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Abstract

We analyzed the e�ect of shallow thin layers on the estimation of soil
surface water content using full-waveform inversion of o�-ground ground
penetrating radar (GPR) data. Strong dielectric contrasts are expected
to occur under fast wetting or drying weather conditions, thereby leading
to constructive and destructive interferences with respect to the surface
re�ection. First, synthetic GPR data were generated and subsequently
inverted considering di�erent thin-layer model con�gurations. The result-
ing inversion errors when neglecting the thin layer were quanti�ed, and
then, the possibility to reconstruct these layers was investigated. Second,
laboratory experiments reproducing some of the numerical experiments
con�gurations were conducted to assess the stability of the inverse solu-
tion with respect to actual measurement and modeling errors. Results
showed that neglecting shallow thin layers may lead to signi�cant errors
on the estimation of soil surface water content (∆θ > 0.03 m3/m3), de-
pending on the contrast. Accounting for these layers in the inversion
process strongly improved the results, although some optimization issues
were encountered. In the laboratory, the proposed full-waveform method
permitted to reconstruct thin layers with a high resolution up to 2 cm
and to retrieve the soil surface water content with an rmse less than 0.02
m3/m3, owing to the full-waveform inverse modeling. These results sug-
gest that the proposed GPR approach is promising for �eld-scale mapping
of soil surface water content of nondispersive soils with low electrical con-
ductivity and for instances when soil layering is encountered.
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1 Introduction

At the �eld scale, evaluating the soil water content spatial variability is an
important issue for many research and engineering applications [1]. For in-
stance, in catchment hydrology, as the soil surface water content determines the
partitioning of precipitation into run-o� and in�ltration under speci�c weather
conditions, disregarding the spatial variability of the soil water content can lead
to erroneous predictions in �eld run-o� and, further, in discharge estimation of
the whole catchment [2]. Usual soil water content measurement techniques at
the �eld scale are invasive methods, like gravimetric sampling or time domain
re�ectometry (TDR). Although the TDR technology has been automated to
some extent, the method remains problematic for mapping large areas due to
the local measuring support of the TDR probe [3]. On the other hand, airborne
and spaceborne remote sensing methods have been proven to be e�ective tools
for estimating soil surface water content over larger areas, with either passive
microwave radiometry or active radar instruments [4]. However, major limi-
tations with current remote sensing techniques are the unknown within-pixel
heterogeneity and the usually resulting poor agreement with calibrating and
gravimetric sampling [5�9]. Hence, no absolute relation between the backscat-
tered signals from synthetic aperture radar (SAR) and the soil water content
exist, necessitating site-speci�c calibrations [10]. In particular, remote sensing
radar systems are highly a�ected by soil roughness, due to the relatively high
frequencies used in SAR systems, such that many studies have also addressed
that problem [11]. Radar sensing is also a�ected by high apparent electrical
conductivity values when not taken into account [12].

All of these studies show that there is a strong need to bridge the scale gap
between airborne/spaceborne radar techniques and small scale characterization
of soil water content. In particular, noninvasive techniques are required to
characterize soil water content at the intermediate �eld scale and with a spatial
resolution in the order of 1 m.

In that respect, ground penetrating radar (GPR) techniques are speci�cally
suited for �eld scale characterization and imaging [4,13,14]. Several GPR tech-
niques have been developed for a large variety of applications. For the particular
case of identifying soil surface water content, two GPR approaches are commonly
used. First, soil surface water content can be derived from the ground wave prop-
agation velocity [15�18]. The ground wave is the signal that travels directly from
source to receiving antenna through the soil surface. However, the technique
presents a number of drawbacks, including the following: 1) the required con-
tact between the antennas and the soil; 2) the identi�cation of the ground wave;
which may be ambiguous or even impossible in some conditions; 3) the presence
of ambiguous guided waves when near-surface layering is present [19, 20]; and
4) the limited adequacy of the used straight-ray approximation for modeling
electromagnetic wave propagation [21]. The second approach is the surface re-
�ection coe�cient method, which uses o�-ground radar con�gurations [22�25].
The soil surface dielectric permittivity is derived from the Fresnel re�ection
coe�cient, which is determined from the ratio between the amplitude of the re-
�ection at the soil surface and the one obtained for a calibrating perfect electric
conductor (PEC). However, this method still remains mostly unused nowadays
for real-time mapping applications, mainly due to the requirement for such cal-
ibration [26]. The same concept is, however, commonly used in airborne and
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spaceborne radar remote sensing [27]. A more recent advance has been devel-
oped by Lambot et al. [28] for the particular case of o�-ground and zero-o�set
GPR. The method resorts to full-waveform forward and inverse modelings of the
GPR signal, which inherently maximize information retrieval capabilities from
the radar data. The model is based on a 3-D solution of Maxwell's equations
for wave propagation in multilayered media and complex, frequency-dependent
scalar transfer functions describing antenna e�ects, including antenna-soil in-
teractions. Speci�c inversion strategies have been developed for the retrieval of
soil surface dielectric permittivity and correlated water content [26].

