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Abstract: It is common practice in passive microwave remote sensing (microwave

radiometry) to express observables as temperatures and in the case of polarimetric

radiometry to use what are called "Modified Stokes Parameters in Brightness

Temperature" to describe the scene. However, definitions with slightly different

normalization (with and without division by bandwidth) have appeared in the literature.

The purpose of this manuscript is to present an analysis to clarify the meaning of terms in

the definition and resolve the question of the proper normalization.

I. Introduction

It is common practice in passive microwave remote sensing (microwave radiometry) to

express observables as temperatures, a practice apparently inherited from radio

astronomy [la, 2a] . In the case of polarimetric radiometry it is common to use the

notation of Stokes parameters but with the correlations normalized to units of temperature

(e.g. [3]). The terminology has recently been clarified in the "Standard Terminology for

Microwave Radiometry", a monograph of definitions prepared by the radiometry

community, where the normalized correlations are called "Modified Stokes Parameters in

Brightness Temperature" [4, 5]. The definition in Chapter III of this monograph is:

TV	_ [k'/r1kBw] < E,	 2> (la)

Th	 = [k2/TlkBw] < Eh	 2> (1b)

T3	_ [k2/TlkBw] 2 Re <E„ Eh *> (lc)

T¢	 _ p,2/ilkBw] 2 Im <E,, E h *> (1d)

where A is the wavelength, k is the Boltzmann's constant, Bw is bandwidth and q is the

wave impedance of the medium. As will be pointed out below, there is ambiguity with



the meaning of expressions such as < I E, 1 2>. There also appears to be disagreement

regarding the form of Equations 1 and versions have appeared in the literature with and

without the presence of bandwidth, , Bw, on the right hand side [6, 7, S]. The purpose of

this manuscript is to present an analysis, in the context of radiometry, to clarify the

meaning of the quantities on the right-hand side of Equations 1, Our goal is to resolve

the question of the proper normalization in these expressions and to add insight into the

definitions presented in the "Standard Terminology for Microwave Radiometry" [4].

One approach for obtaining Equations 1 is to model the radiometer response along the

lines of classical radio astronomy (i.e. in terms of the incident brightness) and then use

arguments from electromagnetic theory to relate the brightness to the electromagnetic

fields. This two-step approach is outlined in Appendices A and B, respectively. A

slightly different approach is adopted here in an effort to relate the results more directly

to polarimetric measurements as used in contemporary microwave remote sensing

radiometry. The analysis begins in Section II with the output of an idealized correlation

radiometer. Section III rewrites the output as equivalent temperature and Section IV puts

the results in the form of Equations 1. An interpretation in terms of familiar results is

given in Section V. We conclude that when < I Ep 1 2>/,q is equivalent to the source

brightness at polarization "p", then the bandwidth, Bw, should not appear in Equations 1.

II. Radiometer Response

Consider the idealized "correlation" radiometer shown in Figure 1. It consists of two

paths whose signals are multiplied together and averaged. The multiplication is

"coherent" (i.e. phase and amplitude are measured). For the purpose of this investigation,

the details of the implementation with real hardware (e.g. [9]) is omitted and all the

operations are assumed ideal: The antenna is lossless and its output voltage, ep(t), is the

input to an ideal receiver (no noise, no cross-coupling, ideal operations). In this idealized

case, hp(t) denotes the effective impulse response of the arm with polarization, p = Ip,g1,

and the last step after the multiplication (operationally a low pass filter) is assumed to be

sufficiently narrowband to be represented by an integral. An idealized receiver is
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appropriate here because the goal is to determine the form which the input takes after

processing rather than the limits that real hardware place on estimating this quantity.

A correlation receiver has been taken as the starting point to be general and also to

explicitly include the processing involved in polarimetric radiometry. A total power

radiometer is a special case when the two paths are identical. In the more general case,

the system represents a single antenna with two different polarization ports (e.g. p = h

and q = v) as is appropriate for polarimetric radiometry. In principle, the schematic could

also represent measurements with two different antennas as would be the case, for

example, in an interferometer or synthetic aperture radiometer [ 10]. The analysis in this

case follows as outlined below, but one must explicitly include the relative distance

(spacing) between the antennas [11]. Including this term and realistic constraints [11,12]

complicates the analysis and since it is not pertinent to the issue at hand, this case is not

included here

Fig. 1: Receiver architecture. The output signal, ep(t), from each antenna
is the input to an ideal correlating radiometer receiver. The antenna is
described by its complex voltage patterns and the receiver path is described
by its impulse response, hp(t).

