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Doppler-Hitchhiker: A Novel Passive Synthetic
Aperture Radar Using Ultranarrowband
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Abstract—In this paper, we present a novel synthetic aperture
radar imaging modality that uses ultranarrowband sources of
opportunity and passive airborne receivers to form an image of
the ground. Due to its combined passive synthetic aperture and
high Doppler resolution of the transmitted waveforms, we refer
to this modality as the Doppler Synthetic Aperture Hitchhiker or
Doppler-hitchhiker for short. Our imaging method first correlates
the windowed signal obtained from one receiver with the scaled
and translated version of the received signal in another window
from the same or another receiver. We show that this correlation
processing removes the transmitter-related variables from the
phase of the resulting operator that maps the radiance of the
scene to the correlated signals. We define a concept of passive
Doppler scale factor using the radial velocities of the receivers.
Next, we show that the scaled, translated, and correlated signal
is the projection of the scene radiance onto the contours that
are formed by the intersection of the surfaces of constant passive
Doppler scale factor and ground topography. We use microlocal
analysis to design a generalized filtered-backprojection operator
to reconstruct the scene radiance from its projections. Our analy-
sis shows that the resolution of the reconstructed images improves
with the increased time duration and center frequency of the
transmitted ultranarrowband signals. Our reconstruction method
is analytic and therefore can be made computationally efficient.
Furthermore, it easily accommodates arbitrary flight trajectories,
nonflat topography, and system-related parameters. We present
numerical simulations to demonstrate the performance of our
imaging method.

Index Terms—Filtered-backprojection (FBP), passive imaging,
passive radar, passive synthetic aperture radar, ultra-narrowband
waveforms.
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I. INTRODUCTION

IN RECENT years, the presence of ambient radio frequen-
cies due to a growing number of transmitters of opportunity,

such as radio, television, and cell phone stations, has motivated
interest in passive radar applications [1]–[21].

While many passive radar applications are focused on the de-
tection of targets with ground-based receivers [1]–[16], a num-
ber of methods for passive synthetic aperture radar (SAR) have
been developed [17]–[19]. The methods presented in [1]–[18]
require either the knowledge of the transmitter locations and
transmitted waveforms or receivers with high directivity that are
within the beams of the transmitter antennas. The direct line-of-
sight to the transmitters is then used to estimate the transmitted
waveforms and the transmitter location to perform matched
filtering. In [19], we reported a novel passive synthetic aperture
imaging method based on the spatiotemporal correlation of
the received signal and the filtered-backprojection technique.
Unlike the methods in [1]–[18], this method does not require
receivers with high directivity or a priori knowledge about
the transmitter locations and transmitted waveforms. The
resolution analysis of the method shows that it is suitable
for high-range-resolution waveforms, such as wideband pulses.
However, most of the transmitters of opportunity, such as
radio and television stations, transmit single-frequency or
ultranarrowband waveforms. In this paper, we present a new
passive synthetic aperture imaging modality using sources of
opportunity transmitting single-frequency or ultranarrowband
waveforms. These waveforms are also referred to as high-
Doppler-resolution or continuous-wave (CW) waveforms.
Thus, we refer to the resulting modality as the Doppler
Synthetic Aperture Hitchhiker (DSAH) or “Doppler-hitchhiker”
for short.

Fig. 1 shows the DSAH imaging geometry along with the
imaging process. There are three key interrelated ideas in our
passive ultranarrowband synthetic aperture imaging method.
The first two are related to the development of a novel forward
model, and the last one is related to the inversion of this
model for image formation. Our objective is to develop a
passive forward model so that the phase of the model does not
involve transmitter related terms and allows us to determine
the location of the scatterers on the ground for which the
moving receivers observe a constant passive Doppler scaling
factor; we use microlocal techniques to recover the radiance
of scatterers for which the passive Doppler scaling factor is
constant. For each pair of receivers, our method first correlates
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Fig. 1. Illustration of the DSAH imaging geometry along with the imaging
process.

