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Abstract – SVM are attractive for the classification of remotely sensed data with some 

claims that the method is insensitive to the dimensionality of the data and so not 

requiring a dimensionality reduction analysis in pre-processing. Here, a series of 

classification analyses with two hyperspectral sensor data sets reveal that the accuracy 

of a classification by a SVM does vary as a function of the number of features used. 

Critically, it is shown that the accuracy of a classification may decline significantly (at 

0.05 level of statistical significance) with the addition of features, especially if a small 

training sample is used. This highlights a dependency of the accuracy of classification 

by a SVM on the dimensionality of the data and so the potential value of undertaking a 

feature selection analysis prior to classification. Additionally, it is demonstrated that 

even when a large training sample is available feature selection may still be useful. For 

example, the accuracy derived from the use of a small number of features may be non-

inferior (at 0.05% level of significance) to that derived from the use of a larger feature 

set providing potential advantages in relation to issues such as data storage and 

computational processing costs. Feature selection may, therefore, be a valuable analysis 

to include in pre-processing operations for classification by a SVM.  
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I. INTRODUCTION 

 

Progress in hyperspectral sensor technology allows the measurement of radiation 

in the visible to the infrared spectral region in many finely spaced spectral features or 

wavebands. Images acquired by these hyperspectral sensors provide greater detail on the 

spectral variation of targets than conventional multispectral systems, providing the 

potential to derive more information about different objects in the area imaged [1]. 

Analysis and interpretation of data from these sensors presents new possibilities for 

applications such as land cover classification [2]. However, the availability of large 

amounts of data also represents a challenge to classification analyses. For example, the 

use of many features may require the estimation of a considerable number of parameters 

during the classification process [3]. Ideally, each feature (e.g. spectral waveband) used 

in the classification process should add an independent set of information. Often, 

however, features are highly correlated and this can suggest a degree of redundancy in 

the available information which may have a negative impact on classification accuracy 

[4].  

One problem often noted in the classification of hyperspectral data is the Hughes 

effect or phenomenon. The latter can have a major negative impact on the accuracy of a 

classification. The key characteristics of the phenomenon, assuming a fixed training set, 

may be illustrated for a typical scenario in which features are incrementally added to a 

classification analysis. Initially, classification accuracy increases with the addition of 

new features. The rate of increase in accuracy, however, declines and eventually 

accuracy will begin to decrease as more features are included. Although it may at first 

seem counter-intuitive for the provision of additional discriminatory information to 

result in a loss of accuracy the problem is often encountered [5-7] and arises as a 

consequence of the analysis requiring the estimation of more parameters from the 
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(fixed) training sample.  Thus the addition of features may lead to a reduction in 

classification accuracy [8].  

The Hughes phenomenon has been observed in many remote sensing studies 

based upon a range of classifiers [3, 5, 9, 10]. For example, a parametric technique, such 

as the maximum likelihood classifier, may not be able to classify a data set accurately if 

the ratio of sample size to number of features is small as it will not be able to correctly 

estimate the first and second order statistics (i.e. mean and covariance) that is 

fundamental to the analysis [6]. Note that with a fixed training set size, this ratio 

declines as the number of features is increased. Thus, two key attributes of the training 

set are its size and fixed nature. If, for example, the training set was not fixed but was 

instead increased appropriately with the addition of new features, the phenomenon may 

not occur. Similarly, if the fixed training set size was very large, so that even when all 

features of a hyperspectral sensor were used, the Hughes effect may not be observed as 

all parameters may be estimated adequately. Unfortunately, however, the size of the 

training set required for accurate parameter estimation may exceed that available to the 

analyst. Given that training data acquisition may be difficult and costly [11-13] some 

means to accommodate the negative issues associated with high dimensional data sets is 

required.  

Various approaches could be adopted for the appropriate classification of high 

dimensional data. These span a spectrum from the adoption of a classifier that is 

relatively insensitive to the Hughes effect [14] through the use of methods to effectively 

increase training set size [5, 11] to the application of some form of dimensionality 

reduction procedure prior to the classification analysis. It may also sometimes be 

appropriate to use a combination of approaches to reduce the possibility of the Hughes 

effect being observed. The precise approach adopted may vary with study objectives, 

data sets and classification approach. One classification method that has been claimed to 
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be independent of the Hughes effect and so promoted for use with hyperspectral data 

sets is the support vector machine (SVM; [15]) although, as will be discussed below,  

there is some uncertainty relating to the role of feature reduction with this method. 

The SVM has become a popular method for image classification. It is based on 

structural risk minimisation and exploits a margin-based criterion that is attractive for 

many classification applications [16].  In comparison to approaches based on empirical 

risk, which minimise the misclassification error on the training set, structural risk 

minimisation seeks the smallest probability of misclassifying a previously unseen data 

point drawn randomly from a fixed but unknown probability distribution.  Furthermore, 

a SVM tries to find an optimal hyperplane that maximises the margin between classes 

by using a small number of training cases, the support vectors. The complexity of SVM 

depends only on these support vectors and it is argued that the dimensionality of the 

input space has no importance [15, 17, 18]. This hypothesis has been supported by a 

range of studies with SVM such as those employing the popular radial basis function 

kernel for land cover classification applications [19, 20, 21].  