The output of the receiver in Figure 1 can be written:

7

vpq(t)	 _	 (1/2 11) f [ep(t-t')*hp(t-t')1 [eq(t-t')*hq(t-t')] dt' 	 (2)
-z
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Equation 2 is the result of three operations: a) The response of each arm (p,q) of the

receiver which is given by the convolution e(t)*h(t); b) the product of the signal out of

each arm which is the product of the two convolution pairs (i.e. the terms in square

brackets); and c) the time average of the product. The last step is represented by the

integral over the parameter V. The parameter, T, represents the equivalent time constant

of the last stage of the receiver in Figure 1 and the integration is over a window of width

2Tcentered at t. In Equation 2, the asterisk "*" indicates a convolution but in all the

work to follow it will indicate the complex conjugate. Replacing the terms in the

integrand of Equation 2 with their Fourier transform and using the fact that they are real

quantities, one obtains:

T

Vpq(t) = (1/2 11) J f dv 
f 

dv' Ep(u)Eq*(v') Hp(u)Hq*(v') exp[-j27c(u-v')(t-t')] dt' (3)
-T

Ep(v) and Hp(v) denote the Fourier transform of the time domain functions, ep(t) and hp(t),

respectively. (See Appendix B for a definition of the Fourier transform pair.) Following

convention, Ep(v), can be written in terms of the incident electric fields, 4(91, v), and the

complex "voltage" patterns, 4(0, u), of the antennas [13]:

Ep(u) _ NA, 
f 

Ep(Q, u)4(0, u) dQ
	

(4)

4rr

where Ap is the effective area of the antenna [lb, 2b] and Q is solid angle: Q = 18,9 )and

dQ = sin(8)dOdy. Substituting Equation 4 into Equation 3, one obtains:

T

Vpq(t) = (1/27) f { J J N'(A A,) f J x(Q , u)Eq*(Q' v') Ap(Q, u) A q*(Q',v') ...

-T

... Hp(v)Hq*(u')exp[-j27c(u-v')(t-t')] M dS2' dv dv' I dt' (5)
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Since the application is to remote sensing of natural sources, the incident field will be

modeled as a random process. Consequently, the radiometer output will also be a random

process. The goal is to compute the expected value of the radiometer output, < Vpq(t*

T

<Vpq(t)> = (1/27) f f f f ^(ApAq) J f <4(Q, v)Eq*(S2' v')> Ap(Q, v) .Aq*(ff,v') ...
-T

	

.. Hp(v)Hq*(v')exp[( j2n(v-v')(t-t')]dS2 dS2' dv dv' } dt' 	 (6)

To simplify the analysis, it is assumed that the process is stationary and that the fields,

'£,(S2, v), arriving at the antennas from different directions are uncorrelated, common

assumptions in remote sensing of "natural" scenes [14]. These assumptions can be

represented formally by writing:

< 4(S2,v)Eq 2',v')>	 = Spq(Q,v) 6(v - v') 6M - 0 ')
	

(7)

where S pg42,v) is the cross-spectral density associated with the incident electromagnetic

field. (See Appendix C for a discussion of the meaning of S pq(0,v) and the use of Fourier

transforms in this context.) Using Equation 7, one obtains:

<Vpq> _ y(ApAq) f 1 Spq(Q,v) Jgp(Q, v) Aq*(Q,v) H p(v)Hq*(v) dQ dv	 (8)

Because of the assumed stationarity, the expected value of the radiometer output,

<Vpq(t)>, does not depend on time, and the notation has been simplified to reflect this.

When the passband of the receiver, Hp ,q(v), is narrow compared to the scale of change

with frequency of the spectral density and the antenna, one has approximately:

<Vpq> z ^(ApAq) f Spq(f2,vo).gp(n,1)0) .Aq*(S2,vo) do J Hp(v)Hq*(v) dv	 (9a)

	

Bw Hopq ( ^(ApAq) J SpqAvo) 4(n, vo) %q*(S2, vo) dO }	 (9b)
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where vo is the center frequency of the radiometer receiver and

Bw	 =	 If Hp(u) Hq*(v) di) } / Hp(i)o) Hq*(uo) 	 (10)

H0pq =	 Hp(i)o) Hq*00)	 (11)

The bandwidth, Bw , defined in Equation 10 is the common definition of "noise-

equivalent bandwidth" [2c, 4]. It is implicit in the definitions above that the gain of the

system is a maximum at the center frequency, vo.