the windowed signal obtained from one of the receivers with the
windowed, scaled, and translated version of the received signal
from another receiver. If only a single receiver is available, the
received signal is windowed, scaled, translated, and correlated
with itself. The scaling process facilitates imaging of scatter-
ers on the DSAH iso-Doppler contours that we introduce in
this paper. The correlation processing removes the transmitter-
related terms from the phase component of the resulting for-
ward model that relates the scene radiance to the correlated
data. This means that the correlated data can be backpropagated
to the scene radiance without knowing the location of the
transmitters. We next introduce the concept of passive Doppler
scale factor using the radial velocities of the receivers [21].
In the context of Doppler-hitchhiker, we refer to the passive
Doppler scale factor as the Doppler-hitchhiker scale factor.
Note that, under the slow-mover assumption, the Doppler-
hitchhiker scale factor is equivalent to the hitchhiker-Doppler
that we introduced in [19]. We define the points on the ground
topography at which the Doppler-hitchhiker scale factor is
constant, as the DSAH iso-Doppler contour. Under slow-mover
assumption, DSAH iso-Doppler contours are approximated by
the hitchhiker iso-Doppler contours that we introduced in [19].
The high-frequency analysis of the forward model shows that
the windowed scaled-and-translated correlation of the received
signals is the projection of the scene radiance onto the hitch-
hiker iso-Doppler contours. Our analysis shows that the spread
of the hitchhiker iso-Doppler contours on the ground is directly
related to the Doppler ambiguity of the transmitted waveforms.
Since the Doppler ambiguity of CW or ultranarrowband wave-
forms is very good, the resulting contours on the ground are
narrow. Thus, the backpropagation of the scaled, translated, and
correlated data onto the hitchhiker iso-Doppler contours results
in high-resolution passive SAR imaging using ultranarrowband
signals. We use microlocal techniques to develop a filtered-
backprojection (FBP) reconstruction of the scene radiance. The
analysis of the point spread function (PSF) of the imaging
operator shows that the image is reconstructed at the intersec-
tion of the hitchhiker iso-Doppler and hitchhiker iso-Doppler-
rate contours introduced in this paper. The final image of the
scene radiance is formed by the superposition of the images
obtained for each pair of receivers at each time translation over
a range of time translations. The resolution analysis of our
imaging method shows that the resolution improves with the
higher frequency and longer time duration of the transmitted
ultranarrowband signals.

Doppler-hitchhiker has many advantages: To the best of our
knowledge, Doppler-hitchhiker is the first fully passive SAR
modality that uses ultranarrowband waveforms of opportunity.
Doppler-hitchhiker can be used with stationary and/or mobile,
cooperative and noncooperative sources of opportunity. Unlike
the existing passive radar detection systems [1]–[18], Doppler-
hitchhiker does not require receivers with high directivity and
can be used under nonideal imaging scenarios such as arbitrary
flight trajectories and nonflat topography. The image recon-
struction method has the desirable property of preserving the
visible edges of the scene radiance. Additionally, it is an ana-
lytic image formation method that can be made computationally
efficient using fast-backprojection methods [22].

The organization of this paper is as follows. In Section II,
we present the windowed scaled-and-translated correlation
of the received measurements and determine the forward
model that relates the scene radiance to correlated measure-
ments. We also present the high-frequency analysis of the
Doppler-hitchhiker forward model. In Section III, we develop a
filtered-backprojection-type image formation method for
Doppler-hitchhiker and analyze the underlying geometry and
resolution of the Doppler-hitchhiker image formation. In
Section V, we present numerical simulations to verify the the-
oretical results and demonstrate the performance of the image
formation method. Finally, in Section VI, we summarize our
results and conclude our discussion. This paper includes two
appendices presenting the derivation of the intermediate results
needed for the image reconstruction method.

We use the following notational conventions throughout this
paper. The bold Roman, bold italic, and Roman lower-case let-
ters are used to denote variables in R3, R2, and R, respectively,
i.e., z = (z, z) ∈ R3, with z ∈ R2 and z ∈ R. The calligraphic
letters (F , K, etc.) are used to denote operators. Table I lists the
notation used throughout this paper.

II. DOPPLER-HITCHHIKER MEASUREMENT MODEL

In this section, we first describe the received signal model for
a given transmitter transmitting a CW signal and next derive
a novel forward model by correlating the windowed, scaled,
and translated received signal. The resulting processed data are
then used to form an image of the scene radiance by a filtered-
backprojection method.

A. Model for the Received Signal

Given a pair of transmitter and receiver antennas located at
T and R, respectively, we model the received signal by [23]

f(t,R,T) ≈
∫

eiω(t−(|R−z|+|z−T|)/c0)

(4π)2|R− z||z−T| ω
2p̂(ω)

×Jtr(ω, ẑ−T,T)Jrc(ω, ẑ−R,R)V (z)dωdz (1)

where t denotes time, c0 denotes the speed of light in free
space, V (z) is the reflectivity function, p̂ denotes the Fourier
transform of the transmitted waveform p(t), and Jtr and Jrc are
the transmitter and receiver antenna beam patterns, respectively.
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TABLE I
TABLE OF NOTATIONS

We make the assumption that the Earth’s surface is located
at a position given by z = (z,ψ(z)) ∈ R3, where z ∈ R2 and
ψ : R2 → R is a known function for the ground topography.
Furthermore, we assume that the scattering takes place in a
thin region near the surface. Thus, the reflectivity function is in
the form

V (z) = ρ(z)δ (z −ψ(z)) . (2)

For a narrowband waveform, we have

p(t) = eiω0tp̃(t) (3)

where ω0 denotes the carrier frequency and p̃(t) is the complex
envelope of p, which is slow varying as a function of t compared
to eiω0t.