However, Lambot et al. [26] showed that the presence of thin soil layers may
signi�cantly a�ect the results if not properly accounted for. Thin layers with
strong dielectric contrasts may occur preferentially in coarse materials, but not
limited to, either in wet soils subject to fast evaporation or dry soils subject
to precipitation. To some extent, thin layers may also originate from pedo-
genetic processes [29]. The soil surface is the most active layer in terms of water
dynamics, as it is directly exposed to the varying atmospheric conditions, while
the soil water dynamics in the subsurface is more stable. The e�ect of thin
layers has been addressed in a limited number of studies, in the area of remote
sensing with SAR [6, 7] and GPR [19, 20, 30, 31]. Currently, due to the single-
frequency remote-sensing sensors, vertical contrasts of soil moisture can only be
estimated using soil hydrodynamic modeling, for which knowledge of the soil
hydraulic properties is required. Field or watershed scale hydraulic parameters
are often derived from soil texture information using pedotransfer functions [32],
but the soil parameterization schemes remain inadequate due to their inability
to incorporate the natural heterogeneity of soils and the lack of detailed soil
property maps. In contrast, ultra-wideband GPR particularly provides depth-
dependent information and has, thereby, the potential to reconstruct thin layers.

In this paper, we analyzed the e�ect of thin layers on the retrieval of soil
surface water content from zero-o�set, normal incidence, and proximal GPR
and we addressed the reconstruction of these layers by full-waveform inversion.
First, numerical experiments were performed for the following reasons: 1) to
investigate the well-posedness of the inverse problem when thin layers are ac-
counted for; 2) to quantify the errors resulting from the homogeneous medium
assumption; and 3) to compare di�erent inversion strategies to deal with the re-
construction of these thin layers. Then, laboratory experiments were conducted
in order to corroborate the statements inferred from the synthetic experiments
and analyze the stability of the inverse problem with respect to real measure-
ment and modeling errors. GPR measurements were made above a two-layered
medium set up in a sandbox with 50 di�erent model con�gurations. This paper
is important for every applications where surface soil water content is estimated
from remote or proximal radar data.

2 Materials and Methods

2.1 Theory

The GPR system that we used consists of a vector network analyzer (VNA)
connected to an ultrawideband monostatic (zero-o�set transmitter and receiver)
horn antenna placed o� the ground. For this con�guration, the following equa-
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tion is applied to �lter out the antenna e�ects [28]:

S11(ω) = Hi(ω) +
H(ω)G↑

xx(ω)

1−Hf (ω)G
↑
xx(ω)

(1)

where S11(ω) is the quantity measured by the VNA, Hi(ω) is the antenna return
loss, H(ω) is the antenna transmitting-receiving transfer function, Hf (ω) is the
antenna feedback loss, G↑

xx(ω) is the transfer function of the air-subsurface sys-
tem modeled as a multilayered medium, the so-called Green's function, and ω is
the angular frequency. The Green's function represents an exact solution of the
3-D Maxwell's equations for electromagnetic wave propagation in multilayered
media. The consideration of a 3-D model is essential to take into account spher-
ical divergence (geometric spreading) in GPR wave propagation. Solutions of
Maxwell's equations for wave propagation in 3-D multilayered media are well
known [33]. We derived this speci�c Green's function using a recursive scheme to
compute the transverse electric and magnetic global re�ection coe�cients of the
multilayered medium in the spectral domain [28, 34]. The transformation back
to the spatial domain is performed by evaluating numerically a semi-in�nite,
complex integral. A speci�c procedure was applied for a fast and accurate eval-
uation of that integral [35], which inherently contains singularities.

The electromagnetic properties (i.e., the dielectric permittivity and the elec-
trical conductivity) of the multilayered medium are retrieved by a full-waveform
inversion of the Green's function. This inversion can be done in the frequency
domain, where the wave is actually modeled and measured, or in the time do-
main. For the time domain analysis, the generated and modeled frequency
domain Green's functions are �rst transformed in the time domain using the in-
verse Fourier transform. The inverse problem is formulated in the least-squares
sense and the objective function is accordingly de�ned as follows:

φ(b) =
(
g↑∗
xx − g↑

xx

)T (
g↑∗
xx − g↑

xx

)
(2)

where g↑∗
xx and g↑

xx are, respectively, the generated and the modeled Green's
function vectors (arranged versus frequency) and b is the vector of parameters to
be estimated, i.e., electromagnetic properties and dimensions of the multilayered
medium. This objective function is minimized by means of the global multilevel
coordinate search algorithm [36] combined sequentially with the classical Nelder-
Mead simplex algorithm [37]. The reader is referred to the study by Lambot et
al. [26, 28] for additional details on this model and the optimization procedure
for signal inversion.

2.2 Numerical Experiments

The objective of these numerical experiments is to investigate and compare
di�erent inversion strategies for the estimation of thin layer properties and ex-
amine the well-posedness of the inverse problem. Synthetic radar datasets were
generated assuming a two-layered model. Inversions were performed in both the
frequency and time domains, assuming either the correct two-layered con�gura-
tion or a simpli�ed one-layered model. This resulted in four di�erent inversion
strategies.

