77 79 97

20050620 A - - 51 71 95
A+QS - - 76 74 95

20050704 A - - 53 84 97
A+QS - - 65 83 97

20050711 A - - 57 88 93
A+QS - - 70 87 94

20050718 A - - 85 84 95
A+QS - - 86 84 94

20050725 A - - 74 84 94
A+QS - - 78 82 94

20050801 A - - 68 84 96
A+QS - - 70 84 95

20050808 A - - 85 79 97
A+QS - - 90 81 94

20050815 A - - 77 80 96
A+QS - - 87 80 96

20050822 A - - 88 67 96
A+QS - - 91 71 96

20050829 A - - 79 74 95
A+QS - - 87 81 96

Bold = AMSR-E + QuikSCAT has higher accuracy.
Italic = AMSR-E has higher accuracy.

Plain = No difference.

Fig. 2. An example of a transient weather effect in a QuikSCAT image. The
QuikSCAT image for the day immediately after 20050815 shows a marked
change in backscatter intensity for this location, corresponding to the location
(indicated by the arrows, also see the comparison in Figure 1(a) for 20080815)
where the classification using AMSR-E + QuikSCAT was incorrect while
the classification using AMSR-E alone was correct. This effect appears to
be responsible for the poorer performance of the combined data set at that
particular location.

a decrease in performance. The first principal component,
rather than being a useful combination of all the original

bands, is a poor band to use when compared to the best
single band chosen by SFS. As the number of bands used
increases, PCA and SFS results approach each other so that
there are few significant differences in classification accuracy.
This experiment shows that PCA is not an advantageous data
fusion technique for these data.

D. Question 4: Reliability of training data over time

In the previous experiments, each date was trained indepen-
dently. In this section, training is done with all samples from
one date and applied to classify other dates in 2004 to 2005,
with one date being classified at a time. The test is repeated
by training with each date that has sufficient training samples.
This experiment reveals the applicability of the training data
over time. The classification results are binned by the absolute
number of days between the date of the training data and the
date being classified (∆Days). The bin size is 15 days. Figure 3
shows the mean κ calculated from all the classification results
in each bin as a function of ∆Days. Error bars indicate the
standard deviation of the κ values in each bin. As expected,
accuracy decreases with increasing ∆Days. The AMSR-E +
QuikSCAT data set has higher average κ than the AMSR-
E alone data set for larger ∆Days, suggesting more time
invariance but with large ∆Days, the κ values have a higher
spread and there are negative κ values. Negative κ indicate that
the results are biased to be worse than even random assignment
and are clearly unacceptable. Overall, the QuikSCAT only data
set seems to have the most time invariance as indicated by
higher average κ but it is not entirely consistent and there
is a high spread. Additionally, the largest average κ obtained
over all ∆Days for the QuikSCAT only data set is not any
higher than the best values from the combined data set which
is obtained within 30 days of the training date. This test shows
that training data within 30 days of the date being classified is
acceptable, an important consideration if a database of training
data is to be created for automated classification.

V. CONCLUSION

This work has shown that the combined data set gives
statistically better results than either AMSR-E or QuikSCAT
data alone for sea ice classification. The data appear to be com-
plementary, providing classification accuracy improvements in
all ice types. Using the full 10 bands of AMSR-E + QuikSCAT
is recommended since this uses all of the available data without
suffering from dimensionality problems. The use of PCA for
data fusion is not motivated by the test results as it does
not offer any consistent and statistically significant advantage.
Training data for this data set appear to be valid for only
about a month, so training databases will have to be designed
accordingly. Although the findings here are strictly for the
western Arctic area, preliminary tests that consider the entire
Arctic show similar results. This will be investigated in more
detail.

Future work should look at improving the classification
accuracy in an absolute sense, since there are instances where
even the combined data set is classified incorrectly. This im-
provement may be obtained by designing a different classifier
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TABLE V
Z-VALUES COMPARING THE CLASSIFICATION RESULTS USING THE FULL SET OF 10 AMSR-E + QS BANDS WITH CLASSIFICATIONS DONE USING

SUBSETS OF THE AMSR-E + QS BANDS OF THE SPECIFIED SIZES.