III. Antenna Temperature

The convention used in radiometry is to express the output as a temperature, T, by

equating the output power to the noise power available from a resistor at this temperature.

At microwave frequencies (i.e. in the Rayleigh-Jeans approximation) one has: [ 15,16] :

W = kTBw. In order to obtain the radiometer output in units of power, notice that

<Vpq>/rl has units of power. The choice of the impedance, fl =is/µ, for the

normalization is justified by the application to the observation of electromagnetic fields

and Poynting's theorem (e.g. see Appendix B). Dividing both sides of Equation 9 by rl

one has:

<Vpq>/Tl =	 kTBw	 (12)

I(ApAq) Bw f [ Spq(Q)/11] 4(Q) Aq*(S2) dS2	 (13)

For convenience, in Equation 13 the system gain has been set to unity (H opq = 1) and the

explicit dependence of Spq(n) and Ap ,q(Q) on frequency vo has been omitted. Equation

13 is the sum of the incident power over all directions weighted by the effect of the

antenna. From Equation 13, it can be seen that the dimensions of S pq(Q)/Tl are

Watts/(meter'`-steradian-Hz). These are the dimensions of "brightness" [la]. (In optics
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this quantity is called "spectral radiance" and in microwave radiometry the name

"spectral brightness" has also been used [2d]

To obtain results in conventional form, the effective area in Equation 13 is replaced by

the antenna beam "solid angle" [lb]:

AP 	X' /QBp	 (14)

where k is evaluated at the center frequency uo and QBp is the integral over the

normalized antenna pattern. Equating the right-hand sides of Equations 12 and 13 and

using Equation 14, one obtains:

TAP, = [I/' ( QBP QBq) ] J (k2/rlk) SPq(Q) Ap(Q) A q*(Q) dK2	 (15)

The term, TApq, in Equation 15 is a measure of the output power of the radiometer and is

called the "antenna temperature".

IV. Modified Stokes Parameters

In the special case p = q, Equation 15 becomes:

TAPP = 0/ QB p) f (),'/rik) Spp(Q) P, ,(Q) do 	 (16)

where Pp = Ap(S2, v) Ap*(E2 ,u) is the normalized antenna power pattern [2b]. Comparing

Equation 16 with Equation A6 (Appendix A) one sees that the term (k `/ilk) Spp(Q) in

Equation 16 plays the role of the brightness temperature of the source:

Tpp(())	 =	 brightness temperature of the source at polarization, p

_	 (^,'/rlk) S PPw)	 (17)
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Alternatively, one could use the discussion below Equation 13 or in Appendix B

identifying S pp(SZ) )/l with brightness. Then, assuming an unpolarized source and using

the Rayleigh-Jeans approximation for applications to observations in the microwave

spectrum, one has:

SP02) N	 =	 Brightness at polarization, p

k TPP(o) / X2	(18)

which is the same as Equation 17. The factor of 2 in the Rayleigh-Jeans approximation is

not present above because this is the power at a single polarization.

The definition of brightness temperature can be generalized by adapting the relationship

in Equation 17 to the general case of mixed polarization:

Tpq(Q) =	
(X2

/ilk) SPq(Q)
	

(19)

The temperature on the left hand side of Equation 19 is a brightness temperature (a

characteristic of the source) in contrast to Equations 15 or 16 where the temperature on

the left hand side represents the output of the measurement system (antenna temperature).

Finally, adopting the notation of modified Stokes parameters for brightness temperature

as used in polarimetric radiometry [3], one can write Equations 19 in the form of a four-

element vector:

TPP T, Sppw)

Tqq Th Sqq(n)
2

2Re TPq T3 2 Re Spq(n)

21m TPq T4 2 Im Spq(n

(20)
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The notation [T,, Th T3 T4] in the middle set of brackets in Equation 20 is what is called

in radiometry, "Modified Stokes Parameters in Brightness Temperature" and assumes

that v = p and q = h.

V. Generalized Brightness

It is also possible to use the relationships above (e.g. Equations 18 and 19) as the basis

for defining a generalized brightness temperature for sources with mixed polarization:

Bpq = s pq(n) hl. Following the procedure above, one can define a 4-vector brightness:

B PP	 SPP(Q, ?))