The basis of the SVM and results of some studies, therefore, suggest that SVM 

classification may be unaffected by the dimensionality of the data set and so number of 

features used. However, other studies have shown that the accuracy of SVM 

classification could still be increased by reducing the dimensionality of the data set [22, 

23], hence there is a degree of uncertainty over the role of feature reduction in SVM 

based classification. Feature reduction, however, impacts on more than just the accuracy 

of a classification. A feature reduction analysis may be undertaken for a variety of 

reasons. For example, it may speed-up the classification process by reducing data set 

size and may increase the predictive accuracy as well as ability to understand the 

classification rules [24]. It may also simply provide advantages in terms of reducing 
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data storage requirements. Feature reduction may, therefore, still be a useful analysis 

even if it has no positive effect on classification accuracy.   

Two broad categories of feature reduction techniques are commonly 

encountered in remote sensing: feature extraction and feature selection [25, 26]. With 

feature extraction, the original remotely sensed data set is typically transformed in some 

way that allows the definition of a small set of new features which contain the vast 

majority of the original data set‟s information. More popular, and the focus of this 

paper, are feature selection methods. The latter aim to define a sub-set of the original 

features which allows the classes to be discriminated accurately. That is, feature 

selection typically aims to identify a subset of the original features that maintains the 

useful information to separate the classes with highly correlated and redundant features 

excluded from the classification analysis [25]. 

Feature selection procedures are dependent on the properties of the input data as 

well as on the classifier used [27, 28]. These procedures require a criterion be defined 

by which it is possible to judge the quality of each feature in terms of its discriminating 

power [29]. A computational procedure is then required to search through the range of 

potential subsets of features and select the „best‟ subset of features based upon some 

pre-defined criterion. The search procedure could simply consist of an exhaustive search 

over all possible subsets of features since this is guaranteed to find the optimal subset. 

In a practical application, however, the computational requirements of this approach are 

unreasonably large and a non-exhaustive search procedure is usually used [30]. A wide 

variety of feature selection methods have been applied to remotely sensed data [30-33]. 

Based on whether or not they use classification algorithms to evaluate subsets, the 

different methods can be grouped into three categories: filters, wrappers and embedded 

approaches. These approaches may select different subsets and these in turn may vary in 

suitability for use as a pre-processing algorithm for different classifiers. Because of 
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these differences and the range of reasons for undertaking a feature selection as well as 

the numerous issues that influence outputs and impact on later analyses feature selection 

remains a topic for research [34].  

Although the literature includes claims that classification by SVM is insensitive 

to the Hughes effect [19-21, 35] it also includes case studies using simulated data [36, 

37] and theoretical arguments that indicate a positive role for feature selection in SVM 

classification [38, 39]. Both [38] and [39] based their arguments on the use of local 

kernels, such as the popular radial basis function, with kernel based classifiers in which 

the cases lying in the neighbourhood of the case being used to calculate the kernel value 

have a large influence [40].  In their argument, [38] used the bias-variance dilemma [41] 

to suggest that the classifiers with local kernel would require exponentially large 

training data set to have same level of classification error in high dimensional space as 

that in a lower space, suggesting the sensitivity of SVM classifier to the curse of 

dimensionality. On the other hand, [39] suggested that locality of a kernel is an 

important property that makes the generated model more interpretable and used 

algorithm more stable than the algorithms using global kernels. They argued that a 

radial basis function kernel loses the properties of a local kernel with increasing feature 

space, a reason why they may be unsuitable in high dimensional space.  With the latter, 

for example, it has been argued that classifiers using local kernels are sensitive to the 

curse of dimensionality as the properties of learned function at a case depends on its 

neighbours, which fails to work in high dimensional space. There is, therefore, 

uncertainty in the literature over the sensitivity of classification by a SVM to the 

dimensionality of the data set and so of the value of feature selection within such an 

analysis.  

This paper aims to address key aspects of this uncertainty associated with the 

role of feature selection in the classification of hyperspectral data sets. Specifically, the 
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paper aims to explore the relationship between the accuracy of classification by a SVM 

and the dimensionality of the input data.  The later will also be controlled through 

application of a series of feature selection methods and so also highlight the impact, if 

any, of different feature selection techniques on the accuracy of SVM-based 

classification. Variation in the accuracy of classifications derived using feature sets of 

differing size will be evaluated using statistical tests of difference and non-inferiority 

[42, 43] in order to evaluate the potential role of feature selection in SVM-based 

classification. This paper is, to our knowledge, the first rigorous assessment of the 

Hughes effect on SVM with hyperspectral dataset. Other studies [e.g. 19 20, 21] have 

commented on the Hughes effect in relation to SVM-based classification of remotely 

sensed data but this paper differs in that the experimental design adopted gives an 

opportunity for the effect to occur (e.g. by including analyses based on small training 

sets) and the statistical significance of differences in accuracy is evaluated rigorously 

(e.g. including formal tests for the difference and non-inferiority of accuracy). To set the 

context to this work, section II briefly outlines classification by a SVM. Section III 

provides a summary of the main methods and data sets used. Section IV presents the 

results and section V details the conclusions of the research undertaken.  

II. SVM 

 

 The SVM is based on statistical learning theory [14] and seeks to find an 

optimal hyperplane as a decision function in high dimensional space [44, 45]. In the 

case of a two-class pattern recognition problem in which the classes are linearly 

separable, the SVM selects from among the infinite number of linear decision 

boundaries the one that minimises the generalisation error. Thus, the selected decision 

boundary (represented by a hyperplane in feature space) will be one that leaves the 

greatest margin between the two classes, where margin is defined as the sum of the 
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distances to the hyperplane from the closest cases of the two classes [14]. The problem 

of maximising the margin can be solved using standard quadratic programming 

optimisation techniques.  