Number of Bands Used For Classification
Dates 1 2 3 4 5 6 7 8 9

20040906 5.54 1.60 1.22 1.06 0.54 -0.03 0.74 -0.29 -0.09
20041004 13.36 6.08 5.81 1.06 1.29 1.09 0.67 -0.54 -0.91
20041025 3.39 4.61 4.04 3.28 1.60 1.71 0.76 0.75 0.25
20041108 12.91 5.77 2.99 3.92 4.33 5.12 2.19 1.90 1.15
20050301 -0.39 0.31 -0.09 0.36 0.40 0.00 -0.23 0.18 0.05
20050601 12.60 10.09 8.14 7.33 6.35 5.74 5.04 2.63 0.92
20050613 24.01 11.51 9.08 6.91 3.80 2.54 1.15 0.74 -0.22
20050620 25.07 10.16 6.58 5.21 2.84 3.63 0.98 1.01 0.25
20050704 10.52 6.56 7.48 5.24 4.32 4.12 1.96 1.34 0.42
20050711 11.26 8.67 6.25 3.63 1.21 1.09 0.84 1.16 0.93
20050718 9.65 6.96 5.14 3.07 4.31 3.38 1.43 0.43 0.22
20050725 7.94 9.19 8.73 6.03 3.22 0.85 0.15 -0.06 0.05
20050801 2.85 6.95 5.66 4.43 2.30 1.46 1.49 0.73 0.68
20050808 8.26 9.62 4.88 2.32 2.10 0.87 1.13 -0.24 -0.28
20050815 3.41 7.21 3.67 3.05 2.29 1.99 1.24 -0.24 0.21
20050822 24.02 13.31 9.45 6.40 4.05 4.23 2.84 1.35 0.40
20050829 24.62 12.96 15.46 10.30 5.90 4.86 4.00 0.38 0.12

Bold = Full set of bands has higher accuracy; Plain = Not significant.

TABLE VI
THE ORDER IN WHICH BANDS FROM THE COMBINED AMSR-E + QUIKSCAT DATA SET WERE CHOSEN BY THE SFS ALGORITHM FOR EACH DATE ARE
SHOWN. THE SCORE OF EACH BAND USING THE BAND ORDER INFORMATION FOR ALL DATES IS ALSO SHOWN, INDICATING THAT QUIKSCAT-H IS THE

TOP BAND ACCORDING TO CLASS SEPARABILITY.

Band Order
Date 1 2 3 4 5 6 7 8 9 10

20040906 QS-H 36-V 23-H 18-H 18-V 36-H 89-H 89-V 23-V QS-V
20041004 QS-H 18-V 36-V 36-H 89-H 23-H 23-V QS-V 89-V 18-H
20041025 QS-H 36-V 36-H 89-V 18-H 23-V 89-H QS-V 18-V 23-H
20041108 89-V 36-H 36-V 18-V 23-V 23-H QS-H 18-H 89-H QS-V
20050301 23-V QS-V 89-H 18-V 18-H 36-V 89-V 36-H QS-H 23-H
20050601 QS-H 23-V 18-V 36-V 23-H 36-H 89-H QS-V 18-H 89-V
20050613 89-V QS-H 89-H 18-V 23-V 36-V QS-V 36-H 18-H 23-H
20050620 89-V QS-H 23-H 36-V 18-V 89-H 18-H 36-H QS-V 23-V
20050704 QS-H 18-H 23-H 36-H 89-V 36-V QS-V 18-V 23-V 89-H
20050711 36-H QS-H 23-V QS-V 18-H 23-H 89-H 36-V 18-V 89-V
20050718 36-H 23-V 23-H 18-H 36-V QS-H 89-H 89-V QS-V 18-V
20050725 18-V 18-H QS-H 36-H 23-H 89-V 89-H 36-V QS-V 23-V
20050801 36-H 89-V QS-H 23-H 18-V 23-V 36-V 89-H QS-V 18-H
20050808 36-H 36-V QS-H 89-V 89-H 23-H 23-V 18-H 18-V QS-V
20050815 23-H 36-V QS-H 23-V 89-H 36-H 89-V 18-H 18-V QS-V
20050822 QS-V 36-V 36-H 89-V 18-H 23-V 23-H 18-V QS-H 89-H
20050829 89-H 18-H 18-V QS-V 89-V QS-H 36-V 23-H 23-V 36-H

