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Abstract

In this paper accurate tree stand height retrieval is demonstrated using C-band Shuttle Radar Topography

Mission (SRTM) height and ancillary data. The tree height retrieval algorithm is based on modeling uniform tree

stands with a single layer of randomly-oriented vegetationparticles. For such scattering media, the scattering phase

center (SPC) height, as measured by SRTM, is a function of tree height, incidence angle, and the extinction

coefficient of the medium. The extinction coefficient for uniform tree stands is calculated as a function of tree

height and density using allometric equations and a fractaltree model. The accuracy of the proposed algorithm is

demonstrated using SRTM and TOPSAR data for 15 red pine and Austrian pine stands. (TOPSAR is an airborne

interferometric synthetic aperture radar.) The algorithmyields rms errors of 2.5 to 3.6m, which is substantial
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improvement over the 6.8 to 8.3m rms errors from the raw SRTM minus National Elevation Dataset (NED)

heights.

Index Terms

Remote sensing, Synthetic aperture radar, Interferometry

I. INTRODUCTION

One set of forest structural components that is not well measured by the current Earth Observing System

is forest vertical structure parameters, such as tree height. This paper presents an algorithm, based on an

electromagnetic scattering model, to estimate tree stand height using data from an interferometric synthetic

aperture radar (INSAR) mission, the Shuttle Radar Topography Mission (SRTM) [1], in conjunction with

ancillary data.

Interferometric synthetic aperture radar (INSAR) is idealfor retrieval of forest structure, since it has

been shown to be particularly sensitive to forest vertical structure parameters, such as extinction and height

[2], [3], [4]. Multiple-baseline INSAR and polarimetry areused in [5] to estimate an additional parameter,

the ground-to-volume scattering ratio. Further, trunk diameter, tree height, tree density, branching angle,

soil moisture, and wood moisture are retrieved from INSAR data from multiple incidence angles in [6].

Fully polarimetric INSAR (POLINSAR) [3], [7], [8] is sensitive to the distribution and orientation of

scatterers, further increasing the set of canopy parameters that can be estimated [9]. Encouraging results

have been obtained from POLINSAR [8], [10]. A newer POLINSARapproach is in [11]. An additional

estimation scenario [5] employs multi-altitude, multi-frequency polarimetric SAR and INSAR data to

determine vertical extinction profiles in addition to a set of usual parameters such as height, ground to

volume scattering ratio, etc. Some stem volume retrieval methods requiring training, which use ERS-1/2

and JERS multitemporal interferometry, are in [12], [13]. The data sets upon which these studies are

based are multitemporal, such as from ERS-1/2 and JERS, or are highly localized, like those produced

by airborne INSAR or special spaceborne, multitemporal INSAR missions that were not global, unlike
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SRTM. In the past several years, progress has been made in retrieving forest structural parameters using the

SRTM data set [14], [15], [16], [17]. This paper reports the novel approach in [14], [15], which retrieves

tree stand height from SRTM and ancillary data employing an algorithm based on an electromagnetic

scattering model, not using an empirical regression model derived from ground truth measurements, as in

[16].

II. BACKGROUND

The basic measurement provided by SRTM is an INSAR height, with respect to a reference surface

(see Section III). When trees are present, the INSAR height above the underlying ground height tends

to be less than the tree heights, since SRTM penetrates the tree canopy to a certain extent. In this paper

we define theSRTM scattering phase center (SPC) heightto be the SRTM INSAR height minus the

underlying ground height, in order to distinguish it from the SRTM INSAR height. Tree height, density,

and other forest vertical structure parameters (see Section I), as well as INSAR geometry parameters like

incidence angle, affect the SRTM SPC height. Ideally, we would like to have an inverse model like the

one pictured in Fig. 1, where the SRTM SPC heighth̄SPC is taken as the input, and the model outputs

an estimate of the average heightĥv of a tree stand. However, due to the complex nature of scattering

mechanisms in such an environment, it seems extremely difficult, if not impossible, to create such a direct

inverse model.

The basic strategy used in the studies listed above to determine forest vertical structure parameters, with

the exceptions of [16], [17], is to develop theory-based, forward-scattering models describing SAR, IN-

SAR, and POLINSAR observables as a function of canopy parameters. The models are usually simplified

to include only the most influential parameters of interest.The forward models are then inverted to yield

forest vertical structure parameters as a function of SAR, INSAR, and POLINSAR observables, often using

an iterative scheme similar to Fig. 2, which is specialized for SRTM SPC height. The literature concerning

SAR/INSAR forest parameter retrieval indicates that a successful algorithm would require a larger number

of independent radar observables than we have from SRTM INSAR heights alone [2], [3], [4], [5], [6], [7],
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[9], [18], [19], [8]. However, use of additionala priori information (c.f. [8]) such as underlying ground

topography from other sources (c.f. [20], [21], [22], [16]), extinction coefficient measurements [2], etc.

can reduce the number of observables necessary. In our case we use ground topography maps to convert

SRTM INSAR heights to SRTM SPC heights. Then we employ species structure and tree density and

moisture estimates to allow us to retrieve tree stand heightfrom the SRTM SPC heights.