The simplest scenario for classification by a SVM is when the classes are 

linearly separable. This scenario may be illustrated with the training data set comprising 

k cases be represented by iy,xi
, i = 1, …, k, where NRx is an N-dimensional space 

and y {-1, +1} is the class label. These training patterns are linearly separable if there 

exists a vector w (determining the orientation of a discriminating plane) and a scalar 

b (determining the offset of the discriminating plane from the origin) such that  

                                           01xw  by ii
                                          (1) 

The hypothesis space can be defined by the set of functions given by 

                                       bsignf b  xww,                                                   (2) 

The SVM finds the separating hyperplanes for which the distance between the classes, 

measured along a line perpendicular to the hyperplane, is maximised. This can be 

achieved by solving following constrained optimization problem 

                                                    
2

2

1
min w

,bw
                                                         (3) 

          For linearly non-separable classes, the restriction that all training cases of a given 

class lie on the same side of the optimal  hyperplane can be  relaxed by the introduction 

of a ‟slack variable‟ i  ≥ 0. In this case, the SVM searches for the hyperplane that 

maximises the margin and that, at the same time, minimises a quantity proportional to 

the number of misclassification errors. This trade-off between margin and 

misclassification error is controlled by a positive constant C such that ∞ > C > 0. Thus, 

for non-separable data, (3) can be written as: 
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For non-linear decision surfaces, a feature vector, N
R x   is mapped into a higher 

dimensional Euclidean space (feature space) F, via a non-linear vector 

function FN R:Φ [44]. The optimal margin problem in F can be written by 

replacing ji xx  with    ji xΦxΦ   which is computationally expensive.  To address 

this with problem, [14] introduced the concept of using a kernel function K in the design 

of non-linear SVMs. A kernel function is defined as: 

                                                  jijiK xΦxΦxx ,                 (5) 

and with the use of a kernel function equation (2) becomes: 

                                          









  bysignf

i

jii x,xiK x                                            (6)     

where i  is a Lagrange multiplier. A detailed discussion of the computational aspects of 

SVM can be found in [14, 45] with many examples also in the remote sensing literature 

[19, 21, 46, 47]. 

III. DATA AND METHODS 

A. Test Areas 

 

Data sets for two study areas were used. The first study area, La Mancha Alta, 

lies to the south of Madrid, Spain. It is an area of Mediterranean semi-arid wetland, 

which supports rain-fed cultivation of crops such as wheat, barley, vines and olives. A 

hyperspectral image data set was acquired for the test site by the DAIS 7915 sensor on 

29 June 2000. The sensor was a 79- channel imaging spectrometer developed and 

operated by the German Space Agency [48]. This instrument operated at a spatial 

resolution of 5m and acquired data in the wavelength range 0.502–12.278 µm. Attention 

here focused on the data acquired in only the visible and near-infrared spectrum. Thus 
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the data acquired in the 7 features located in the mid- and thermal infrared region were 

removed. Of the remaining 72 features covering spectral region 0.502 – 2.395 µm a 

further 7 features were removed because of striping noise distortions in the data. The 

features removed were bands 41 (1.948 µm), 42 (1.964 µm) and 68-72 (2.343-2.395 

µm). After these pre-processing operations, an area of 512 pixels by 512 pixels from the 

remaining 65 features covering the test site was extracted for further analysis.  

The second study area was a region of agricultural land in Indiana, USA. For 

this site a hyperspectral dataset acquired by Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) was used. This data set is available online from [49]. The data 

set consists of a scene of size 145 pixels x 145 columns. Of the 220 spectral bands 

acquired by the AVIRIS sensor, 35 were removed as they were affected by noise. For 

ease of presentation, the bands used were re-numbered 1-65 and 1-185 in order by 

increasing wavelength for the DAIS and AVIRIS data sets respectively. 

B. Training and Testing Data Sets 

 

For the DAIS data set, field observations of the test site were undertaken in late 

June 2001, exactly 1 year after the image data were acquired, to generate a ground 

reference data set. Visual examination of DAIS imagery combined with field experience 

showed that the region comprised mainly eight land cover types: wheat, water, salt lake, 

hydrophytic vegetation, vineyards, bare soil, pasture and built-up land. A ground 

reference image was generated from the field information. With the AVIRIS data set, a  

ground reference image available on [49] was used to collect the training and test pixels 

for a total of nine land cover classes (corn-no till, corn-min till, grass/pasture, 

grass/trees, hay-windrowed, soybeans-no tills, soybeans-min till, soybean-clean and 

woods).  Stratified random sampling, by class, was undertaken in order to collect 
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independent data sets for training (up to 100 pixels per-class) and testing the SVM 

classifications of the DAIS and AVIRIS data sets.  

To evaluate the sensitivity of the SVM to the Hughes effect, a series of training 

sets of differing sample size were acquired. These data sets were formed by selecting 

cases randomly from the total available for training each class. A total of six training set 

sizes, comprising 8, 15, 25, 50, 75 and 100 pixels per-class, was used. These training 

samples are typical of the sizes used in remote sensing studies [e.g., 26, 46, 50, 51, 52, 

53] but critically also include small sizes at which the Hughes effect would be expected 

to manifest itself, if at all. For each size of training set, except that using all 100 pixels 

available for each class, five independent samples were derived from the available 

training data. Each of the five training sets of a given size was used to train a 

classification and, to avoid extreme results, the main focus here is on the classification 

with the median accuracy. 