Bqq	 SggA v)

[Bpq] _	 = 1 / Tj
	

(21)
2 Re B pq	 2 Re Spq(Q, v)

2 Im B pq	 2 Im Spq(92, v)

The results can also be written in matrix form:

BPP	 Bpq	 SPP(92, 1)) / Tl	 Spq(Q, D) / Tl

[Bpq] =
	

(22)

B pq* Bqq 	 LSPq(D, u)* / TI	 Sgq(Q, v) / Tl

The matrix defined in Equation 22 has the form of the coherency matrix defined in optics

[ 17a]. The terms in Equation 22 have dimensions of brightness. However, normalizing

by the factor B o = ( ySppSgq )/ f1 yields a matrix of dimensionless elements which is

identical to the "degree of coherence" defined in optics [ 17a]:

t"Pq	—	 [Bpq]/Bo	 (23)
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Following the optics definition, the special case of unpolarized radiation (i.e. natural,

thermal radiation), is defined to be the case when Ppq = S pq (i.e. zero when p 0- q and 1

when p = q). From thermodynamic arguments in this case (Planck law and the Rayleigh-

Jeans approximation) one has that: Bo = k T/ k2 . Assuming unpolarized radiation, and

using Equation 23 and Equation 22, one has:

Bpp + Bqq	 =	 [ Spp(f2, D) + Sgq(Q, v) ] / 11
	

(24a)

2kT/k2
	

(24b)

The term on the right in Equation 24b is just the Rayleigh-Jeans approximation for the

brightness of an unpolarized source. From the discussion above, it is clear that it applies

to unpolarized, "natural" radiation and represents the total power, the sum of both

degrees of freedom (both polarizations).

The same information is contained in the modified Stokes parameters. Using Equations

20 and 22, it is also possible to express the brightness in terms of the modified Stokes

parameters:

T,.	 (T3 + i T4)/2
[B,h]	 _ (k / X2)	 (25)

(T3 - i T4)/2	 Th

Comparing the expression above with case of plane waves [ 17a] suggests some important

special cases:

1. Natural radiation: T3 = T4 = 0 and T„ = Th;

2. Linearly polarized radiation: T4 = 0;

3. Reflected natural radiation: T3 = T4 = 0 and TV 0 Th.

Item 3 above is the circumstance encountered when microwave radiation from a thermal

source such as the Sun or Moon is reflected from a surface such as the Earth to the

observer. This is a common occurrence in microwave radiometry and points out the need
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for a more generalized form for scene brightness than the classical Rayleigh-Jeans

approximation: B = 2 k T/ k2. It is possible in this case that T 3 :^ 0 and/or that T4 ^6 0.

The former can occur due to polarization rotation such as occurs in the ionosphere (e.g.

Faraday rotation) or due to simple misalignment of the antenna polarization vectors. The

later (T4 :^ 0) is possible with scattering from rough surfaces when polarization mixing

occurs [18]."

VI. Discussion

Equations 20 are the "Modified Stokes Parameters in Brightness Temperature". Writing

them in the format of Equations 1, one obtains:

TV	_ [a,21r7k] <S" (S2,1))> (26a)

Th	 = p.21r7k] <Shh (Q,v)> (26b)

T3	= [k2h1k] 2 Re <S„h(Q,v)> (26c)

T4	— [X2h1k] 2 Im <Svh(S2,v)> (26d)

The dependence on Q and u on the left-hand side of these expressions has been

suppressed: T„ = T„(Q,u). The parameters Tv, Th, etc on the left side of Equations 26

are characteristics of the scene to be used in integral expressions such as Equation A6

(Appendix A) to compute the radiometer output. The dimensions on the left-hand side

are Kelvin/steradian [19] which is consistent with this application (i.e. integration by the

antenna of the radiation per unit solid angle incident from a given direction).

Notice that the radiometer system bandwidth, Bw, does not appear in these expressions.

This is reasonable since Equations 26 are parameters of the scene (brightness) and should

be independent of the measurement device. These expressions are also dimensionally
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consistent which can be seen by recalling that Spq(Q, v)1 rl has units of brightness and

that Boltzmann's constant has units of Joule/Kelvin.