We proceed by first describing how to obtain SRTM SPC height from the SRTM INSAR height data.

Then we discuss a simple forward model that relates the tree stand heighthv, among other parameters,

to SRTM SPC height̄hSPC. Finally, we present a method for inverting the forward model and describe

our test results.

III. SRTM SCATTERING PHASE CENTER HEIGHT

The INSAR heights given in the SRTM data are elevations with respect to the World Geodetic System

1984 (WGS84) geoid. However, the inverse model depicted in Fig. 2 requires the SRTM SPC height, which

is the SRTM height minus the height of the ground, as defined inSection II. We obtain an estimate of this

quantity by subtracting the National Elevation Dataset (NED) heights [23], [24] from the SRTM Ground

Data Processing System (GDPS) heights. We use the PrincipalInvestigator (PI) data for incidence angle

and polarization information. References [20], [21], [22], [16] use a similar method to obtain estimates

of SPC height from airborne INSAR and spaceborne SRTM data. The SRTM GDPS data for this tree

height retrieval were obtained from [25]. We obtained NED data from the EROS Data Center at [26]. The

SRTM GDPS data also are available there.

The SRTM GDPS and the NED work particularly well together, since both use nearly identical datums.

The horizontal datum of the SRTM GDPS is the WGS84. Its vertical datum is the WGS84 geoid. The

NED has as its horizontal and vertical datums the North American Datum 1983 (NAD83) and the North

American Vertical Datum (NAVD88), respectively. For meter-level accuracy, WGS84 and NAD83 for

the conterminous United States are effectively identical [27]. Also, heights in the WGS84 and NAVD88

vertical datums are within a meter or so. If greater accuracyis needed, there are means of converting
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between the various horizontal and vertical datums [28], [29], [30]. However, since the errors in the SRTM

GDPS heights are on the order of a few meters [15], [31], it is generally not necessary to do so.

Other errors in the SRTM minus NED heights are due to systematic and random noise in the SRTM

data (c.f. [15], [31], [16]). In order to assess the systematic topographical noise, we examine the SRTM

minus NED heights, obtained from [32], for a large cultivated area (nearly 200 30m by 30m SRTM

pixels) near our test site, where the difference between theSRTM and NED heights should be nearly

zero. The cultivated area is identified using the National Land Cover Data Set (NLCD) 2001 [32]. The

mean difference over that area is 0.2m, indicating acceptably small systematic error for our desired meter-

order accuracy. The standard deviation of the difference over the cultivated area is 1.7m. However, since

we average several to many pixels in application of our method, the random noise is reduced [16]. The

standard deviation range of the random noise range for our size stands (see Section VI) is less than

approximately 0.8m to 1.6m, assuming pixels are averaged over uniform tree stands.

IV. FORWARD MODEL

There are several electromagnetics-based INSAR forward models available in the literature to relate tree

stand heighthv to SPC height, such as in [2], [3], [4], [18], [19], [33], [34], [35], which is by no means

an exhaustive list. Since we wish to estimate tree stand height based on SRTM SPC height alone (i.e.

no other SAR/INSAR observables), we must choose as simple ofa model as possible. The single-layer,

randomly-oriented vegetation scattering model with no ground interaction [2], [19], [34] is perhaps the

best model for this task. The simplicity criterion is not theonly support for using such a model. Even

though the tree stands we test our model on do not constitute an infinite single layer [36], the results

(Section VI) indicate that the effect of the ground interaction at C-band is small enough compared to that

of the direct backscatter so that we can achieve accuracy on the order of a few meters. Such accuracy is

at least sufficient for rough height binning. Future work could include extension to a forward model with

ground and ground-bounce returns, if further accuracy is necessary.
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A. Single-Layer, Randomly-Oriented Vegetation Scattering Model

The SRTM INSAR height data for the end user is an average of theINSAR heights of the individual

SRTM overpasses. Thus, the SRTM SPC heighth̄SPC computed from the SRTM INSAR height data can

be modeled as

h̄SPC =
1

N

N
∑

i=1

hSPCi
,

wherehSPCi
denotes the SRTM SPC height derived from theith overpass. We can writehSPCi

as the

output of the SPC height modelMi as a function of the parameters most pertinent to the simple forward

model we use:

hSPCi
= Mi(hv; k0, H, B, α, θi, n, Mw, Mf , pi...),

with hv being the average height of the tree stand (what we want to estimate). See Fig. 3.k0 is the SRTM

free-space wavenumber at its center frequency;H is the height of SRTM from the surface of the earth;B

is the baseline length, andα is the baseline angle;θi is the incidence angle of theith overpass;n is the

tree density;Mw and Mf are the moisture contents of the wood and the foliage, respectively; and pi is

the polarization (VV or HH) of theith overpass. We explicitly state the model, of which the phase term

is from [2], [3], [34], as follows:

Mi(hv; k0, H, ...) =
ri sin θi

k0B cos(θi − α)
Arg

[

∫ hv

0

ejαzi
z′eγiz

′

dz′
]

=
ri sin θi

k0B cos(θi − α)
tan−1

[

γi sin(αzi
hv) − αzi

cos(αzi
hv) + αzi

e−γihv

γi cos(αzi
hv) − γie−γihv + αzi

sin(αzi
hv)

]

,

with

ri =
H

cos θi

αzi
=

k0B cos(θi − α)

ri sin θi
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γi =
2κei

cos θi

.