The GPR frequency bandwidth used for these synthetic experiments ranges
from 0.8 to 2.6 GHz, with a frequency step of 6 MHz. The antenna phase center
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(S) was situated at 0.5 m in air above the soil surface (see Fig. 1). Di�erent
thicknesses h1 were considered for the top thin layer (0.005, 0.01, 0.02, 0.04 and
0.08 m, as used in [26]), while the bottom layer was an in�nite half-space. We
chose 13 di�erent volumetric water contents for each layer, evenly ranging from
0 to 0.36. This resulted in 845 two-layered model con�gurations (13 × 13 × 5).

Figure 1: Model con�guration used for the numerical experiments and inverse
modeling �owchart.

The relations between the soil water content and its electromagnetic proper-
ties were described, respectively, by (1) the model of Ledieu et al. [38] to derive
soil dielectric permittivity from water content:

θ = a
√
εr + b (3)

with a = 0.1264 and b = −0.1933 for a speci�c sandy soil, and by (2) the model
of Rhoades et al. [39] to relate soil electrical conductivity to water content:

σ = (cθ2 + dθ)σw + σs (4)

where the parameters were set to c = 1.85, d = 3.85× 10−2, σw = 0.075 Sm−1

and σs = 5.89 × 10−4 Sm−1. These parameters were determined in the labo-
ratory for that speci�c sand subject to di�erent water contents and salinities.
Both dielectric permittivity and electrical conductivity are thus related to the
soil water content by these speci�c relationships.

As the generated data are created with a two-layered model, the inversion
procedure taking into account this layering with the two-layered model is natu-
rally exact in contrast to the model with a one-layered con�guration. However,
the two-layered inversion may su�er from uniqueness and optimization prob-
lems. In addition, the inverse problem assuming a single layer is more simple,
but modeling errors are then introduced. A one-layered model counts 3 param-
eters to invert (the electromagnetic parameters ε and σ and the antenna height
h0) while 5 parameters are inverted with the two-layered model (ε1, σ1, h1, ε2,
σ2), as the antenna height above the soil is assumed to be exactly known. The
error in the estimation of a parameter is de�ned as the absolute value of the
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di�erence between the true parameter and the value obtained by inversion. The
estimation errors are computed for each inverted parameter.

2.3 Laboratory Experiments

The objective of the laboratory experiments was to analyze in realistic conditions
the same con�gurations of layering as for the numerical experiments. Indeed,
inverse modeling of actual data are expected to show the same divergences as
a function of the di�erent model con�gurations and inversion strategies, plus
issues related to measurement and modeling errors. Modeling errors can be
caused by the antenna calibration model, the assumption of a plane layered
earth and by the fact that the models of Ledieu et al. [38] and Rhoades et
al. [39] may not be the correct models to relate water content to the electric
properties of the layers. A schematic representation of the laboratory experi-
mental setup is depicted in Fig. 2. A square sandbox made of wood (with 1.50
m on each side and 0.50 m in height) was �lled with two layers of sand subject
to speci�c water contents. A PEC, namely, an aluminum sheet, was placed on
the bottom of the sandbox in order to control the bottom boundary condition in
the electromagnetic model. As a result, deeper laboratory materials (concrete
with rebar) did not in�uence the measured backscattered GPR signal.

The water content in the sand layers was controlled by mixing calculated
volumes of dry sand and demineralized water. Volumetric samples were then
collected to determine the actual water content of the sand layers. The top thin
layer (layer 1 in Fig. 2) was subject to ten di�erent water contents, ranging
from 0 to 0.270. Its thickness was set to 0.005, 0.01, 0.02, 0.04 and 0.08 m,
respectively. The second layer (layer 2 in Fig. 2) was subject to a constant
water content of about 0.064. Its thickness was kept constant and was equal
to 0.32 m. The two sand layers were separated by a thin plastic sheet. The
resulting total number of model con�gurations was then 50 (10 × 5). The radar
antenna was at a �xed position above the sandbox, at about 30 cm above the
sand surface depending on the thin-layer thickness.

Figure 2: Laboratory experimental setup showing the GPR horn antenna above
the two-layered sandbox.
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We used an ultrawideband stepped frequency continuous wave radar system
using a Vector Network Analyzer (VNA) (ZVRE, Rohde & Schwarz, Münich,
Germany) combined with an o�-ground monostatic horn antenna. The antenna
system was a linear polarized double-ridged broadband horn (BBHA 9120 A,
Schwarzbeck Mess-Elektronik, Schönau, Germany). Antenna dimensions are 22
cm in length and 14 × 24 cm2 in aperture area, and the nominal frequency range
is from 0.8 to 5 GHz. The antenna was connected to the re�ection port of the
VNA with a high-quality N type 50-Ω coaxial cable of 2.5 m length (Suco�ex
104PEA, Huber+Suhner AG, Herisau, Switzerland). We calibrated the VNA
at the antenna feed point using a 50-Ω OSM (Open, Short, Match) calibration
kit (ZVZ21-N, Rohde & Schwarz). The frequency-dependent complex ratio S11

between the returned and the emitted signal was measured sequentially at 301
stepped frequencies from 0.8 to 2.6 GHz, with a frequency step of 6 MHz.
Measured signals from the laboratory (S11) were �rst transformed in Green's
function using (1) and previously determined transfer functions [40]. These
measured Green's functions were then used for inverse modeling in order to
retrieve the parameters of the two-layered medium.

