Simulated Multispectral Imagery for Tree Species Classification Using Support Vector Machines | IEEE Journals & Magazine | IEEE Xplore

Simulated Multispectral Imagery for Tree Species Classification Using Support Vector Machines


Abstract:

The information content of remotely sensed data depends primarily on the spatial and spectral properties of the imaging device. This paper focuses on the classification p...Show More

Abstract:

The information content of remotely sensed data depends primarily on the spatial and spectral properties of the imaging device. This paper focuses on the classification performance of the different spectral features (hyper- and multispectral measurements) with respect to three tree species. The Support Vector Machine was chosen as the classification algorithm for these features. A simulated optical radiation model was constructed to evaluate the identification performance of the given multispectral system for the tree species, and the effects of spectral-band selection and data preprocessing were studied in this setting. Simulations were based on the reflectance measurements of the pine (Pinus sylvestris L.), spruce [ Picea abies (L.) H. Karst.], and birch trees (Betula pubescens Ehrh. and Betula pendula Roth). Leica ADS80 airborne sensor with four spectral bands (channels) was used as a fixed multispectral sensor system that leads to response values for the at-sensor radiance signal. Results suggest that this four-band system has inadequate classification performance for the three tree species. The simulations demonstrate on average a 5-15 percentage points improvement in classification performance when the Leica system is combined with one additional spectral band. It is also demonstrated for the Leica data that feature mapping through a Mahalanobis kernel leads to a 5-10 percentage points improvement in classification performance when compared with other kernels.
Published in: IEEE Transactions on Geoscience and Remote Sensing ( Volume: 48, Issue: 3, March 2010)
Page(s): 1355 - 1364
Date of Publication: 04 December 2009

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.