Using (2) and the Fourier transform of (3) and under the as-
sumption of broadband antenna, after algebraic rearrangements,
(1) becomes

f(t,R,T)

≈
∫

eiω0(t−(|R−z|+|z−T|)/c0)

(4π)2|R− z||z−T|
× p̃ (t− (|R− z|+ |z−T|)/c0)
× Jtr(ω0, ẑ−T,T)Jrc(ω0, ẑ−R,R)ρ(z)dz (4)

where ẑ = z/|z| denotes the unit vector in the direction of z ∈
R3. For the rest of this paper, unless otherwise stated, we use
z = z(z) = (z,ψ(z)).

Our imaging method is applicable to both mobile and station-
ary sources of opportunity. However, for the rest of our discus-
sion, we assume that there is a single stationary transmitter of
opportunity illuminating the scene. This allows us to simplify
the analysis and distill the important aspects that can readily be
generalized using the ideas similar to the ones presented in our
work [19].

Let T ∈ R3 denote the location of the transmitter of oppor-
tunity, and let there be N airborne receivers, each traversing a
smooth trajectory γi(t), i = 1, . . . , N .

We define

si(t) = f (t,γi(t),T) (5)

as the received signal by the ith receiver, i = 1, . . . , N .
Note that, for multiple transmitters transmitting the same

ultranarrowband waveform with different carrier frequencies,
the signal received by the ith receiver can be written as

si(t) =

∫
f (t,γi(t),T) dTdω0. (6)

Since each transmitted frequency can be isolated with appro-
priate bandpass filtering, without loss of generality, we perform
our analysis with respect to a fixed carrier frequency ω0.

B. Windowed Scaled-and-Translated Correlation of
Received Signals

We now use the received signal model presented in the
previous section to develop a forward model that performs the
following: 1) It does not depend on transmitter locations, and
2) it facilitates imaging of scatterers for which the moving
receivers observe a constant passive Doppler scaling factor. We
start forming the forward model by first dividing the received
signal at different (or same) receivers into different windows.
We then scale, translate, and correlate the windowed received
signal. The correlation process removes the transmitter-related
terms from the phase of the resulting model. The scaling allows
us to determine the location of the scatters on the stationary
ground for which the moving receivers observe a constant
Doppler scaling factor in certain directions. This processing of
the received signal and the resulting forward model for passive
synthetic aperture imaging with ultranarrowband waveforms
are described in detail hereinafter.

We define the windowed scaled-and-translated correlation of
the received signals si and sj by

cij(τ
′, τ, μ) =

∫
si(t+ τ ′)s∗j(μt+ τ)φ(t)dt (7)
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for some τ , τ ′ ∈ R and μ ∈ R+, i, j = 1, . . . , N , where φ(t)
is a smooth compactly supported temporal windowing function
centered at t = 0 and ∗ denotes the complex conjugation. Note
that, for a single receiver, we only have cij = c11.

In the following sections, we develop a mapping that relates
the expected value of the correlated measurements cij to the
scene to be imaged. We assume that the sources of opportunity
are noncooperative where the location of the transmitter T and
transmitter antenna beam pattern Jtr are unknown. The result
can be easily extended for the case of cooperative sources of
opportunity where these quantities are assumed to be known.
For both cases, the carrier frequency of the transmitted wave-
form ω0 is assumed to be known.

We use a stochastic model for the transmitter antenna beam
pattern Jtr and the scene reflectivity ρ. Let Cρ and CJtr

denote
the correlation function of ρ and Jtr, respectively

Cρ(z, z
′) =E [ρ(z)ρ∗(z′)] (8)

CJtr
(ω0, z, z

′,T) =E
[
Jtr(ω0, ẑ−T,T)J∗

tr(ω0, ẑ′−T,T)
]
.

(9)

We assume that the scene reflectivity ρ and the transmit antenna
beam pattern Jtr are statistically independent. Next, we make
the incoherent field approximation [24] by assuming that ρ and
Jtr satisfy the following equalities:

Cρ(z, z
′) =Rρ(z)δ(z − z′). (10)

CJtr
(ω0, z, z

′,T) =RT (ω0, z, z
′,T)δ(z − z′). (11)

Note that Rρ is the average power of the electromagnetic
radiation emitted by the scene at location z and RT is the
average power of the electromagnetic radiation emitted by the
transmitter at location T that is incident on the target surface at
z. In this regard, Rρ is referred to as the scene radiance and RT

is referred to as the transmitter irradiance [24].
Substituting si and sj into cij , under the assumption that ρ,

Jtr, and |T− z| are statistically independent, and using (10)
and (11), we express the expectation of cij as

E [cij(τ
′, τ, μ)]

=
ω4
0

(4π)4

∫
eiω0(t+τ ′−(|γi(t+τ ′)−z|+|T−z|)/c0)

× e−iω0(μt+τ−(|γj(μt+τ)−z′|+|T−z′|)/c0)

× RT (ω0, z, z
′,T)