SVM classifications using training sets of differing size were undertaken in 

which the dimensionality of the input data set, indicated by the number of features used, 

was varied. Since the main concern was to determine if the Hughes effect would be 

observed and not the design of an optimal classification, most attention focused on the 

scenario in which the features were entered in a single fashion for comparative 

purposes. With this, features were added incrementally in groups of 5 in order of 

wavelength. Thus, the first analysis used features 1-5, the second features 1-10 and so 

on until all the thirteenth and thirty seven analyses with DAIS and AVIRIS data 

respectively. A number of additional analyses were undertaken with DAIS data in 

which features were added individually in order of decreasing discriminatory power (i.e. 

the feature estimated to provide most discriminatory information was entered first and 

that which provided the least discriminatory information was added last). Irrespective of 
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the method of incrementing features, the accuracy with which an independent testing set 

was classified was calculated at each incremental step.  

Classification accuracy was estimated using a testing set that comprised a 

sample of 3800 pixels (500 pixels for seven classes and 300 pixels for the relatively 

scarce pasture class) with the DAIS data and 3150 pixels (350 pixels per class) with the 

AVIRIS data sets. In all cases, accuracy was expressed as the percentage of correctly 

allocated cases. The statistical significance of differences in accuracy was assessed 

using the McNemar test and confidence intervals [43, 54, 55]. Two types of test were 

undertaken to elucidate the effect of feature selection on SVM classification accuracy. 

First, the statistical significance of differences in accuracy was evaluated. This testing 

was undertaken because one characteristic feature of an analysis that is sensitive to the 

Hughes effect is a decrease in accuracy following the inclusion of additional features. 

Thus, the detection of a statistically significant decrease in classification accuracy 

following the addition of features to the analysis would be indication of sensitivity to 

the Hughes effect. A standard one-sided (as the focus is on a directional alternative 

hypothesis) test of the difference in accuracy values was derived using the McNemar 

test [55]. However, as feature selection has positive impacts beyond those associated 

with classification accuracy (e.g. reduced data processing time and storage 

requirements) a positive role would also occur if a small feature set could be used 

without any significant loss of classification accuracy. This cannot be assessed with a 

test for difference, as a result indicating no significant difference in accuracy is not 

actually proof of similarity [56]. Indeed, in this situation the desire is not to test for a 

significant difference in accuracy but rather to test for the similarity in accuracy, which 

could be met in this situation through the application of a test for non-inferiority [42, 

43]. In essence, the aim is to determine if a small feature set, which provides advantages 

to the analyst, can be used to derive a classification as accurate as that from a large or 
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indeed the full feature set. The latter test for non-inferiority was achieved using the 

confidence interval fitted to the estimated differences in classification accuracy [43]. 

For the purpose of this paper it was assumed that a 1.00% decline in accuracy from the 

peak value was of no practical significance and this value taken to define the extent of 

the zone of indifference in the test. Critically, a positive role for feature selection 

analyses would be indicated if the test for difference was significant (showing that 

accuracy can be degraded by the addition of new features) and/or if the test for non-

inferiority was significant (showing that a small feature set derives a classification as 

accurate as that from the use of a large feature set but providing advantages in relation 

to data storage and processing etc.). 

 

C. Feature Selection Algorithms   

From the range of feature selection methods available, four established methods, 

including one from each of the main categories of method identified above, were 

applied to the DAIS data. The salient issues of each method is briefly outlined below. 

1) SVM-RFE 

The Support Vector Machine
 
Recursive Feature Elimination (SVM-RFE)

 
is a wrapper 

based approach utilising the SVM as base classifier [22]. The SVM-RFE utilise the 

objective function   221 w  as a feature ranking criterion to produce a list of features 

ordered by apparent discriminatory ability.  At each step, the coefficients of the weight 

vector w are used to compute the ranking scores of all features remaining. The feature, 

with the smallest ranking score  2iw is eliminated, where iw  represents the 

corresponding i-th component of w. This approach to feature selection, therefore, uses a 

backward
 
feature elimination scheme to recursively

 
remove insignificant

 
features (i.e. at 
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each step the feature whose removal changes the objective function least is excluded) 

from subsets of features in order to derive a list of all features in rank order of value.  

 

2) Correlation-based Feature Selection 

Correlation-based feature selection (CFS) is a filter algorithm that selects a 

feature subset on the basis of a correlation-based heuristic evaluation function [57]. The 

heuristics by which CFS measures the quality of a set of features takes into account the 

usefulness of individual features for predicting the class and can be summarised as: 

                                             
  ii

ic

Cfff

Cf

1
                                                              (7) 

where f  is the number of features in the subset, icC is the mean feature correlation with 

the class and iiC is the average feature inter-correlation. Both icC and iiC are calculated 

by using a measure based on conditional entropy [58]. The numerator provides an 

indication of how predictive of the class a group of features are where as denominator 

indicates about the redundancy among the features. The evaluation criterion used in this 

algorithm is biased towards the feature subsets highly predictive of the class and not 

predictive of each other.  This criteria acts to filter out the irrelevant features as they 

have low correlations with the class and redundant features are ignored as they will be 

highly correlated with one or more feature, thus providing a subset of best selected 

features. In order to reduce the computation cost, a bidirectional search (a parallel 

implementation of sequential forward and backward selection) may be used. This 

approach searches the space of feature subsets by greedy hill climbing in a way that 

features already selected by sequential forward selection are not removed by backward 

selection and the features already removed by backward selection are not selected by 

forward selection.  
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3) Minimum-Redundancy-Maximum-Relevance 