Note that the parameters beyond the semicolon inMi are now implied. “Arg” denotes the radian

phase on the interval(−π, π], and j =
√
−1. The extinction coefficientκei

(Nepers/m) is a function

of hv,n,θi,Mw,Mf ,pi, and other parameters:

κei
= Pi(hv, n; θi, Mw, Mf , pi, ...).

Similar to the situation in [2], the SRTM SPC height alone does not provide enough measurements to

estimatehv andκei
. Instead of deriving the extinction coefficient values frommeasurements, as in [2], we

relateκei
to hv and other variables, which possibly are easier to estimate than the extinction coefficient

itself, using allometric relations and a fractal model. We will detail the development of the extinction

coefficient modelPi in the subsections to follow. First, we present the fractal tree model used to compute

Pi. Then, we calculate the allometric equations necessary to specify the fractal models. Finally, we describe

the process of computingPi using the fractal tree models, and we present the resultingPi model.

B. Red Pine Fractal Tree Models

The fractal trees used in this study are the red pine fractal models pioneered in [6], [18], [33], since

that is the dominant species in our test stands. The red pine model also is used to represent a structurally

similar species, Austrian pine. The fractal modeling method is general-purpose and can be used for both

coniferous and broadleaf trees. However, in this proof-of-concept work, only two coniferous species are

considered.

We modified the fractal tree generation code used in [6], [18], [33] and added a graphical user interface

(GUI) to more easily create tree models of different species, or of different heights, crown sizes, etc.

within the same species. As in [6], [18], [33], the user designs a “DNA” file that encodes species-specific

information about the structure of the tree using the tree designer GUI. In order to produce a specific

realization of a red pine, the user provides tree height, diameter at breast height (dbh), crown depth, and
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crown radius. The tree-generating code then produces a realization of a red pine with the specified height,

dbh, crown depth, and crown radius. Each tree thus produced is identical only in a statistical sense, even

if the same height, dbh, crown depth, and crown radius are specified, since the code introduces a certain

amount of randomness to the tree structure according to the DNA file. Each tree is composed of thousands

of lossy cylinders of varying lengths and radii that form thetrunk, branches, needles, etc.

C. Red Pine Allometric Equations

As stated in the previous subsection, the fractal model needs tree height, dbh, crown depth, and crown

radius in order to produce a specific realization of a red pine. Ideally, we would like to have the fractal

model specified by only tree height, since that is the parameter we are estimating. However, the best we

can do is to specify the fractal model as a function of tree height and density through allometric equations

that relate dbh, crown depth, and crown radius to tree heightand density. The red pine allometric equations

are developed using ground truth data from the Raco, Michigan SIR-C/X-SAR Supersite [37]. A total

of 17 red pine stands are used in the allometric equation calculations relating height (m), dbh (cm), and

crown depth (m). Figures 4 and 5 depict the red pine data and the resulting polynomial fits to the data.

The allometric equations are

dbh = 1.4939hv + 2.2267, and

crown depth = −0.02559h2

v + 1.0193hv − 0.093364.

Another parameter required by the fractal model is crown radius. We have no data from Raco, Michigan

for crown radius, but it is reasonable to assume we can approximate the actual values by relating crown

radius to tree densityn in trees per hectare (ha) by invoking simple physical packing limitations. We

assume that crown radius is half of the average spacing between the trees, where the average spacing in

meters is determined from the tree densityn: average spacing=
√

10000/n, where 10000 square meters per

hectare is the conversion factor between area in hectares and area in square meters. However, crown radius

does not continue to grow without bound with decreasingn, so we arbitrarily fix the maximum crown
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radius at 2m. Since the average tree spacing forn=625 trees/ha is 4m, thus yielding crown radius=2m,

we can write crown radius as follows:

crown radius=



















50√
n

: n ≥ 625

2 : n < 625

,

wheren is the number of trees per hectare. Implicit in the crown radius equation is the fact thatn ≥ 0

and that there is some unknown upper limit ton.

D. Extinction Coefficient Model

In order to develop the extinction coefficient model we vary several key parameters over wide ranges

of typical values; generate red pine fractal tree models with those parameters; and computePi according

to [18], [33], employing the electromagnetic scattering code used in [6], [18], [33], with a single layer at

a temperature of -2◦C (28.4◦F) and 5◦C (41.0◦F). (The temperatures are chosen to cover conditions in

Section VI.) The wavelength we use is 5.8cm. First, we generate 10 realizations of red pine fractal trees

for each combination ofhv andn values listed in Table I. The ranges for thehv andn roughly bracket

typical heights and densities for red pine stands. Next, foreach one of those 30 combinations, we varyθi

andM = Mf = Mw, where gravimetric moisture content (g water/g wet biomass) of the wood is used,

with a dry bulk density of 0.392g/cm3 [38], according to Table II, andpi = VV , HH. The assumption that

M = Mf = Mw is supported by [39] and is invoked for simplicity. Future versions of this model could

independently varyMf andMw. The range for the moisture content approximates the range reported in

[39] for young jack pine. We linearly interpolate to giveκei
values for points not on the grid specified

above. Out-of-range parameters are allowed for height onlyand only for heights from 0 to 5m and from

30 to 35m by linear extrapolation ofPi. The simplified extinction coefficient model is expressed as

κei
= Pi(hv; n, θi, M, pi).
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Other parameters might have an effect on the extinction coefficient but are included implicitly in the

fractal tree model (e.g., species-specific structure characteristics); set to a fixed, reasonable value; or are

assumed to have second-order effect on the desired meter-level accuracy and are omitted for simplicity.