Sampling for volumetric water content determination using the oven drying
method at 105◦C for at least 48h was performed using di�erent sampling vol-
umes for the di�erent thin-layer thicknesses. Laboratory-made metallic rings
were used to collect the sand samples, with heights corresponding to the thin-
layer thicknesses. The bulk density of the sand was found to be 1.39 g/cm3.
Five samples were taken for each mix of sand and water, accounting in total for
50 water content measurements.

The same models as the ones used in the numerical experiments (1- and
2-layered models) were used for performing the inversions in both the frequency
and time domains, except that the width of the second layer (h2) was inverted
in the laboratory experiments as the second layer is not a half-space medium
anymore. Furthermore, two other inversion scenarios were performed: 1) a two-
layered model in the time domain ignoring the re�ections from the PEC situated
at the bottom of the sandbox (TIME 2L*), and 2) a one-layered model in the
time domain with inversions focused on the surface re�ection (TIME L-M). In
the TIME 2L* inversion scenario, the �nal re�ection from the PEC is avoided by
focusing on a time window de�ned between 0 and 5 ns, and hence, it is naturally
not accounted for in the layered model. This simpli�ed model permits a decrease
in the number of unknowns in the inversion from seven to six (ε1, σ1, h1, ε2, σ2

and h0). In the TIME L-M inversion scenario, the GPR signal is reduced to the
sand surface re�ection in the time domain. In this case, the soil model reduces
to a half-space and the number of parameters to estimate is two, i.e., the surface
dielectric permittivity ε1 and the antenna height h0. This highly simpli�es the
inverse problem and inversions can be performed using local optimization, in
our case with the Levenberg-Marquardt algorithm. This last inversion strategy
has shown to be practical and suitable in di�erent �eld conditions [41].
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Figure 3: Error on the dielectric permittivity of the �rst layer ∆ε1 for each top
layer thickness h1, with inversions performed with the two-layered model in the
frequency domain. Results from the numerical experiments.
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3 Results and Discussion

3.1 Numerical Experiments

3.1.1 Inversion With the Correct Two-Layered Model

Fig. 3 shows the observed errors on inverted ε1 with the correct two-layered
model for the 845 considered model con�gurations, presented as a function of the
water content of the two layers and the thickness of the thin layer. Although the
model used for inverse modeling is the same as the one used for generating the
synthetic radar data (i.e., a two-layered model), some discrepancies between
the true and optimized parameters can be observed. For cases where there
is no contrast between the two soil layers (i.e., homogeneous medium), the
error is almost always null and, in all cases, negligible. For very thin layers
(Fig. 3(a) and (b)), the amplitude of the error generally increases with the
dielectric contrast between the two layers. For thicker layers, the error is more
randomly distributed as a function of the contrast. In general, errors decrease
with increasing top layer thickness. The statistical behavior of the distribution
of this error follows a strong negative exponential (i.e., the mean error is 1.0059
while the median error is only 0.0107) with the majority of the errors that are
null.

The observed behaviors in the error can be partly attributed to the maxi-
mum resolution that can be theoretically achieved with the considered frequency
range, namely, 0.8-2.6 GHz. The range resolution is usually assumed as one
quarter of the average wavelength. In dielectric media, the wavelength is de-
creasing proportionally to the square root of the dielectric permittivity. Hence,
the range resolution increases with water content. In our case, for an average
relative dielectric permittivity of nine and for a central frequency of 1.8 GHz,
the range resolution is found to be 1.4 cm. This corroborates the results in Fig.
3, as signi�cant errors are mostly observed for thinner layers. It is worth noting
that in a series of cases, the observed errors for sub-resolution characterization
may be also negligible. For cases where the layer thickness is larger than the
range resolution, still some errors can be observed. These errors are to be at-
tributed to optimization issues, as the global minimum of the objective function
(equal to zero) could not be reached by the optimization algorithm, and the �t
was therefore not perfect.

For instance, Fig. 4 represents the synthetic and �tted Green's functions,
in both the frequency and time domains, for the largest error observed for ε1
(for h1 = 0.01 m, θ1 = 0.36, and θ2 = 0). Although the �t is relatively good,
the error in the estimated parameter is quite large. It was not possible to �nd
a better solution with the optimization algorithm, even subject to a relatively
large number of iterations (> 10000). In the time domain, the re�ections from
the two layer interfaces cannot be clearly distinguished, as a result of the sub-
resolution conditions. However, a slight mis�t can still be observed beyond the
main re�ection peak. The oscillations in the time domain are artifacts of the in-
verse Fourier transform when information is available only in a relatively limited
frequency range.