Minimum-Redundancy-Maximum-Relevance (mRMR) feature selection is a filter based 

method that uses mutual information to determine the dependence between the features 

[59].  The mRMR use a criterion which select features that are different from each other 

and still have largest dependency on the target class. This approach consists in selecting 

a feature if  among the not selected features Sf  that maximises  ii ru  , where iu  is 

the relevance of if  to the class c alone and ir  is the mean redundancy of if to each of 

the already selected features. In term of mutual information, iu and ir can be defined as: 

                                                       



ff

ii

i

cfI
f

u ;
1

                                                 (8) 

                                                       



ff

jii

j

ffI
f

r ,
2

1
                                                 (9) 

where  cfI ;  is the mutual information between two random variables f  and c. At 

each step, this method selects a feature that has best compromised relevance-

redundancy and can be used to produce a ranked list of all features in terms of 

discriminating ability. 

4) Random Forest 

The random forest based approach is an embedded method of feature selection. The 

random forest consists of a collection of decision tree classifiers [60], where each tree in 

the forest has been trained using a bootstrap sample of training data and a random 

subset of features sampled independently from the input features. A sub-set of the 

training data set is omitted from the training of each classifier [61].  These left out data 

are called out-of-bag (out of the bootstrap) samples and used for feature selection by 

determining the importance of different features during classification process [60, 62]. 

The latter is based on a Z score, which can be used to assign a significance level 
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(importance level) to a feature and from this a ranked list of all features may be derived 

[60].  

D. Methods 

 

SVM were initially designed for binary classification problems. A range of 

methods have been suggested for multi-class classification [21, 63, 64]. One of these, 

the „one against one‟ approach, was used here [65] with both hyperspectral datasets. 

Throughout, a radial basis function kernel was used with  (kernel width parameter) = 2 

and C = 5000, values which were used successfully with the DAIS hyperspectral dataset 

in other studies [19, 20, 33, 66].  For analyses of the AVIRIS dataset, a RBF kernel with 

γ = 1 and regularisation parameter C = 50 was used [66]. 

 
        With the feature selection by random forests, one third of the total data set 

available for training was used to form the out-of-bag sample. The random forest 

classifier also requires finding optimal value of number of features used to generate a 

tree as well the total numbers of trees. After several trials, 13 features and 100 trees 

were found to be working well with the DAIS dataset [33].  

IV. RESULTS 

 

The accuracy of classification by a SVM varied as a function of the number of 

features used and the size of the training set using DAIS dataset (Fig. 1). In general 

terms, classification accuracy tended to increase with an increase in the number of 

features. Critically, however, when a fixed training set of small size (≤25 cases per-

class) was used accuracy initially rose with the addition of features to a peak but 

thereafter declined with the addition of further features. Moreover, the decline in 

accuracy was statistically significant, even for the classification based on the largest 

training set size (Table I). For example, the largest difference between the peak 
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accuracy and that obtained from the use of all 65 features was 5.00%, a difference that 

was significant at the 0.05 level of significance (Table I).  

Similar general trends to those found with the analysis of the DIAS data were 

observed with the results of the analyses of the AVIRIS data set (Fig. 2).  Critically, 

classification accuracy was observed to decline with the addition of features. Moreover, 

with this data set, a statistically significant (at 0.05 level) decline in accuracy with the 

addition of features was observed for all training set sizes (Table II). The largest 

difference between the peak accuracy and that obtained from the use of all 185 features 

was 8.36%. 

Consequently, the key negative characteristic of the curse of dimensionality or 

Hughes effect was observed with SVM classification when a small training set was 

used. Although this result contradicts some statements in the literature that suggest the 

SVM is independent of the dimensionality of the data set [20, 21] it should be noted that 

these studies used relatively large training sets and do not include a rigorous statistical 

test of the significance of differences in accuracy. For example, [21] used over 230 

training cases for each class while [20] used sample sizes of at least 100 pixels per-

class. The size of the training sets used in these studies may have been sufficiently large 

to ensure that Hughes effect was not manifest in the analyses reported. Thus, in these 

studies the experimental designs adopted may not have provided an opportunity for the 

Hughes effect to arise and be detected. Additionally, it may be expected that the degree 

to which the effect is observed may vary from study to study as a function of the classes 

(e.g. their number and spectral separability) and data set (e.g. number and location of 

spectral wavebands). Note, for example, that the Hughes effect appeared to occur at 

each training set size studied with the AVIRIS data (Fig. 2) but only when small (≤25 

cases per-class) training sets were used with the DIAS data set (Fig. 1).  

Insert Tables I-II here 
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Insert Fig. 1- 2 here 

Having established that the accuracy of classification by a SVM is sensitive to 

the number of features used, the four different feature selection methods were applied to 

the DIAS data in order to evaluate the sensitivity of SVM classification to different 

types of feature selection method. The aim was not to define an optimal feature 

selection but to provide insight into the sensitivity of the SVM classification to the 

method used.  