Gij(z, z′, t, τ ′, τ, μ)
Ap̃(z, z

′, t, τ ′, τ, μ)

×ARij
(ω0, z, z

′, t, τ ′, τ, μ)Rρ(z)δ(z − z′)dzdz′φ(t)dt

(12)

where Ap̃ is the product of the complex envelope of the trans-
mitted waveform

Ap̃ = p̃ (t+ τ ′ − (|γi(t+ τ ′)− z|+ |T− z|) /c0)
×p̃∗

(
μt+ τ −

(
|γj(μt+ τ)− z′|+ |T− z′|

)
/c0

)
(13)

ARij
is the product of the receiver antenna beam patterns

ARij
(ω0, z, z

′, t, τ ′, τ, μ)=Jrc

(
ω0, ̂z−γi(t+τ ′),γi(t+τ ′)

)
×J∗

rc

(
ω0, ̂z′ − γj(μt+ τ),γj(μt+ τ)

)
(14)

and Gij is the product of the geometric spreading factors

Gij(z, z
′, t, τ ′, τ, μ) = |T− z||T− z′|

×|γi(t+ τ ′)− z||γj(μt+ τ)− z′|. (15)

Note that, for noncooperative sources of opportunity, T and
thus |T− z||T− z′| are unknown.

Now, using the Taylor series expansion at t=0 for γi(t+τ ′)
and γj(μt+τ), hence approximating |γi(t+τ ′)−z| and |γj(μt+

τ)−z′| in the case that | ˙γi(τ
′)t|�|γi(τ

′)−z| and | ˙γj(τ)μt|�
|γj(τ)−z|, respectively, after the z′ integration, (12) becomes

E [cij(τ
′, τ, μ)]

≈ Fij [Rρ](τ, μ)

=

∫
e−iϕij(t,z,τ

′,τ,μ)Aij(z, t, τ
′, τ, μ)Rρ(z)dzdt (16)

where

ϕij(t,z, τ
′, τ, μ) = ω0t

[
1− ̂(γj(τ)− z) · γ̇j(τ)/c0

]
× [μ− Sij(τ

′, τ, z)] (17)

with

Sij(τ
′, τ, z)

=
1− ( ̂γi(τ

′)− z) · γ̇i(τ
′)/c0

1− ( ̂γj(τ)− z) · γ̇j(τ)/c0
(18)

Aij(z, t, τ
′, τ, μ)

=
R̃T (ω0, z)ω

4
0φ(t)

(4π)4Gij(z, z, t, τ ′, τ, μ)

×Ap̃(z, z, t, τ
′, τ, μ)ARij

(ω0, z, z, t, τ
′, τ, μ)

× eiω0(τ
′−τ−(|γi(τ

′)−z|−|γj(τ)−z|)/c0) (19)

with R̃T (ω0, z) = RT (ω0, z, z,T). We refer to Sij(τ
′, τ, z) as

the Doppler-hitchhiker scale factor.
We refer to Fij defined in (16) as the DSAH or Doppler-

hitchhiker forward modeling operator and also to ϕij and Aij

as the phase and amplitude terms of the linear operator Fij .
Note that the scaled-and-translated correlation of the received
signal removes all transmitter-related terms from the phase of
the operator Fij .

For cooperative sources of opportunity where the transmitter
locations and antenna beam are assumed to be known, we
treat Jtr deterministically. R̃T (ω0, z) in (19) is replaced with

Jtr(ω0, ẑ−T,T)J∗
tr(ω0, ẑ−T,T).

C. High-Frequency Analysis of the Doppler-Hitchhiker
Forward Model

We assume that, for some mA, Aij satisfies the inequality

sup
(t,μ,τ,z)∈U

∣∣∂αt
t ∂

αμ
μ ∂β

τ ∂
ε1
z1
∂ε2
z2
Aij(z, t, τ

′, τ, μ)
∣∣

≤ CA(1 + t2)(mA−|αt|)/2 (20)

where U is any compact subset of R× R+ × R× R2 and the
constant CA depends on U , αt,μ, β, and ε1,2. This assumption
is needed to make various stationary phase calculations hold.
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Fig. 2. Iso-Doppler contours Fij(τ
′, τ, μ) for the Doppler-hitchhiker scale

factor S12(26.1799 s,−13.09 s, z). Two receivers are traversing a circular
flight trajectory (dashed line) at the speed of 220 m/s over a flat topography.
γ1(s) = γC(s) and γ2(s) = γC(s− π/4), respectively, where white and
black triangles denote the positions of the two receivers at s = π/6, respec-
tively. (See (18) and (67) for explicit formulas of S12(26.1799 s,−13.09 s, z)
and γC(s), respectively.)

In practice, (20) is satisfied for transmitters and receivers suffi-
ciently far away from the illuminated region.