Figs. 5 and 6 show 2-D slices of the 5-D objective function for a number
of parameter pairs considering, respectively, a top thin layer of 1 cm (under
range resolution) and 8 cm (above range resolution). In the case of the thinner
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Figure 4: Generated and inverted Green's functions for a �rst layer water con-
tent of 0.36, a second layer water content of 0 and a �rst layer thickness of 0.01
m, depicted in frequency (a) and time domain (b). Results from the numerical
experiments.

layer (Fig. 5), the global minimum for the thin layer dielectric permittivity
(ε1) is well de�ned in all parameter planes. However, some correlation and
weaker sensitivity can be observed in the ε1 − h1 plane (Fig. 5(c)), which
is disadvantageous for its estimation. The objective function topography with
respect to the electrical conductivity for both layers is always �at, which denotes
a poor sensitivity of the model to these parameters. It is also worth noting that
the objective function topography is relatively complex, including oscillations
and local minima. In the 5-D objective function, this is therefore expected to
strongly a�ect the optimization procedure. In Fig. 6, we observe that, compared
to the 1-cm layer case, the global minimum of the objective function is better
de�ned with increased sensitivity of the model to all parameters (except for σ1

and σ2). This was expected as the radar data contain su�cient information to
ensure a unique estimate of the layer parameters.

3.1.2 One-Layer Model Inversions and E�ect of the Contrast

Fig. 7 shows the error in the estimated dielectric permittivity of the top layer
(∆ε1) with respect to the dielectric contrast between the two layers, expressed
in terms of water content contrast. Results are presented for both inversion
strategies in the frequency domain, assuming the correct two-layered model and
the simpli�ed one-layered model, respectively. Errors for null contrast are not
presented in this graph as they are negligible.

For the two-layered model [Fig. 7(a)], there is no clear relationship between
the contrast and the error on the dielectric permittivity. We can observe the
presence of numerous outliers with high error values that are out of the whisker
ranges. These outliers are expected to originate from nonconvergence of the
optimization algorithm.
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the (a) ε1-ε2, (b) ε1-log10(σ1), (c) ε1-h1, (d) ε1-log10(σ2), (e) ε2-h1 and (f)
h1-log10(σ1) parameter planes. These objective functions are plotted for the
case where h1 = 0.08 m, θ1 = 0.36, and θ2 = 0. True parameter values are
represented by the white star marker.
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Figure 7: Error distribution of the dielectric permittivity of the top layer, as a
function of the contrast in water content between the layers. The box extent
shows interquartile range (i.e., the range between the �rst and the third quar-
tiles), while the median of the error distribution is represented by the horizontal
line that cuts the box. Whiskers length is 1.5 times the vertical length of the
boxes. Outlier error values are displayed as crosses outside of the whiskers.
Comparison between inversions performed with the two-layered (a) and the
one-layered (b) models in the frequency domain. Results from the numerical
experiments.
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Table 1: Number of convergent con�gurations for time and frequency domains
and for the one-layered and the two-layered inversion models in the Numerical
Experiments.

Error on dielectric permittivity Error on the �rst layer thickness ∆ε1 and ∆h1

∆ε1 ≤ 0.1 ∆ε1 ≤ 0.5 ∆h1 ≤ 0.005 m ∆h1 ≤ 0.01 m ∆ε1 ≤ 0.1 & ∆ε1 ≤ 0.5 &
∆h1 ≤ 0.005 m ∆h1 ≤ 0.01 m

Frequency domain
1-layer 104 (12.3%) 268 (31.7%)
2-layer 485 (57.4%) 624 (73.8%) 522 (61.8%) 646 (76.4%) 403 (47.7%) 535 (63.3%)

Time domain
1-layer 150 (17.7%) 324 (38.3%)
2-layer 342 (40.5%) 426 (50.4%) 352 (41.6%) 383 (45.3%) 280 (33.1%) 314 (37.1%)

For the one-layered model [Fig. 7(b)], a positive relationship between the
median values of the errors on ε1 and the contrast can be observed. In that
respect, it is worth noting that the errors are shown on a logarithmic scale and,
therefore, the observed trend is signi�cant, in particular for lower contrasts.
As expected, the errors for the one-layered model are larger compared to the
exact model inversion (modeling errors are introduced). Large contrasts between
the layers lead to signi�cant errors as a result of constructive and destructive
interferences in subresolution conditions [26] [e.g., the two re�ection peaks in
the time domain cannot be distinguished in Fig. 4(b)]. In case of inversion
with the exact model con�guration, these interferences are inherently properly
accounted for. When the top layer is thick enough compared to the wavelength,
the re�ections at the interfaces are well separated in time and, as shown by
Lambot et al. [26], the one-layered model performs well for estimating the surface
dielectric permittivity.

3.1.3 Comparison Between Model Inversion Routines

Table 1 shows the number of convergent con�gurations for both time and fre-
quency domains and for the one-layered and the two-layered inversion models.
Values number the convergent cases among the 845 model con�gurations and
percentages refer to the proportions with respect to the total. A case is counted
as convergent according to the error on the dielectric permittivity of the �rst
layer and on the �rst layer thickness, as classi�ed in Table 1. This last param-
eter can obviously only be determined with the inversions performed with the
two-layered model.