The classifications derived after application of the four feature selection methods 

varied in accuracy. Unlike the previous analyses, features were added individually to 

classifications in the order suggested by the feature selection analysis. To focus on key 

trends, Table III shows the accuracy derived without feature selection and the accuracy 

that was of closest magnitude after the application of each of the feature selection 

methods. Critically, the table also identifies the number of features used to derive the 

classification accuracy closest to that derived when no feature selection was undertaken.  

Irrespective of feature selection algorithm employed, the results suggest that a small 

subset of selected features (≤ 12) would be sufficient to achieve comparable accuracy 

with the small training sets comprising 8, 15 and 25 pixels per-class. In comparison, the 

training sets with 50, 75 and 100 pixels per-class requires a larger subset of selected 

features to achieve the comparable classification accuracy to that derived from the full 

dataset (and the accuracy values were also of a higher magnitude).  

It was evident from Table III that the feature selection methods varied in the 

efficiency, measured in terms of the number of features required to derive a 

classification of comparable accuracy to that derived without feature selection. Note for 

example, that the two filter based feature selection approaches, the CFS uses a smaller 

subset of features in comparison to mRMR. This suggests, for this dataset at least, CFS 

is more suitable than the mRMR method.   
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Insert Table III here 

 

It was also evident that the specific features selected by the different methods 

varied. Table IV identifies the selected features that provided the classification of 

comparable accuracy to that derived from the full (65 features) dataset. It was evident 

that a dissimilar feature list was obtained from analyses based on training sets of 

differing size, with at most only three common features observed with any one feature 

selection method. The outputs of the feature selection methods was, therefore, a 

function of the training set size.  Moreover, the lack of commonalities in features 

selected with different training set sizes also confirms that the best set of features 

selected by a nonexhaustive search need not to contain the best feature or a set of best 

features from the full feature space [67].  

Insert Table IV here 

For comparison against the results given in Fig. 1, Fig. 3-5 show the relationship 

between classification accuracy and number of selected features using three of the 

feature selection methods. The CFS based feature selection method was excluded from 

this analysis as this approach does not provide a ranked list of the features.  For purpose 

of comparability with Fig. 1 the features have been added in groups of 5 (in order of 

discriminating ability). The statistical significance of the difference in accuracy between 

the peak accuracy value and that derived with the use of the full feature set for each 

classification summarised in Fig. 3-5 was evaluated with a McNemar test. The derived 

Z-values are provided in Table V which suggests a similar trend as achieved with earlier 

combination of features (Fig. 1) using the training sample size of 8, 15, and 25 pixels 

per class. It was evident, however, that the peak accuracy was derived with a smaller 

number of features as in this case features were added in order of discriminating power.  

Insert Tables V-VIII here 

Insert Fig. 3-5 here 
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       The results highlight that a statistically significant negative impact of feature set 

size on classification accuracy was observed when a small training sample was used; 

confirming the results of the McNemar test for a significant difference. Although this in 

itself points to a dependency of SVM classification on the dimensionality of the data set 

and highlights a positive role for feature selection analysis the latter has other 

advantages and the results suggest feature selection may be valuable even when a large 

training sample was available. Note, for example, that in all series of analyses (Fig. 1 

and Fig. 3-5) when the largest training sample was used (100 cases per-class) the 

accuracy was largely maintained when the number of features is reduced from the full 

(65 features) to small sub-set; only at a very small number of features did classification 

accuracy decline markedly. This similarity in accuracy values shows that the positive 

benefits of feature selection (e.g. reduced data storage and processing requirements) 

may be achieved without significant negative effect on classification accuracy. The 

latter is evident in the results of the non-inferiority testing summarised in Tables VI-

VIII. Critically, the accuracy of classifications derived with the use of relatively small 

training sets was not statistically inferior to the peak accuracy derived from the use of a 

larger feature set size.   

V. CONCLUSIONS 

 

       The SVM has been widely used and promoted for land cover classification studies 

including multispectral and hyperspectral data with some studies suggesting that the 

method is not affected by the Hughes phenomena. A major conclusion of this study is 

that the accuracy of SVM classification is influenced by the number of features used 

and so is affected by Hughes phenomenon with the impact most evident when a small 

training set is used (Fig. 1 and 2, Tables I and II). It is possible that the Hughes effect 

had not been observed in some other studies because the opportunity for it to become 
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manifested in the results was limited through experimental design, notably through the 

use of a large training set. The results presented in this paper show that the accuracy of 

classification by a SVM can be significantly reduced by the addition of features and that 

the effect is most apparent with small training sets. With the AVIRIS data set, a 

significant reduction in accuracy with the addition of features was observed at all 

training set sizes evaluated. With the DIAS data set, a statistically significant decline in 

accuracy was also observed for small training sets (≤25 cases per-class). However, even 

with a large training sample using DAIS dataset, feature selection may have a positive 

role, providing a reduced data set that may be used to yield a classification of similar 

accuracy to that derived from use of a much larger feature set. As the accuracy of SVM 

classification was dependent on the dimensionality of the data set and the size of the 

training set it may, therefore, be beneficial to undertake a feature selection analysis prior 

to a classification analysis. The results, however, also highlight that the choice of 

feature selection methods may be important. For example, the results derived from 

analyses with four different feature selection methods show that the number of features 

selected varied greatly.   
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TABLE CAPTIONS 

 

Table I. Difference between peak accuracy and that derived from the use of all 65 

features of DAIS dataset for the results summarised in Fig. 1. The Z value 

stated was derived from the McNemar test. For the one-sided test adopted a 

difference is significant at the 0.05 level if Z>1.64. 