Under the assumption (20), (16) defines F as a Fourier
integral operator whose leading-order contributions come from
those points lying in the intersection of the illuminated surface
(z,ψ(z)) and points that have the same Doppler-hitchhiker
scale factor, i.e., {z ∈ R3 : Sij(τ

′, τ, z) = μ}. We denote the
curves formed by this intersection by

Fij(τ
′, τ, μ) = {z : Sij (τ

′, τ, z = (z, ψ(z))) = μ} . (21)

When the speed of the receivers is much slower than the speed
of light c0, Sij can be approximated as follows:

Sij(τ
′, τ, z)

= 1 +
( ̂γj(τ)− z) · γ̇j(τ)/c0 − ( ̂γi(τ

′)− z) · γ̇i(τ
′)/c0

1− ( ̂γj(τ)− z) · γ̇j(τ)/c0

≈ 1 +
[

̂(γj(τ)− z) · γ̇j(τ)− ̂(γi(τ
′)− z) · γ̇i(τ

′)
]
/c0.

(22)

Substituting (22) into

Sij(τ
′, τ, z) = μ (23)

multiplying both sides of (23) by ω0, and rearranging the terms,
we have

ω0

c0

[
̂(γi(τ

′)− z) · γ̇i(τ
′)− ̂(γj(τ)− z) · γ̇j(τ)

]
= (1− μ)ω0

(24)

where the left-hand side of (24) is the hitchhiker Doppler
defined in [19] for a fixed frequency. In this regard, we refer
to Fij(τ

′, τ, μ) as the DSAH iso-Doppler contour. Fig. 2 shows
the DSAH iso-Doppler contours for two receivers traversing a
circular trajectory over a flat topography.

The high-frequency analysis of the forward model shows that
the windowed scaled-and-translated correlation of the received
signals is the projection of the scene radiance onto the hitch-
hiker iso-Doppler contours.

III. IMAGE FORMATION

Our objective is to form an image of the scene radiance
Rρ(z) using E[cij(τ

′, τ, μ)], i, j = 1, . . . , N , for a range of τ ′,
τ , and μ values based on the forward model (16).

Since Fij is a Fourier integral operator, we form an image
of the scene radiance by a suitable filtered backprojection of
E[cij(τ

′, τ, μ)] onto Fij(τ
′, τ, μ), i, j = 1, . . . , N [25].

A. Filtered-Backprojection Operator

We form an image of the scene radiance by the superposition
of the filtered and backprojected data, E[cij(τ, μ)], as follows:

R̃ρ(z) =
∑
ij

∫
Kij [E[cij ]] (z, τ

′)dτ ′ (25)

where

Kij [E[cij ]] (z, τ
′) =

∫
eiϕij(t,z,τ

′,τ,μ)

×Qij(z, t, τ
′, τ)E [cij(τ

′, τ, μ)] dtdτdμ. (26)

We refer to Kij as the filtered-backprojection operator with
respect to the ith and jth receivers, with filter Qij to be deter-
mined hereinafter. We will show that the filtered-backprojection
operator reconstructs the visible edges of the scene at the cor-
rect location and correct orientation irrespective of the choice
of the filter Qij .

We assume that, for some mQ, Qij satisfies the inequality

sup
(t,τ ′,τ,z)∈U

∣∣∣∂αt
t ∂β1

τ ′ ∂
β2
τ ∂ε1

z1
∂ε2
z2
Qij(z, t, τ

′, τ)
∣∣∣

≤ CQ(1 + t2)(mQ−|αt|)/2 (27)

where U is any compact subset of R× R× R× R2 and the
constant CQ depends on U , αt, β1,2, and ε1,2. Assumption (27)
makes Kij a Fourier integral operator.

B. PSF

We rewrite R̃ρ as

R̃ρ(z) =
∑
ij

KijFij [Rρ](z) =

∫
L(z, z′)Rρ(z

′)dz′ (28)

where L(z, z′) is the PSF of the imaging operator given by

L(z, z′) =
∑
ij

∫
Lij(z, z

′, τ ′)dτ ′ (29)

Lij(z, z
′, τ ′) =

∫
ei[ϕij(t,z,τ

′,τ,μ)−ϕij(t
′,z′,τ ′,τ,μ)]

×Qij(z, t, τ
′, τ)Aij(z

′, t′, τ ′, τ, μ)dt′dtdτdμ.

(30)
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Note that Lij(z, z
′, τ ′) can be viewed as the PSF of the partial

imaging operator Kij .
We next define

ΦK := ϕij(t,z, τ
′, τ, μ)− ϕij(t

′, z′, τ ′, τ, μ) (31)

as the phase of KijFij and use the stationary phase theorem
[26]–[29] to approximate the t′ and μ integrations.