Band Scoring Based on Order, Score =
∑

d∈All Dates
11−BandOrder(Band, d)

Band 18V 18H 23V 23H 36V 36H 89V 89H QSH QSV
Score 89 57 77 100 65 138 113 89 145 62
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(a) AMSR-E only, 8 bands.
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(b) QuikSCAT only, 2 bands.
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(c) AMSR-E and QuikSCAT, 10 bands.

Fig. 3. Average κ obtained for classification results on dates that are ∆Days from training dates for the separate data sets as well as the combined data set.
The average kappa indicate that classification is best for dates that are close to the training date or nearly one year away. Dates that are within 30 days of the
training date seem to be classified well.
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TABLE VII
Z-VALUES COMPARING AMSR-E + QS WITH PCA DATA FUSION AGAINST USING THE ORIGINAL AMSR-E + QS BANDS. THE COLUMNS INDICATE THE

NUMBER OF BANDS USED IN CLASSIFICATION FOR BOTH CASES.

Number of Bands Used For Classification
Dates 1 2 3 4 5 6 7 8 9

20040906 2.73 -0.44 -1.58 -1.04 -0.65 -1.54 0.27 -0.90 0.06
20041004 7.48 -0.70 -0.69 -5.59 0.02 1.80 1.74 0.86 0.13
20041025 -4.76 2.21 2.48 1.83 -0.70 -0.03 -1.38 -0.37 0.02
20041108 -15.71 6.06 5.29 5.57 5.13 5.44 2.50 2.25 1.59
20050301 -16.76 0.18 -0.55 -0.32 0.26 0.85 0.09 0.58 0.27
20050601 -13.16 -2.01 0.72 0.53 1.56 2.21 2.39 1.94 1.28
20050613 -2.40 -9.39 0.27 -1.39 -1.37 -2.54 -2.24 -0.50 -0.68
20050620 5.70 -2.66 0.51 0.42 -1.11 0.09 -1.89 0.85 -0.10
20050704 -2.52 -1.99 -1.27 -0.54 0.24 1.17 -0.49 0.09 -0.33
20050711 -3.95 -1.75 -1.29 -0.64 -0.43 0.00 0.00 0.04 0.38
20050718 -2.87 -4.81 -5.19 -3.42 -1.91 -0.60 0.52 -0.12 -0.04
20050725 -2.02 0.59 1.32 -0.78 -0.53 -2.09 -0.30 -0.20 0.01
20050801 -6.23 1.94 -0.45 -0.51 -2.86 -2.56 -2.08 -1.30 -0.05
20050808 0.17 1.41 1.94 -0.69 -0.67 -1.84 -0.91 0.06 -0.34
20050815 -6.68 4.35 -0.22 0.46 -0.40 -1.44 -1.58 -0.59 -0.03
20050822 6.01 1.86 -0.88 -0.97 -2.06 -0.55 1.26 -0.21 -0.66
20050829 7.20 -4.50 2.38 -1.96 -4.16 -4.18 -1.50 0.17 0.22

Bold = PCA has higher accuracy; Italic = Original bands has higher accuracy
Plain = Not significant

or using another method of data fusion. The results presented
in this study show that QuikSCAT provides additional infor-
mation. The work that remains is how to make the best use
of it.
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