Writing Equations 26 in terms of electric fields, for example as done in Equations 1, is

problematic because of the issues associated with defining Fourier transforms in the case

of stationary random processes. One can avoid this issue by using the definition of the

spectral density:

Spq(v) = F[ Rpq(i) ]
	

(27)

where F[•] denotes a Fourier transform and R pq(T) is the correlation function for the

electric fields incident on the antenna from direction Q:

Rpq(6) _	 < ep(t + i) eq*(t) >
	

(28)

The problem occurs when one tries to rewrite these expressions in terms of the Fourier

transforms of the fields. In order to accommodate the assumption that the random

process is stationary, one should use the definition in Appendix C:

Spq(v42)	 =	 Lim { <Ep(v,Q)Eq*(v,SZ)> / 22"}
	

(29)
T4 co

However, it is appealing to try to preserve the notation in Equations 1 (i.e. the use of

electric fields on the right-hand side in forms such as < I E,, ( 2>). For example, one might

make a simple substitution of	 for Spg(Q,u) with the understanding

that the limit in Equation 29 is implied. The difficulty with this approach is that it is

dimensionally misleading. In particular, < I Ep(Q,u) I 2 > suggests units of (Voltlmeter-

Hz)2 whereas Spq(92,U) in Equation 29 has units of (Volt/meter)2/Hz.
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The power, Wp, available at the output of an antenna with polarization p = ( v,h) when

looking at an unpolarized source with brightness, B(S2,v), is [1a, 2e]:

WP =	 (1 /2) Ae ff  BA v) Pnp(Q v,) d 0 d v
	

(Al)

where Ae is the effective area of the antenna and P„ is the normalized antenna pattern.

Assume that the Rayleigh-Jeans approximation applies:

13(0, v) = 2 k T (0, v) / X2 W/m2 - sr-Hz	 (A2)

and use

WP =	 kTAPP Bw	 (M)

on the left side of Equation Al to express the output power in bandwidth Bw in terms of

the change in temperature, TA PP, of a resistor at the output. Then, Equation A2 can be

written:

TAPP Bw - Ae ff  T(Q, v) X_2 P„p(Q) d Q d v	 (A4)

If T(Q, v) and P,, p are independent of frequency over the passband of the measurement

system and the bandwidth, Bw , is narrow compared to the center frequency (usually a

good approximation for remote sensing observations of thermal sources), then Bw will

cancel on both sides. Finally, using [lb,2b]:

Ae	=	 k2 /S26	(A5)

where OB is the antenna solid angle, Equation A4 becomes:

TA PP=	 ( 1/ OB ) ff T(Q) P„p(92) dQ	 (A6)

Equation A6 is the classic result relating the antenna temperature, T ` P at polarization, p,

to the source brightness temperature T(Q) [2f]. It applies to a single polarization and

assumes that the source and antenna parameters that are essentially constant over the

bandwidth of the measurements.

IX. Appendix B: Brightness and Electromagnetic Fields

The objective of this appendix is to establish the relationship between the source

brightness and the electromagnetic fields incident at the radiometer antenna.
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A. Time Average Poynting Vector

The time average of the power per unit area arriving from a direction n (i.e. crossing a

plane with unit normal, n, located at the antenna) can be expressed in terms of the

incident electromagnetic fields using Poynting's theorem:

WIA =	 <E(r,t)xH(r,t)>t • n	 (B 1)

where W is the power passing through a plane with area A and unit normal n; and where,

E and H are the electric and magnetic field intensities, respectively, and <• >t denotes a

time average, and "x" denotes the "vector" or "cross product".

In order to evaluate Equation B 1, it is convenient to represent the field by their Fourier

transform and do the analysis on the transforms:

00

E(r,t) =	 J E(r,v) exp( j27rvt) dv
	

(B2)
-co

To express the fields in the frequency domain we assume that the sources are far away

and adopt the radio astronomy model by considering the radiation from sources in a small

solid angle dQ in the direction 92 as illustrated in Figure 2. Consider a sphere of radius R

surrounding the observer (antenna) as shown in Figure 2. The radius R is assumed to be

large compared to wavelength but small enough that all sources are outside the sphere.

Sources ".

Figure 2: Geometry for computing incident electromagnetic radiation
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The electromagnetic fields at the observer can be written in terms of the electric field in

the aperture dE where the cone dQ crosses the sphere. Since R is large, one obtains

approximately [20]:

dE(r,v) z	 e E(K,v) expo kR) / R dE
	

(B3a)

	

dH(r,v) z K x e E(K,v) expo kR) hjR dE
	

(B3b)

where k = 2rru/c is the wave number and K is a unit vector in the direction of propagation

from dE to the observation point and e is an arbitrary, unit amplitude, polarization vector.

To compute the power available at the observer (antenna), the fields from all apertures

are added and the time average of the Poynting vector of the total field is computed.