The stationary points of the phase satisfy ∂t′,μΦK = 0, im-
plying that

μ =Sij(τ
′, τ, z′) (32)

t′ = t
1− ̂(γj(τ)− z) · γ̇j(τ)/c0

1− ̂(γj(τ)− z′) · γ̇j(τ)/c0
. (33)

Substituting (32) and (33) back into (30), we obtain

Lij(z, z
′, τ ′)

≈
∫

eiω0t[1− ̂(γj(τ)−z)·γ̇j(τ)/c0][Sij(τ
′,τ,z′)−Sij(τ

′,τ,z)]

×Qij(z, t, τ
′, τ)Aij(z

′, t, τ ′, τ, Sij(τ
′, τ, z′))dtdτ. (34)

To simplify our notation, for the rest of our paper, we write

Aij(z, t, τ
′, τ) = Aij (z, t, τ

′, τ, Sij(τ
′, τ, z)) . (35)

Applying the method of stationary phase to the t and τ
integrals, we see that the main contribution to Lij(z, z

′, τ ′)
comes from those critical points of its phase that satisfy the
conditions

∂t

(
ω0t

[
1− ̂(γj(τ)− z) · γ̇j(τ)/c0

]
[Sij(τ

′, τ, z′)− Sij(τ
′, τ, z)]

)
= 0

⇒ Sij(τ
′, τ, z′) = Sij(τ

′, τ, z) (36)

∂τ

(
ω0t

[
1− ̂(γj(τ)− z) · γ̇j(τ)/c0

]
[Sij(τ

′, τ, z′)− Sij(τ
′, τ, z)]

)
= 0

⇒
a

∑
j (τ, z)

1− ̂(γj(τ)− z) · γ̇j(τ)/c0

=
a

∑
j (τ, z′)

1− ̂(γj(τ)− z′) · γ̇j(τ)/c0
(37)

where

a

∑
j (τ, z) =

1

|γj(τ)− z| |γ̇j,⊥(τ, z)|2 + ̂(γj(τ)− z) · γ̈j(τ)

(38)

γ̇j,⊥(τ, z) = γ̇j(τ)− ̂(γj(τ)− z)
(

̂(γj(τ)− z) · γ̇j(τ)
)
.

(39)

Note that γ̇j,⊥(τ, z) is the projection of the receiver ve-
locity γ̇j(τ) onto the plane whose normal direction is along

Fig. 3. Iso-Doppler-rate contours Ḟj(τ, C) for the DSAH Doppler rate
f1(−13.09 s, z). Two receivers are traversing a circular flight trajectory
(dashed line) at the speed of 220 m/s over a flat topography. γ1(s) = γC(s)
and γ2(s) = γC(s− π/4), respectively, where white and black triangles
denote the positions of the two receivers at s = π/6, respectively. (See (40)
and (67) for explicit formulas of f2(−13.09 s, z) and γC(s), respectively.)

̂γj(τ)− z and a

∑
j (τ, z) is the total relative radial acceleration

of the jth receiver in the direction of ̂γj(τ)− z. For the
derivation of (37), see Appendix A.

We define

fj(τ, z) :=
a

∑
j (τ, z)

1− ̂(γj(τ)− z) · γ̇j(τ)/c0
. (40)

We refer to fj(τ, z) as the DSAH Doppler rate of the jth re-
ceiver. We refer to the locus of points formed by the intersection
of the surface topography and {z ∈ R3 : fj(τ, z) = C}, for
some constant C, as the DSAH iso-Doppler-rate contour and
denote it by

Ḟj(τ, C) = {z : fj(τ,z) = C} . (41)

Fig. 3 shows the DSAH iso-Doppler rate contours with fixed τ
for a circular flight trajectory and flat topography. The critical
points z of the phase of Lij(z, z

′, τ ′) are those points lying on
the intersection of the DSAH iso-Doppler curves Fij(τ

′, τ, μ)

and DSAH iso-Doppler-rate curves Ḟj(τ, C). We assume that
the flight trajectories of the receivers are smooth and that
the receiver antenna beam patterns are focused on a region
of interest where each pair of iso-Doppler Fij(τ

′, τ, μ) and
iso-Doppler-rate Ḟj(τ, C) contours intersects at a single point
within the region of interest. In other words, we assume that the
only critical point within the region of interest is z = z′.

C. Determination of the Filter

The filter Qij can be determined with respect to various
criteria [30]. Ideally, Qij is chosen such that the leading-order
contributions of the PSF of Kij are the Dirac-delta function,
i.e., Lij(z, z

′, τ ′) ≈ δ(z − z′). This choice of Qij ensures that
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Kij reconstructs the visible edges of the scene not only at the
right location and orientation but also with the correct strength
[23], [30]–[32].

To determine the filter, we linearize Sij(τ
′, τ, z′) around

z′ = z and approximate

Sij(τ
′, τ,z′)− Sij(τ

′, τ, z) ≈∇zSij(τ
′, τ, z) · (z′ − z)

(42)
Aij(z

′, t, τ ′, τ) ≈Aij(z, t, τ
′, τ) (43)

to write

Lij(z, z
′, τ ′) =

∫
eitΞij(τ

′,τ,z)·(z′−z)

×Qij(z, t, τ
′, τ)Aij(z, t, τ

′, τ)dtdτ (44)

where

Ξij(τ
′, τ,z)=ω0

[
1− ̂(γj(τ)−z) · γ̇j(τ)/c0

]
∇zSij(τ

′, τ,z).