Figures 6 and 8 displayPi as a function of the parametershv, n, θi, andM for VV polarization at -2◦C

and 5◦C, respectively. The temperatures are chosen based on the average temperatures for our data set. See

Section VI. Figures 7 and 9 display the same information for HH polarization at -2◦C and 5◦C, respectively.

The format is the same for Figs. 6, 7, 8, and 9. The top row corresponds toM = 0.3g/g, while in the

bottom rowM = 0.6g/g. The columns, left to right, correspond toθi = 40◦, 50◦, 60◦. Tree heighthv is

along the x-axis of the individual subplots. Tree densityn is varied within each subplot to produce the lines

marked by the different symbols, where the symbols “.”, “o”,“x”, “+”, and “*” correspond to tree densities

of n = 100, 500, 900, 1300, and 1700 trees per hectare, respectively. The extinction coefficient variation

with polarization and incidence angle (in particular our range) is not nearly as strong as with tree height,

density, and moisture. Note also that there is not much of a variation between -2◦C and 5◦C. The extinction

coefficients for -2◦C and 5◦C are for thawed conditions. However, the -2◦C extinction coefficients can be

converted to approximate frozen extinction coefficients bydividing the thawed extinction coefficients by

two [2].

V. INVERSION ALGORITHM

We use a golden section search over the stand height intervalfrom 0 to 35m to invert the forward model.

Refer to Fig. 10 for a flowchart of the basic inversion algorithm. The estimated tree stand heightĥv is

optimized using an objective functionJ defined as the squared difference between the modeled SRTM

SPC height̂̄hSPC and the observed SRTM SPC heighth̄SPC : J(ĥv; n, M) = (ˆ̄hSPC − h̄SPC)2. In order to

obtain the observed SRTM SPC height, we average the SRTM SPC heights over the tree stand. Since we

use the SRTM-NED heights as an approximation for the SRTM SPCheights, as stated in Section III, we

refer to the SRTM-NED heights, averaged over a tree stand, inthe abbreviated form “raw SRTM-NED”

height.
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Here we distinguish between two different estimation scenarios, one in which tree densityn and moisture

M are known, and one in which we have only rough, approximate values. In both scenarios, we setn

and M in J to fixed values. The tree densityn could be obtained from ancillary sources, which could

include forest growth models or other remote sensing techniques, such as individual tree crown (ITC)

forest analysis using satellite images [40].M could be set to a fixed average value selected according

to location, season, and species. However, in this proof-of-concept paper in the first scenario, we fixn

according to ground truth tree density and setM=0.45g/g, which is the average of the moisture range

used to generate our extinction coefficient model. Finally,we optimizeJ to yield our tree stand height

estimateĥv. The second estimation scenario is more complicated, sincemore uncertainty is assumed in

the n andM values.

In the second scenario, we assume we do not have accurate values forn andM but that we know rough,

approximate values. For this proof-of-concept work we setn andM to reasonable, average values (those

values are more precisely defined in Section VI) and optimizeJ to yield our tree stand height estimate

hv, as in the first scenario. Since there is uncertainty inn andM , we need to address the sensitivity ofĥv

to errors inn andM . In the second estimation scenario we use reasonable but rough approximations for

n andM and report the corresponding height estimateĥv and a range of̂hv for the given uncertainty inn

andM . For example consider Fig. 11, a contour plot ofĥv as a function ofn andM for stand RP2 (see

Section VI), which has a raw SRTM-NED height of 16.6m. The extinction coefficient model assumes

-2◦C thawed conditions, but the plot would be essentially the same for 5◦. Suppose we usen = 360

trees/ha andM = 0.45 g/g for the rough, approximate values forn andM . The corresponding tree stand

height estimatêhv would be23m. Even if n were off by±50% andM were off by±33%, the range of

the corresponding for̂hv would vary only from 21m to 26m. Figures 12 and 13 are plots like Fig. 11,

except for stands AP2 and RP8 which have raw SRTM-NED heightsof 2.8m and 8.9m, respectively.

In both scenarios, we must know incidence angle, polarization, platform height, free-space wavelength,

and interferometric baseline parameters for each of theN SRTM overpasses. We calculate incidence
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anglesθi for each of thei = 1, 2, 3 SRTM overpasses that imaged the Kellogg Experimental Forest by

averaging the incidence angle files of the Kellogg PrincipalInvestigator (PI) processor data over all of

our test stands. Since the area is small, we expect the incidence angle does not vary appreciably across

the test stands. We obtain polarization information also from the PI processor data. The SRTM free-space

wavelength was set to 5.8cm. The baseline and height parameters are taken to beB = 60m, α = 45◦,

andH = 233km.