The largest convergence rate is encountered with the inversion performed in
the frequency domain for the two-layered model. The one-layered model clearly
shows less convergent cases than the two-layered model. This is obvious since
the one-layered model does not take into account the presence of electromag-
netic contrast between the layers. All the same, inversions with the one-layered
model (three parameters) are about 6 times faster in terms of computation
time compared to the two-layered model inversions (�ve parameters). Com-
paring time- and frequency-domain analysis, for the one-layered model, better
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results are obtained in the time domain than in the frequency domain, while
it is not the case with the two-layered model. As time- and frequency-domain
data are equivalent in terms of information content, these di�erences are to be
attributed to the di�erent model sensitivities with respect to the surface di-
electric permittivity. Hence, this results in di�erent shapes for the objective
function topography, with more or less well-de�ned global minima. Di�erences
may also partly originate from the relation between a speci�c objective function
topography and the used optimization algorithm (GMCS-NMS), for which the
same parametrization among the scenarios was kept.

3.2 Laboratory Experiments

3.2.1 Comparison With Ground-Truth Measurements

Fig. 8 shows the soil surface relative dielectric permittivity estimated from GPR
data inversion as a function of the ground-truth soil volumetric water content for
six di�erent inversion scenarios. The symbols discriminate the values according
to the �ve top layer thicknesses that were set in the sandbox for each water
content. The dotted vertical line at θv = 0.064 indicates the soil water content
of the bottom layer that was determined by inverse modeling of the measured
GPR signal above the bottom layer without the top thin layer. In that case,
the inverse problem is expected to result in accurate estimates [28]. For each
scenario, the relationship between εGPR and θv is �tted assuming the model of
Ledieu et al. [38] (Eq. 3).

The relationships between the �rst-layer dielectric permittivities and water
content are quite well de�ned and consistent for all scenarios. In general, the
�ts are relatively good, except for higher water contents. It is worth noting
that the measured water contents are expected to be also subject to signi�cant
uncertainties, due to the following: 1) the di�culty to properly sample so thin
layers with a loose material and 2) the sampling scale (5-10 cm2), which is
di�erent from the GPR characterization scale (order of 2500 cm2), and this is
in relation to the inherent heterogeneity. The mean con�dence interval at 95%,
calculated for each mix of humid sand, is equal to 0.010. Outlier permittivity
values can be observed and are either very low [FREQ 2L Fig. 8(a), TIME 2L
Fig. 8(c) and TIME 2L* Fig. 8(e)] or very high [TIME L-M Fig. 8(f)] compared
to expected values from the �tted model of Ledieu et al. [38]. For overestimated
values, their origin may be theoretically twofold [26]. First, they can result from
a too high electrical conductivity, as this parameter is neglected in the TIME
L-M inversion. Second, they can originate from constructive interferences in
presence of thin layers in the near surface. In our case, as we observe that these
discrepancies occur only for thin layers (especially 2 cm), they are believed to
come from constructive interferences. In addition, the electrical conductivity is
expected to be low for a sand wetted with demineralized water.

It is worth noting that the values obtained with the largest layer thickness
(h1 = 8 cm) are very similar among the inversion scenarios. Indeed, with such
layer thickness, the re�ection from the second layer interface does not a�ect the
�rst re�ection within the given range resolution. These results for the thicker
layer are therefore expected to be the most accurate.

Table 2 shows parameters a and b of the model of Ledieu et al. [38], the
root mean square error (rmse) between the �tted and measured dielectric per-
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Figure 8: Soil surface relative dielectric permittivity estimated from GPR data
inversion (ε1,GPR) as a function of soil volumetric water content θv. Dielectric
permittivities are depicted with di�erent symbols according to the top layer
thickness. The model of Ledieu et al. [38] is �tted on the observed data (solid
line). The dotted vertical line at value θv = 0.064 indicates the soil water content
of the second layer (constant for all con�gurations). (a) Two-layered inversion
in the frequency domain. (b) One-layered inversion in the frequency domain.
(c) Two-layered inversion in the time domain. (d) One-layered inversion in the
time domain. (e) Two-layered inversion in the time domain assuming no PEC
as lower-halfspace. (f) Inversion in the time domain by focusing on the surface
re�ection only [26]. 16



Table 2: Statistics on the comparison between ground measurements of volu-
metric water content and GPR-measured dielectric permittivities.

a b RMSE r2

Frequency domain
2-layer 0.094 -0.097 1.912 0.714
1-layer 0.114 -0.151 1.542 0.780

Time domain
2-layer 0.079 -0.054 2.479 0.579
1-layer 0.114 -0.150 1.548 0.781

Time 2-layer* 0.092 -0.082 1.651 0.699
Time L-M 0.086 -0.093 2.682 0.665

mittivities, and the coe�cient of determination r2 between θv and
√
εGPR for

the corresponding six scenarios. Except for the TIME L-M scenario, the one-
layered models show the lowest rmse and largest coe�cients of determination
r2. In general, better results are obtained with the one-layered model as the di-
mensionality of the inverse problem is lower. Similarly, the TIME 2L* scenario
also presents relatively low rmse as, in that case, only six parameters are to be
inverted for (see also Fig. 8(e)). For scenario TIME L-M, a large rmse and a low
r2 are obtained, arising from the presence of numerous outliers. These outliers
come from low model adequacy, as it does not account for the constructive and
destructive interferences produced by the two interfaces.