Table II. Difference between peak accuracy and that derived from the use of all 185 

features of AVIRIS dataset for the results summarised in Fig. 2. The Z value 

stated was derived from the McNemar test. For the one-sided test adopted a 

difference is significant at the 0.05 level if Z>1.64. 

Table III. Results of the application of the 4 feature selection methods using DAIS 

dataset highlighting characteristics of the classification based on each training 

set size that was of most comparable accuracy to that derived without feature 

selection.   

Table IV. Selected features with different data sets and the number of common features 

selected by various approaches using DAIS dataset.  

Table V. Summary of the test for the difference in accuracy between the peak accuracy 

and that derived from the use of the full feature set using DAIS dataset. 

Values in bracket gives the number of features providing peak classification 

accuracy, shown in Fig. 2-4. The Z value stated was derived from the 

McNemar test. For the one-sided test adopted a difference is significant at the 

0.05 level if Z>1.64. 

Table VI. Difference and non-inferiority test results based on 95% confidence interval 

on the estimated difference in accuracy from the peak value for feature sets 

selected with the SVM-RFE using DAIS dataset; based on training set of 100 

cases per-class with peak accuracy of 93.13% with 35 features. 

Table VII. Difference and non-inferiority test results based on 95% confidence interval 

on the estimated difference in accuracy from the peak value for feature sets 

selected with the random forest using DAIS dataset; based on training set of 

100 cases per-class with peak accuracy of 92.34% with 35 features. 

Table VIII. Difference and non-inferiority test results based on 95% confidence interval 

on the estimated difference in accuracy from the peak value for feature sets 

selected with the mRMR using DAIS dataset; based on training set of 100 

cases per-class with peak accuracy of 92.45% with 45 features. 
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Table I. 

 Training set size per class 

8 pixels 15 pixels 25 pixels   50 pixels 75 pixels 100 pixels 

Peak accuracy, % 

(number of 

features) 

74.79 (35) 81.21 (35) 84.45 (35) 88.47 (40) 91.13 (50) 92.53 (50) 

Accuracy with 65 

features (%) 
69.79 77.05 81.66 87.58 90.63 91.76 

Difference (%) 5.00 4.16 2.79 0.89 0.50 0.77 

Z value 6.04 5.35 4.02 1.69 1.48 

 

2.22 
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Table II. 

 Training set size per class 

8 pixels 15 pixels 25 pixels   50 pixels 75 pixels 100 pixels 

Peak accuracy, % 

(number of 

features) 

67.53 (95) 69.49 (95) 74.21 (130) 81.94 (130) 83.65 (120) 85.21 (125) 

Accuracy with 

185 features (%) 
59.17 64.48 70.19 77.75 78.89 81.46 

Difference (%) 8.36 5.01 4.02 4.19 4.76 3.75 

Z value 9.44 5.92 8.77 6.92 7.18 

 

6.10 
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Table III. 

 

Feature 

selection 

Method 

Training set size per class 

8 pixels 15 pixels 25 pixels 50 pixels 75 pixels    100 pixels 

Accuracy    

(%) 

Feature 

size 

Accuracy    

(%) 

Feature 

size 

Accuracy    

(%) 

Feature 

size 

Accuracy    

(%) 

Feature 

size 

Accuracy    

(%) 

Feature 

 size 

Accuracy    

(%) 

Feature 

size 

None 
69.29 65 74.82 65 80.58 65 87.10 65 90.71 65 91.76    65 

SVM-

RFE 69.84 4 75.39 10 81.68 7 87.45 15 90.87 16 91.89    13 

mRMR 
69.71 8 76.34 11 81.02 12 87.13 13 90.87 42 91.84    37 

CFS 
69.50 4 75.82 7 82.18 8 87.11 12 91.32 14 91.84    17 

Random 

forest 71.94 6 76.39 9 81.95 9 87.11 14 90.82 25 92.08    21 
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Table IV.  

 

Feature 

selection 

approach 

Training set size per class Number 

of 

common 

features 

 

8 pixels 

 

15 pixels 

 

25 pixel 

 

50  pixel 

 

75 pixels 

 

100 pixels 

SVM-

RFE 

 

 

1,4,35,53 

 

1,4,6,27,32,

36,37,50,51,

57 

 

1,3,4,26,32,

37,42 

1,2,3,4,18, 

26,27,31,32, 

36,37,46,48,

52,56 

1,2,3,4,5,26,

27,30,31,32,

34,36,37,40,

52,56 

 

1,2,3,21,26,

27,30,34,36,

37,51,52,56 1 

mRMR 

 

 

 

 

10,15,16,17, 

24,25,49,56 

 

 

 

 

 

9,16,22,24, 

25,26,32,48, 

49,50,65 

 

 

 

 

9,15,22,24, 

25,26,29,31, 

32,48,49,51 

 

 

 

 

8,21,22,23, 

24,25,26,27,

28,30,49,50,

65 

2,3,6,7,8,9, 

10,12,13,14,

15,16,17,18,

19,20,21,22,

23,24,25,26,

27,28,29,30,

31,32,36,37,

38,41,47,48,

49,50,51,52,

53,63,64,65 

6,7,8,9,12, 

13,14,15,16,

17,18,19,20,

21,22,23,24,

25,26,27,28,

29,30,31,32,

33,38,41,47,

48,49,50,51,

52,53,63,65 

3 

CFS 

 