VI. TEST RESULTS

We test our algorithm on 13 red pine and Austrian pine stands in the W.K. Kellogg Experimental Forest,

near Battle Creek, Michigan [41]. Figure 14 is a map of the stands [42] that we investigate in this paper.

The stand polygons overlay the SRTM GDPS heights minus the NED heights. Stand areas range from 3

to 45 30m by 30m SRTM pixels. The red pine stands are labeled “RP”, while the Austrian pine stands

are labeled “AP”. Stand RP3 is a mixed red and white pine stand. Figure 15 is a 1996 color infrared

image of the same area [43], with the darker pine stands clearly distinguished from the lighter deciduous

stands. Kellogg provides an ideal test area, since there exists good ground truth for its forests. Further, it

is a particularly challenging area because of its hilly topography. Figure 16 is the NED for Kellogg. The

elevation in Fig. 16 varies about 50m. The average temperature for the SRTM datatakes for Battle Creek,

Michigan, is -2◦C [44].

A. Estimation Scenario One: Tree Density and Moisture Assumed Known

In order to test the first estimation scenario, we took tree height and dbh measurements at six of the

red pine sites (RP1-6). All of the height measurements were taken using an IMPULSE 200 LR laser

rangefinder [45]. We obtained the past basal area per acre forRP1-4 and RP6 and used a stocking chart

to convert the dbh and basal area to tree density [46], adjusting the basal area for growth [47]; for RP5

we used dbh and basal area per acre from spreadsheets of thinning studies [42]. The tree density values

used, in trees per hectare, are 278(RP1), 250(RP2), 367(RP3), 229(RP4), 586(RP5), and 358(RP6). We set
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M = 0.45g/g, the center of our moisture range, and compute estimatesof the tree stand height for each

stand. Figures 17 and 18 display the raw SRTM-NED heights andthe improvement that the estimation

algorithm provides using the -2◦C thawed and frozen extinction coefficients, respectively,for RP1-6. The

“x” marks in Figs. 17 and 18, labeled Raco 1 and Raco 2, are the estimates for two red pine stands at

Raco, Michigan, using the 5◦C extinction coefficients (not frozen) since the average daylight temperature

for those datatakes is roughly 5◦C [44]. For these two points, thēhSPC is obtained by averaging two

TOPSAR data takes from two different incidence angles. ThehSPCi
, i = 1, 2, and the true average heights

for the stands are taken from [20]. The tree density values, in trees per hectare, are 1313 (Raco 1) and 876

(Raco 2) [37]. We useM = 0.45g/g. We include the Raco data points to illustrate height retrieval for the

5 to 15m range. Further, the results using the TOPSAR data indicate that the method is independent of

the instrument. The TOPSAR points, however, are not included in the accuracy statistics. The mean value

of the difference between the estimates and the true averageheights for stands RP1-5 assuming thawed

conditions is about -1.3m. It is even larger for stands Raco 1and 2, although these are not included in the

statistics. The appreciable non-zero mean value for standsRP1-5 suggests perhaps a bias in the SRTM

data or NED, ground and understory return effects (the forward model does not include these), deciduous

inclusions (for RP1-5), and/or overestimation ofκei
. The first could result in a bias up or down. The second

and the last certainly would drive the estimate down. The third probably would drive the estimate down,

since the deciduous trees were defoliated during the SRTM overpasses, although deciduous inclusions

taller than the surrounding red pine might drive the estimate higher. The mean value of the difference

between the estimates and the true average heights for stands RP1-5 assuming frozen conditions is about

1.6m, indicating that perhaps the approximate conversion from thawed to frozen extinction coefficients is

excessive in this case. Since there is a bias, the spread of the estimates about the actual values is best

expressed in root mean square (rms) values. The rms of the difference between the estimates and the

true average heights is 3.4m (3.6m for frozen conditions). In order to see how much of an improvement

the model introduces to the raw SRTM-NED heights, we note that the mean of the difference between



14 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. Y, MONTH YEAR

them and the true average heights is about -7.9m, and the rms of the differences is about 8.3m. Refer

to Table V for a listing of the data. The reason why the mean is negative is because SRTM penetrates

the canopy to a certain extent. Tree height, density, incidence angle, moisture content, polarization, tree

structure, etc. all influence the degree of penetration, hence the need for a model to adjust the observed

raw SRTM-NED height up closer to the truehv.

Another indication of the performance of the algorithm is percent relative error, which is the ratio

in percent of the difference between the estimates and the true average heights. In the case of this

first estimation scenario used on RP1-6, the mean and rms of the relative errors are -5.4% and 15.1%,

respectively. The corresponding values for frozen conditions are 6.0% and 16.8%. For the raw SRTM-

NED heights, the mean and rms of the relative errors are -34.0% and 35.5%. See Tables III and IV, line

one, for a summary of the above results.