The two-layered models show intermediate performances in terms of rmse
and r2, as a trade-o� between model adequacy and inverse problem complexity.
A smart parameterization of the inverse algorithm is required because of the high
non-linearity of the model to its parameters. In that way, reducing the number
of parameters to optimize considerably makes the inverse problem easier. For
instance, the best performance of the model TIME 2L* compared to FREQ
2L and TIME 2L comes simultaneously from the limited number of parameters
(passing from seven to six) and high model adequacy.

Fig. 9 shows the GPR-derived top layer thickness (h1) as a function of the
real thickness measured using a millimetric ruler. Inversions were performed
with the TIME 2L* scenario, which generally produces the best results. The
observed errors are relatively small, ranging from a few millimeters up to two
centimeters. The most accurate estimations are obtained for the 4-cm-thick
layer. For thicknesses lower than 2 cm, discrimination between the two interfaces
cannot always be achieved, because, in that case, the range resolution limit is
reached. As it was shown in the numerical experiments, this range resolution
is about 1.5 cm for a center frequency of 1.7 GHz and a dielectric permittivity
of nine. For larger thicknesses, the larger errors are to be attributed to the
negative correlation between the layer thickness and its dielectric permittivity
(see Fig. 6). In presence of measurement and modeling errors, the minimum
region of the objective function becomes even �atter, which results in larger
uncertainties in the estimation of these parameters.
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Figure 9: Comparison between �rst layer thickness measured in the sandbox
and derived from GPR signal inversion.

3.2.2 E�ect of the Contrast

As it was already observed in the numerical experiments, high contrasts between
the two soil layers lead, in general, to larger errors in the estimation of the
surface dielectric permittivity with one-layered models. In Fig. 8, the dotted
vertical lines correspond to the water content of the bottom layer, which is
0.064, and therefore, at this line, the contrast between the two layers is zero.
Accordingly, we clearly see that, for this water content, the dispersion of the
dielectric permittivities around the model of Ledieu et al. [38] for the one-
layered models is minimal. Indeed, the two-layered con�guration then reduces
to a one-layered con�guration. We can also observe that, for the zero contrast,
inversion results are better for the one-layered inversion, because of the lower
dimensionality of the inverse problem. When the contrast between the two
layers increases, the inadequacy between the one-layered model and the reality
(two layers) increases, which results in proportionally larger errors.

For the two-layered inversions, in general, error also increases with the con-
trast. As in that case the forward model is correct, these discrepancies are to be
attributed either to optimization issues or a badly de�ned global minimum of
the objective function. As this was not observed for the numerical experiments,
we believe that the problem mainly originates from the objective function topog-
raphy, which inherently becomes �atter when measurement errors are present.

Fig. 10 shows the absolute value of the di�erence between the measured
and the �tted top layer water content as a function of the contrast between
the layers for the TIME L-M inversion scenario. This �gure emphasizes the
positive correlation between the contrast and the error on the GPR-derived soil
properties, as already observed in Fig. 8. It is important to mention here that
this inversion strategy (i.e., a time domain inversion focusing on the surface
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Figure 10: Error between the ground measurements and GPR-derived soil sur-
face water content as a function of the contrast between the two layers for
TIME L-M inversion scenario. Coe�cient of determination r2 is depicted in the
upper-left corner.

re�ection only) appears to be very robust in general when dealing with �eld
data [41, 42]. In that respect, these laboratory experiments show that one-
layered inversions even perform relatively well in the presence of thin layers
with low contrasts. For high contrasts, however, accounting for thin layers is
necessary.

3.2.3 Comparison Between One- and Two-Layered Models for Esti-

mating the Surface Dielectric Permittivity

Fig. 11 shows the absolute di�erence in dielectric permittivities of the top layer
between the one- and two-layered inversions, as a function of the ground-truth
top-layer water content. This �gure allows the evaluation of the resulting error
when a one-layered model is assumed for a two-layered medium. Gray areas in
the graph delineate two dielectric permittivity error thresholds, namely,∆ε1 ≤ 1
and ∆ε1 ≤ 3. Dielectric permittivities are depicted with di�erent symbols
according to the �rst-layer thickness.

All the values that are above the two thresholds pertain to con�gurations
with small layer thicknesses, i.e., h1 = 0.5 cm, h1 = 1 cm and, to a lesser
extent, h1 = 2 cm. On the other side, con�gurations whose �rst-layer thickness
are h1 = 8 cm systematically lead to low di�erences (i.e., very close dielectric
permittivity estimations are obtained with the two model con�gurations). As
expected, this shows that a top layer thick enough compared to the wavelength
can be characterized from the surface re�ection only. It also appears that errors
sightly increase with higher water contents, denoting the dielectric contrast
e�ect.
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Figure 11: Absolute di�erence in the top-layer dielectric permittivities between
one- and two-layered models in frequency domain as a function of the top-layer
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3.2.4 E�ect of the frequency bandwidth sampling