(45)

In (44), for each τ ′ and z, we make the following change of
variables:

(t, τ) → ξij = tΞij(τ
′, τ, z) (46)

and obtain

Lij(z, z
′, τ ′) =

∫
Ωij,τ′,z

eiξij ·(z′−z)

×Qij(z, τ
′, ξij)Aij(z, τ

′, ξij)η(z, τ
′, ξij)dξij , (47)

where

Qij(z, τ
′, ξij) =Qij

(
z, t(ξij), τ

′, τ(ξij)
)

(48)

Aij(z, τ
′, ξij) =Aij

(
z, t(ξij), τ

′, τ(ξij)
)

(49)

and η(z, τ ′, ξij) = |∂(t, τ)/∂ξij | is the determinant of the
Jacobian that comes from the change variables in (46).

In (47)

Ωij,τ ′,z =
{
ξij = tΞij(τ

′, τ, z)|Aij(z, t, τ
′, τ) �= 0,

(t, τ ′, τ) ∈ (R,R,R)} . (50)

We refer to Ωij,τ ′,z as the partial data collection manifold at
(τ ′, z) obtained by the ith and jth receivers for a fixed τ ′ and
refer to the union ∪ij,τ ′Ωij,τ ′,z as the data collection manifold
at z and denote it by Ωz . This set determines many of the
properties of the image.

Using (18) and (45), we obtain

Ξij(τ
′, τ,z) =

ω0

c0
Dψ(z)

·
[

1

|γi(τ
′)− z| γ̇i,⊥(τ

′)− Sij(τ
′, τ, z)∣∣γj(τ)− z

∣∣ γ̇j,⊥(τ)

]
(51)

where

Dψ(z) =

[
1 0 ∂ψ(z)/∂z1
0 1 ∂ψ(z)/∂z2

]
(52)

Fig. 4. Illustration of the vector Ξij(τ
′, τ, z) in the data collection manifold

Ωij,z for the flat topography, ψ(z) = 0. Ξij(τ
′, τ, z) is the projection of the

difference of the scaled vectors γ̇i,⊥(τ ′) and γ̇j,⊥(τ) onto the tangent plane
of the ground topography at z. (See (51) for an explicit form of Ξij(τ

′, τ, z).)

and γ̇i,⊥(τ
′) and γ̇j,⊥(τ) are the projections of γ̇i(τ

′) and

γ̇j(τ) onto the planes whose normal vectors are ( ̂γi(τ
′)− z)

and ( ̂γj(τ)− z), respectively. For a detailed derivation of (51),
see Appendix B.

We show an illustration of the vector Ξij(τ
′, τ,z) in Fig. 4

for two receivers flying over a flat topography.
We choose the filter as follows:

Qij(z, t, τ
′, τ) =

A∗
ij(z, t, τ

′, τ)

|Aij(z, t, τ ′, τ)|2
χΩij,τ′,z(z, t, τ

′, τ)

η(z, τ ′, ξij)
(53)

where χΩij,τ′,z is a smooth cutoff function equal to one in the
interior of Ωij,τ ′,z and zero in the exterior of Ωij,τ ′,z .

Note that this choice of filter makes the leading-order term
of Lij(z, z

′, τ ′) in (47) to be the Dirac-delta function.

D. Resolution Analysis

Substituting (53) into (47) and the result into (28), we obtain

R̃ρ(z) =
∑
ij

Kij [Fij [Rρ]] (z)

≈
∑
ij

∫
Ωij,τ′,z

eiξij ·(z′−z)Rρ(z
′)dz′dξijdτ

′. (54)

Equation (54) shows that the image R̃ρ is a band-limited
version of Rρ whose bandwidth is determined by the data
collection manifold Ωz , which describes the resolution of
the reconstructed image R̃ρ at z. The larger the data collec-
tion manifold, the better the resolution of the reconstructed
image is.

Microlocal analysis of (54) tells us that an edge at point z
is visible if the direction nz normal to the edge is contained in
Ωz [23], [30]–[32]. Consequently, an edge at point z with nz

normal to edge is visible if there exists i, j, τ ′, and τ such that
ξij is parallel to nz . Furthermore, the bandwidth contribution
of ξij = tΞij(τ

′, τ,z) to a visible edge at z is given by
Lφ|Ξij(τ

′, τ,z)|, where Lφ denotes the length of the support
of φ(t). Thus, the longer the support of φ(t) becomes, the larger
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Fig. 5. DSAH iso-Doppler contours obtained by backprojecting the data for a fixed τ and τ ′ with (a) Lφ = 0.0853 s, f0 = ω0/2π = 200 MHz; (b) Lφ =
0.6827 s, f0 = ω0/2π = 200 MHz; and (c)Lφ = 0.0853 s, f0 = ω0/2π = 500 MHz. The data are generated using (4) for a point target located at [9.625,
12.375, 0] km. The transmitter is located at [0, 0, 6.5] km, transmitting a single-frequency continuous waveform. The setting of the two receivers is the same as
that in Fig. 2.

the magnitude of ξij is, giving rise to sharper reconstructed
edges perpendicular to ξij , i, j = 1, . . . , N . Additionally, the
higher the carrier frequency ω0 of the transmitted signal be-
comes, the larger the magnitude of ξij is, contributing to higher
image resolution.