B. Estimation Scenario Two: Tree Density and Moisture are Rough, Approximate Values

Next we process the data for RP1-6 using the second estimation scenario. The results using the -2◦C

thawed and frozen extinction coefficients, respectively, are depicted in Figs. 19 and 20. The dots are the

value of ĥv for rough values forn and M : n = 360 trees/ha (the average density for stands RP1 to

RP5) andM = 0.45 g/g (the moisture value we used for stands RP1 to RP5 in scenario one). As in the

first estimation scenario, the “x” marks are the height estimates of the Raco stands using then and M

values and temperature from scenario one. The upward and downward pointing triangles are the minimum

and maximum estimates, illustrating the sensitivity ofĥn to ±50% errors inn and±33% errors inM .

The open circles are the raw SRTM-NED heights. As before we report the mean and the rms of the

difference between the estimates and the actual average heights for thawed and frozen conditions: -1.3m

and 3.4m and 1.3m and 3.6m. The corresponding values for the raw SRTM-NED heights are -7.9m and

8.3m, respectively. The mean and rms of the relative errors are -7.2% and 14.3% and 4.6% and 14.8%

(thawed and frozen) for the estimation algorithm and -34.0%and 35.5% for the raw SRTM-NED heights.

See Tables III and IV, line two. As in scenario one, the estimates are a significant improvement over the
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raw SRTM-NED heights.

In order to populate the plots with more stands, we add another red pine stand for which we have only

height data, RP7, and use a site index curve [48] to provide true average heights for four other red pine

stands RP8-11, similar to the approach used in [21], [22]. A site index curve predicts the height of trees

in a stand based on height measurements in the past and the ageof the stand. Additionally, two Austrian

pine stands (AP1-2) are included, too, using the red pine site index curve. The site index curve is [47]

hv = 1.890S
(

1 − e−0.01979A
)1.3892

,

whereA is the age of the stand in years.S is the site index, base 50, which is the average height of the

stand at age 50. Note that since we requirehv in meters,S also is in meters here.

We run the estimation algorithm on all 13 stands. The resultsare plotted in Fig. 21 and 22 for the -2◦C

thawed and frozen extinction coefficients, respectively. Again, the Raco stands are assumed at 5◦C with

n andM values as in scenario one. The mean and the rms of the difference between the estimates and

the actual average heights, not including the two Raco points, are -0.6m and 2.5m, respectively (1.6 and

3.0m for frozen conditions). The value for the mean of the rawSRTM-NED heights is -6.1m. The rms of

the raw SRTM-NED heights is 6.8m. The mean and rms of the relative errors in the estimates are -1.9%

and 21.3%, respectively (14.0% and 26.2% for frozen conditions). For the raw SRTM-NED heights, the

mean and rms of the relative errors are -33.1% and 34.4%. See line three of Tables III and IV. Note

that the level of accuracy displayed by this algorithm is sufficient at least for separating the three height

classes in the Raco red pines used in the allometric equations in Figs. 4 and 5.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a red pine tree height estimation algorithm that uses Shuttle Radar Topography

Mission (SRTM) heights and ancillary data, such as the National Elevation Dataset (NED). The NED was

subtracted from the SRTM heights to provide an estimate of the SRTM scattering phase center (SPC)
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height, which was then adjusted to yield an estimate of tree height by inverting a forward scattering

model. The algorithm produced tree height estimates that were significantly closer to the true tree height

than the raw SRTM-NED heights. The algorithm yielded rms errors of 2.5 to 3.6m, compared with the

6.8 to 8.3m rms errors from the raw SRTM-National Elevation Dataset (NED) heights.

Since the SRTM data set is nearly global, and the NED covers all of the United States, the method

developed here could be applied to large portions of the United States. Determining which portions would

require more data and studies. However, the use of the single-layer model with no ground interaction limits

applicability to stands where the ground interaction is small compared to that of the direct backscatter,

although the general method could employ a more sophisticated model taking the ground return into

account. Additionally, the model currently used could be inaccurate for steep slopes, such as in mountain-

ous areas. Success in tree height retrieval in mountainous areas [16], though, indicates that this limitation

could be overcome by including a non-zero slope, as in [2]. Further, the current method is limited to

single-species stands, but it could be extended to account for mixed-species stands. More wide-spread use

would also involve optimal, region-specific algorithms that could be developed to work in conjunction

with the National Land Cover Data (NLCD) 1992 [49], also available from the EROS Data Center. The

NLCD could be used to determine whether an area is populated by coniferous or deciduous trees. Then,

a region-specific extinction coefficient model, based on theexpected composition of typical coniferous

and deciduous forests for that area, could be selected to estimate the average tree height.

It is expected that, based on the results in this paper, that any tree density and moisture information

will generally improve the height estimates, provided thatthe forward model relating tree stand height to

SRTM SPC height includes all of the dominant scattering mechanisms. As demonstrated in Section VI,

such information probably would not even need to be too accurate to have a noticeably positive effect on

the height estimates. Methods for estimating tree density directly, or via basal area estimates from which

tree density can be derived given allometric equations, arein the SAR literature. Also, recent advances

in optical and infrared imaging have made individual tree crown (ITC) forest analysis using satellite



BROWN, SARABANDI, AND PIERCE: ESTIMATION OF TREE HEIGHT 17

images possible. According to [40], remotely sensed imagesof 10-100cm resolution show promise for

ITC analysis. Estimates of the tree moisture probably wouldbe more difficult to obtain. However, it

might be possible to obtain approximate values from extrapolation of ground truth or from other remote

sensing techniques, such as in [39]. Global extension of themethod in this paper would rely on accurate

ground height data, such as the NED, as well as on obtaining valid, approximate values of tree density

and moisture. Use of probability distributions forn andM could also be explored.
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Fig. 1. Ideal inverse model.
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Fig. 2. Block diagram of typical, iterative forward model inversion.