Information content in the radar data increases with increasing bandwidth. An
important asset of using VNA technology is that the bandwidth is fully control-
lable and, in particular, ultrawideband GPR can be set up. The only limitation
is the operating frequency range of the antenna. However, in some cases, other
factors may also a�ect the utilizable bandwidth. In our case, in the laboratory
conditions, lower frequencies were subject to ambiguous re�ections from extra-
neous objects present in the laboratory, given the limited size of the sandbox.
Measurements for higher frequencies were also in�uenced to some extent by the
inherent heterogeneities present in the sandbox, including slight surface rough-
ness. For instance, Fig. 12 shows that the GPR measured signal becomes of
poorer quality for the lowest and highest frequencies of the 0.8-2.6 GHz band-
width we used, and in particular below 1 GHz and above 2 GHz. The correct
two-layered model used for the inversion could reproduce remarkably well the
measured signal in both the frequency and time domains.

In order to determine the optimal frequency bandwidth for the top layer
dielectric permittivity estimation, we performed inversions in di�erent limited
frequency ranges selected from the full range, and we assumed the correct two-
layered model (FREQ 2L). Fig. 13 presents boxplots of the errors in the top-
layer water content estimation for inversions performed in eight di�erent fre-
quency ranges. The errors are de�ned as the bias between the GPR soil water
content derived from the dielectric permittivities using the model of Ledieu et
al. [38] with a given parametrization and the soil water content determined by
volumetric sampling. Start frequencies were set to either 0.8 or 1 GHz and stop
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Figure 12: Measured and modeled Green's functions on the frequency band-
width from 0.8 to 2.6 GHz, depicted (a) in the frequency and (b) time domain.

frequencies to 2, 2.2, 2.4 or 2.6 GHz, respectively.
Clearly, the full frequency bandwidth leads to the best estimations for the

sand water content. Narrower bands lead, in particular, to outliers with signif-
icant errors. Reducing the frequency bandwidth is clearly contraindicated for
estimating the soil parameters in the presence of thin layers. For layers that
are thick compared to the wavelength, a bandwidth as small as 0.4 GHz still
leads to accurate results [43]. Although the radar data for frequencies between
0.8 GHz and 1 GHz are contaminated by some noise, inversions without these
frequencies do not lead to signi�cantly di�erent results. A large bandwidth is
important for thin-layer retrieval because, in the frequency domain, thin layers
lead to oscillations of the amplitude of the Green's function with a large period.
This period is inversely proportional to the electric thickness of the layer. It
is worth noting that the problem is similar in the time domain where the lim-
itation of the bandwidth results in less well-de�ned re�ection (the bandwidth
de�nes range resolution). For instance, with remote SAR acquisition, it is well
known that using various frequencies enhances the extraction of information for
the retrieval of soil surface moisture [10]. Moreover, D'Urso and Minacapilli [10]
have shown that relatively low frequencies (L-band, 1.6 GHz) lead to better re-
sults, mainly due to the lower sensitivity to soil surface roughness and vegetation
compared to higher frequencies.

4 Conclusions and Perspectives

We performed numerical experiments to evaluate the e�ect of shallow thin lay-
ers on the retrieval of soil electromagnetic properties by full-waveform inversion
of GPR data. First, inversions of synthetic data, assuming the correct model
con�guration (two-layered), show some discrepancies between true and inverted
dielectric permittivities. This was attributed to the complexity of the inverse
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Figure 13: Error boxplots between the GPR-derived and the sampled volumet-
ric soil water content of the top layer, for inversions with di�erent frequency
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22



problem (�ve parameters to be retrieved) and the not well-de�ned global min-
imum of the objective function for subresolution layer thicknesses. We also
showed that the errors increase, as expected, with the use of a simpli�ed one-
layered model (i.e., when the true two-layered medium is not taken into account).
However, provided limited contrast between the two layers, such approach re-
mains robust owing to the low dimensionality of the inverse problem (three
parameters). For relatively large contrasts (e.g., > 0.10 in terms of water con-
tent), signi�cant errors arise with the simpli�ed model (> 0.10 in terms of water
content).

For the laboratory experiments, a good agreement was obtained between
volumetric water content determined by sampling and GPR-derived dielectric
permittivity. The same limitations as for the numerical experiments were ob-
served. In addition, part of the observed discrepancies was attributed to the
inherent variability of the water content within the sand layers with respect to
the di�erent measurement support, making the water content measurements not
fully reliable in comparing the larger-scale GPR measurements. Retrieval of the
thin-layer thickness led to relatively small errors, ranging from a few millimeters
up to a maximum of two centimeters (corresponding to the range resolution).

The bene�t of these experiments and analysis is that it shows both the
theoretical and practical limits in terms of thin layers reconstruction using zero-
o�set, o�-ground GPR. These results also apply to other radar remote sensing,
but considering a much larger bandwidth. Depending on shallow layering con-
ditions, di�erent inversion strategies should be adopted (i.e., based on one- and
two-layered model con�gurations). The proposed methods appear to be promis-
ing for soil surface water content mapping at the �eld scale or any applications
where the nondestructive surface properties of media are to be determined.
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