Using the fact that E(r,t) is real (the Fourier transform is hermitean), one can write this in

the following form:

x 0

<E(r,t)xH(r,t)>r	 =	 <(Ilq)f f ff p(K,K') E(k) E*(k') expU 27c(v-v')t] ...
-00-00

... expU27c(k-k')R] dv dv' dE(K)dE(K')/R2 >r	 (B4)

where

p(K,K')	 _	 [ ek x (K' x ek e ) ]
	

(B5)

The fields propagating in the direction K in each aperture, dE, in Figure 2 are composites

of radiation from many sources (all the sources in the solid angle dQ) and will be

modeled as a random process. We consider the case of "natural" or "thermal" radiation

in which case it will be assumed that the radiation from different apertures (directions, K)

is uncorrelated and that the process is ergodic and stationary [14].

Ergodicity permits replacement of the time average in Equation B4 with the statistical

(ensemble) average. Because the process is stationary and the fields in different patches

are uncorrelated, one can express the average as:
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<E(K, u) E*( K', u')> =	 S E(K, v) 8(v - v') S(K - K') 	 (136)

and Equation B4 becomes:

<E(r,t)xH(r,t)> = ( 1 /q)f f K S E(K, u) dv dE(K)/R2	(137)

Recognizing that dE(K' )/R2 = dQ where 0 denotes solid angle, one can write:

<E(r,t)xH(r,t)> = ( 1/rl)f f K(S2) S EA u) dv df2	 (138)

The function, S EM, u), in Equation B8 is the power spectral density of the electric fields

arriving from a given direction (0,9) per unit solid angle, Q. It is not the power spectral

density of the electric field at the antenna but, rather, a "directional" power spectral

density. See Appendix C for a discussion of the spectral density in this context.

Also, note that Equation B8 is independent of distance, R, the radius of the sphere in

Figure 2. This is to be expected because the fields in Equations 133a-b are radiation fields

and the radiated power is conserved.

B. Brightness and Electric Field

From Equation B8, the dimensions of S E(92, u)hl are seen to be "power/(unit area —

steradian — Hz)" which are the same as those of brightness, B(92, v) in Appendix A. In

addition, comparison of Equations Al and 138 shows that S EA v)/,q and B(Q, u) play the

same role in describing the incident power. The difference is that the antenna has not

been included in Equation B8. Doing so would result in identical expressions and allow

us to make the identification:

B(Q, v)	 =	 W/(m'`-Hz-sr)

SEA u)/rl	 (139)

Notice that S EW, v)/-q represents the total power available (i.e. from both polarizations)

and in this sense differs from S pq(Q, v)/tl defined in the text. The advantage of the
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approach adopted in the text is that it handles polarization explicitly (see Section V). In

the case of unpolarized radiation:

S EW, u)	 =	 Spp(Q, v) + Sgq(Q, v)	 (B 10)

X. Appendix C: Fourier Transforms

The transition from Equations 6 to 8 is obtained by recognizing that the given

assumptions (incident fields that are stationary and uncorrelated in direction) imply that

the expected value of the integrals over frequency and direction is equivalent to the sum

over only those terms for which v = V and 0 = KY and zero otherwise. This result is

formally equivalent to using Equation 7 in Equation 6.

The function, Spq(v, Q ), on the right hand side of Equation 7 is the cross-spectral density

in the classical sense (Fourier transform of the cross-correlation function):

Spq(v) =	 F [ Rpq(i) ]	 =	 F [ <ep(t + ti) eq*(t)>]	 (C1)

where the dependence on 92 has been suppressed. One could try to write Equation C1 in

terms of the Fourier transforms of ep(t) and eq(t) in order to relate it to the incident

electromagnetic fields. However, the assumption of stationarity presents some

mathematical problems for the existence of Fourier transforms (because the functions

must extend to infinity).

This issue is formally handled by defining the cross-spectral density Spq(1),Q) in a

limiting sense using the Fourier transform of functions with a defined time window in the

limit as the width of the window, T, becomes infinite [17b, 21]:

Spq(u,S2)	 =	 Lim I< Ep(v,S2)Eq*(v42) >l2T }	 (C2)
T 4 as
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where bold face, Ep(v, Q ), indicates Fourier transform of ep(t) defined over the finite

interval, -T < t < T. As a check, the dimensions on the right-hand side of Equations C2

and C2 are equal and that the dimensions of S pq(v, Q )/ ,q are those of "brightness":

W/(m2-Hz-sr).
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