Fig. 3. Interferometric SAR geometry.
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Fig. 10. Block diagram of forward model inversion.
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The plot for 5◦C would be essentially the same. First,hv is estimated for all possible combinations ofn andM on a sparse grid. Thêhv

values then are linearly interpolated to a much higher density, with n = 100, 101, 102, ..., 1700 trees/ha andM = 0.3, 0.31, 0.32, ..., 0.6
g/g.
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Fig. 12. Contour plot ofhv estimates, in meters, for stand AP2 versus tree densityn and moisture contentM . See Fig. 11 for a description
of this plot.
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Fig. 13. Contour plot ofhv estimates, in meters, for stand RP8 versus tree densityn and moisture contentM . See Fig. 11 for a description
of this plot.



BROWN, SARABANDI, AND PIERCE: ESTIMATION OF TREE HEIGHT 29

Fig. 14. SRTM minus National Elevation Dataset (NED) heights with overlay of map of W.K. Kellogg Experimental Forest tree stands
used in this paper. Darker areas are small height differences, and brighter areas are larger height differences. The redpine stands are labeled
“RP”, while the Austrian pine stands are labeled “AP”. Standareas range from approximately 3 to 45 30m by 30m SRTM pixels.
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Fig. 15. Infrared image from 1996 of the same area in Fig. 14 with white overlay of map of W.K. Kellogg Experimental Forest tree stands
used in this paper. Darker areas generally correspond to coniferous forests; medium values generally are deciduous forests; and brighter
areas usually are bare surface areas.

Fig. 16. NED heights with overlay of map of W.K. Kellogg Experimental Forest tree stands used in this paper. See Fig. 14. Darker areas
are lower elevations, and brighter areas are higher elevations.
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Fig. 17. Results of the first estimation scenario: RP1-6 assuming the densities and moisture values are known and assuming thawed
conditions. The open circles are the raw SRTM minus NED heights. See also Tables III and IV, line one. The “x” marks are the estimates
for two red pine stands at Raco, Michigan. For these two points, the h̄SPC is obtained by averaging two TOPSAR data takes from two
different incidence angles. The Raco stands are not included in the accuracy statistics. Stands RP1-6 use the -2◦C extinction coefficients,
and the Raco stands use the 5◦C extinction coefficients.
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Fig. 18. Results of the first estimation scenario: RP1-6 assuming the densities and moisture values are known and assuming frozen
conditions. The open circles are the raw SRTM minus NED heights. See also Tables III and IV, line one. The “x” marks are the estimates
for two red pine stands at Raco, Michigan. For these two points, the h̄SPC is obtained by averaging two TOPSAR data takes from two
different incidence angles. The Raco stands are not included in the accuracy statistics. Stands RP1-6 use the -2◦C extinction coefficients,
and the Raco stands use the 5◦C extinction coefficients (not frozen).
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Fig. 19. Results of the second estimation scenario for thawed conditions: RP1-6 assuming density and moisture are rough, approximate
values. See also Tables III and IV, line two. The dots are the values of ĥv for n = 360 trees/ha andM = 0.45 g/g. The upward and
downward pointing triangles are the minimum and maximum estimates, assuming±50% error inn and±33% error inM . The open circles
are the raw SRTM minus NED heights. Stands RP1-6 use the -2◦C extinction coefficients, and the Raco stands use the 5◦C extinction
coefficients.
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Tree Height (rows in meters) /
Tree Density (columns in trees/ha) 100 500 900 1300 1700

5 5,100 5,500 5,900 5,1300 5,1700
10 10,100 10,500 10,900 10,1300 10,1700
15 15,100 15,500 15,900 15,1300 15,1700
20 20,100 20,500 20,900 20,1300 20,1700
25 25,100 25,500 25,900 25,1300 25,1700
30 30,100 30,500 30,900 30,1300 30,1700

TABLE I
COMBINATIONS OF TREE HEIGHT AND DENSITY VALUES USED TO GENERATE THE EXTINCTION COEFFICIENT MODEL.
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Fig. 20. Results of the second estimation scenario for frozen conditions: RP1-6 assuming density and moisture are rough, approximate
values. See also Tables III and IV, line two. The dots are the values of ĥv for n = 360 trees/ha andM = 0.45 g/g. The upward and
downward pointing triangles are the minimum and maximum estimates, assuming±50% error inn and±33% error inM . The open circles
are the raw SRTM minus NED heights. Stands RP1-6 use the -2◦C extinction coefficients, and the Raco stands use the 5◦C extinction
coefficients (not frozen).
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Incidence Angle (rows in degrees) /
Moisture Content (columns in g/g) 0.3 0.4 0.5 0.6

40 40,0.3 40,0.4 40,0.5 40,0.6
45 45,0.3 45,0.4 45,0.5 45,0.6
50 50,0.3 50,0.4 50,0.5 50,0.6
55 55,0.3 55,0.4 55,0.5 55,0.6
60 60,0.3 60,0.4 60,0.5 60,0.6

TABLE II
COMBINATIONS OF INCIDENCE ANGLE AND MOISTURE CONTENT VALUESUSED TO GENERATE THE EXTINCTION COEFFICIENT MODEL.