 

2,10,15,17 

 

 

3,10,15,23, 

24,29,36 

 

 

2,5,10,13, 

21,24,25, 

29 

 

 

1,2,5,10,21, 

22,24,25,27, 

28,30,31 

 

1,2,5,9,20, 

22,27,28,29,

31,32,37,40, 

44 

 

1,2,4,13,17,

20,24,25,27,

28,30,31,32,

36,37,39,45 

0 

Random 

forest 

 

 

14,28,29, 

30,41,58 

 

 

 

10,21,22,24,

27,30,32,40,

41 

 

 

1,2,5,12,21,

28,29,31,32 

 

1,2,3,4,5,24,

25,26,30,31,

32,39,42, 

50 

1,2,4,5,6,7, 

23,24,26,27,

29,30,31,32,

39,41,42,44,

49,50,53,61,

63,64,65 

1,2,3,5,22, 

23,26,27,28,

29,30,31,32,

39,40,41,42,

50,59,63,64 

0 
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Table V.  

 

Feature 

selection 

method 

Z value 

8 pixel 15 pixel 25 pixel 50  pixel 75 pixel 100 pixel 

SVM-RFE 11.54 (25) 5.19 (20) 7.10 (15) 2.33 (25) 2.35 (25) 4.84 (35) 

Random 

forest 
7.29 (10) 5.54 (30) 7.84 (25) 1.64 (20) 0.25 (25) 1.67 (35) 

mRMR 8.73 (35) 4.80 (15) 7.12 (20) 4.01 (20) 2.65 (50) 2.44 (45) 
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Table VI. 

Number of 

features 
Accuracy (%) 

Difference from 

peak accuracy 

(%) 

95% confidence 

interval 

Conclusion (at 

0.05 level of 

significance) 

5 81.82 11.31 11.298 - 11.322 Different 

10 90.40 2.73 2.721 - 2.739 Different 

15 92.47 0.66 0.653 - 0.667 Non-inferior 

20 93.08 0.05 0.044 - 0.056 Non-inferior 

25 92.74 0.39 0.384 - 0.396 Non-inferior 

30 93.03 0.10 0.096 - 0.104 Non-inferior 

35 93.13 0.00 0.000 – 0.000 ( No change) 

40 92.74 0.39 0.386 – 0.394 Non-inferior 

45 92.37 0.76 0.755 – 0.765 Non-inferior 

50 91.97 1.16 1.154 – 1.166 Different 

55 91.92 1.21 1.204 – 1.216 Different 

60 91.95 1.18 1.174 – 1.186 Different 

65 91.76 1.37 1.364 – 1.376 Different 
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Table VII. 

Number of 

features 
Accuracy (%) 

Difference from 

peak accuracy 

(%) 

95% confidence 

interval 

Conclusion (at 

0.05 level of 

significance) 

5 79.37 12.97 12.958 – 12.982 Different 

10 89.58 2.76 2.751 -  2.769 Different 

15 90.47 1.87 1.862 – 1.878 Different 

20 91.61 0.73 0.724 – 0.736 Non-inferior 

25 91.76 0.58 0.573 – 0.587 Non-inferior 

30 91.50 0.84 0.835 – 0.845 Non-inferior 

35 92.34 0.00 0.000 – 0.000 (No change) 

40 92.29 0.05 0.046 – 0.054 Non-inferior 

45 92.13 0.21 0.205 – 0.215 Non-inferior 

50 91.92 0.42 0.414 – 0.426 Non-inferior 

55 91.89 0.45 0.444 – 0.456 Non-inferior 

60 91.71 0.63 0.623 – 0.637 Non-inferior 

65 91.76 0.58 0.573 – 0.587 Non-inferior 
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Table VIII. 

Number of 

features 
Accuracy (%) 

Difference from 

peak accuracy 

(%) 

95% confidence 

interval 

Conclusion (at 

0.05 level of 

significance) 

5 80.97 11.48 11.468 – 11.492 Different 

10 88.5 3.95 3.940 – 3.960 Different 

15 88.82 3.63 3.620 – 3.640 Different 

20 91.24 1.21 1.202 – 1.218 Different 

25 91.58 0.87 0.862 – 0.878 Non-inferior 

30 91.03 1.42 1.413 – 1.427 Different 

35 91.53 0.92 0.914 – 0.926 Non-inferior 

40 92.16 0.29 0.286 – 0.294 Non-inferior 

45 92.45 0.00 0.000 – 0.000 (No change) 

50 92.34 0.11 0.106 – 0.114 Non-inferior 

55 92.24 0.21 0.206 – 0.214 Non-inferior 

60 92.11 0.34 0.335 – 0.345 Non-inferior 

65 91.76 0.69 0.685 – 0.696 Non-inferior 
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Fig. 1. Variation of classification accuracy with number of features for analyses based 

on training sets of differing size using DAIS dataset. 
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Fig. 2. Variation of classification accuracy with number of features for analyses based 

on training sets of differing size using AVIRIS dataset. 
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Fig. 3. Relationship between classification accuracy and the number of features selected 

by the SVM-RFE using DAIS dataset. 
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Fig. 4. Relationship between classification accuracy and the number of features selected 

by the random forest using DAIS dataset. 
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Fig. 5. Relationship between classification accuracy and the number of features selected 

by the mRMR using DAIS dataset. 

 

 

 

 

 

 

 

 

 

 