Estimation Tree Raw SRTM-NED Estimation Algorithm
Scenario Stands mean rms mean rms

difference(m) difference(m) difference(m) difference(m)
Densities and

moisture values RP1-6 -7.9 8.3 -1.3 (1.3) 3.4 (3.6)
assumed known

Approximate
density and moisture RP1-6 -7.9 8.3 -1.8 (0.9) 3.2 (3.1)

values used
Approximate

density and moisture RP1-11, AP1-2 -6.1 6.8 -0.6 (1.6) 2.5 (3.0)
values used

TABLE III
SUMMARY OF TEST RESULTS. THE RAW SRTM-NEDMEAN AND RMS DIFFERENCE REFER TO THE MEAN AND ROOT MEAN SQUAREOF

THE DIFFERENCE BETWEEN THE RAWSRTM-NEDHEIGHTS AND THE TRUE AVERAGE TREE HEIGHTS. THE ESTIMATION ALGORITHM

MEAN AND RMS DIFFERENCE ARE THE SAME STATISTICS FOR THE DIFFERENCE BETWEEN THE OUTPUT OF THE ESTIMATION

ALGORITHM AND THE TRUE AVERAGE TREE HEIGHTS. THE RESULTS FOR THE FROZEN CONDITIONS ARE IN PARENTHESES.

Estimation Tree Raw SRTM-NED Estimation Algorithm
Scenario Stands mean relative rms relative mean relative rms relative

error(%) error(%) error(%) error(%)
Densities and

moisture values RP1-6 -34.0 35.5 -5.4 (6.0) 15.1 (16.8)
assumed known

Approximate
density and moisture RP1-6 -34.0 35.5 -7.2 (4.6) 14.3 (14.8)

values used
Approximate

density and moisture RP1-11, AP1-2 -33.1 34.4 1.9 (14.0) 21.3 (26.2)
values used

TABLE IV
SUMMARY OF TEST RESULTS. THE RAW SRTM-NEDMEAN AND RMS RELATIVE ERRORS REFER TO THE MEAN AND ROOT MEAN

SQUARE OF THE DIFFERENCE BETWEEN THE RAWSRTM-NEDHEIGHTS AND THE TRUE AVERAGE TREE HEIGHTS, DIVIDED BY THE

TRUE AVERAGE TREE HEIGHTS. THE ESTIMATION ALGORITHM MEAN AND RMS RELATIVE ERRORS ARE THESAME STATISTICS FOR THE

DIFFERENCE BETWEEN THE OUTPUT OF THE ESTIMATION ALGORITHM COMPARED WITH THE TRUE AVERAGE TREE HEIGHTS.THE

RESULTS FOR THE FROZEN CONDITIONS ARE IN PARENTHESES.
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Fig. 21. Results of the second estimation scenario for thawed conditions: RP1-11 and AP1-2 assuming the distributions of the density
and moisture values are known. See also Tables III and IV, line three. The dots are the expected values ofĥv with n = 360 trees/ha and
M = 0.45 g/g. The upward and downward pointing triangles are the minimum and maximum estimates, assuming±50% error in n and
±33% error inM . The open circles are the raw SRTM minus NED heights. Stands RP1-11 and AP1-2 use the -2◦C extinction coefficients,
and the Raco stands use the 5◦C extinction coefficients.

Tree Stand Raw SRTM-NED (m) Actual Average Height (m) Difference (m)
RP1 13.9 22.7 -8.8
RP2 16.6 22.9 -6.3
RP3 15.8 25.9 -10.1
RP4 13.7 22.7 -9.0
RP5 12.3 22.4 -10.1
RP6 17.7 20.6 -2.9

TABLE V
SUMMARY OF RAW SRTM-NEDHEIGHTS, ACTUAL AVERAGE HEIGHTS, AND THE DIFFERENCE BETWEEN THE RAWSRTM-NEDAND

ACTUAL AVERAGE HEIGHTS FORRP1-6. THE NEGATIVE DIFFERENCES INDICATE THAT THE RAWSRTM-NEDHEIGHTS ARE ON

AVERAGE BELOW THE TRUE AVERAGE TREE HEIGHT.
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Fig. 22. Results of the second estimation scenario for frozen conditions: RP1-11 and AP1-2 assuming the distributions of the density
and moisture values are known. See also Tables III and IV, line three. The dots are the expected values ofĥv with n = 360 trees/ha and
M = 0.45 g/g. The upward and downward pointing triangles are the minimum and maximum estimates, assuming±50% error in n and
±33% error inM . The open circles are the raw SRTM minus NED heights. Stands RP1-11 and AP1-2 use the -2◦C extinction coefficients,
and the Raco stands use the 5◦C extinction coefficients (not frozen).
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