We note that the magnitude of ξij also depends on the speed
of the receivers as well as the distance of the receivers to the
scatterers. The larger the magnitude of γ̇i,⊥(τ

′) and/or γ̇j,⊥(τ),
the larger the magnitude of ξij becomes. Equation (51) also
tells us that certain receiver flight trajectories where

1

|γi(τ
′)− z| γ̇i,⊥(τ

′) ≈ Sij(τ
′, τ, z)∣∣γj(τ)− z

∣∣ γ̇j,⊥(τ) (55)

do not provide information about the ground radiance at z and
should be avoided.

The dependence of the image resolution on the length of the
support of the windowing function and the carrier frequency
of the transmitted waveform can also be understood from the
perspective of the spreading of the DSAH iso-Doppler curves.
As previously described, our imaging method performs the
filtered-backprojection onto the DSAH iso-Doppler curves as
defined by (21). The image resolution is accordingly closely
related to the width of the spreading of the DSAH iso-Doppler
curves, which is determined by the Doppler ambiguity of the
transmitted waveform, and thus the duration of the signal to be
processed, and the transmitter frequency.

We performed simulations to show the effects of the Doppler
ambiguity and the frequency of the transmitted waveform on
the width of the spreading of the iso-Doppler curves. As shown
in Fig. 5, the spreading of the iso-Doppler curve becomes nar-
row with a longer windowing function or a higher transmitter
frequency, which implies a better image resolution.

Note that (54) shows that, irrespective of the choice of the
filter, the backprojection operator recovers the visible edges of
the scene radiance at the right location for given ith and jth
receivers and a fixed τ ′. With the choice of the filter given
in (53), the resulting image formation algorithm recovers the
visible edges of the scene radiance not only at the correct
location and orientation but also at the correct strength.

IV. RECONSTRUCTION ALGORITHM

In this section, we describe the numerical implementation
of our filtered-backprojection method. We implemented the
inversion formulas (25), (26), and (53). Let Ξij(τ

′, τ,z) =

(Ξij,1,Ξij,2) and ∂τΞij(τ
′, τ,z) = (Ξ̇ij,1, Ξ̇ij,2). Then, using

(46), we have

1

η(z, τ ′, ξij)
=

∣∣∣∣ ∂ξij
∂(t, τ)

∣∣∣∣
= |t| |Ξij,1Ξ̇ij,2 − Ξ̇ij,1Ξij,2|. (56)

We refer to |t| in (56) as the time-domain ramp filter, which has
a similar effect on the reconstructed image as the well-known
ramp filter in the tomography literature [26]. The image formed
without the time-domain ramp filtering has smooth edges.

We write the filter (53) as

Qij(z, t, τ
′, τ) = Qij,1(z, τ

′, τ)Qij,2(z, t, τ
′, τ)|t| (57)

where

Qij,1(z, τ
′, τ) = |Ξij,1Ξ̇ij,2 − Ξ̇ij,1Ξij,2| (58)

Qij,2(z, t, τ
′, τ) =χΩij,τ′,z

A∗
ij(z, t, τ

′, τ)

|Aij(z, t, τ ′, τ)|2
. (59)

Using (25), (26), and (57), we obtain the following recon-
struction formula:

R̃ρ(z) =
∑
ij

∫
e−iω0t[1− ̂(γj(τ)−z)·γ̇j(τ)/c0]Sij(τ

′,τ,z)|t|

×Cij(τ
′, τ, t)Qij,2(z, t, τ

′, τ)Qij,1(z, τ
′, τ)dtdτdτ ′ (60)

where

Cij(τ
′, τ, t)=

∫
eiω0t[1− ̂(γj(τ)−z)·γ̇j(τ)/c0]μE[cij(τ

′, τ, μ)]dμ.

(61)

Note that, for notational simplicity, we write Cij(τ
′, τ, t) =

Cij(τ
′, τ, t[1− ̂(γj(τ)− z) · γ̇j(τ)/c0]).
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Thus, for each pair of receivers, the steps of the reconstruc-
tion algorithm are as follows.

1) Compute the inverse Fourier transform of the scaled,
translated, and correlated data with respect to μ according
to (61), and obtain Cij(τ

′, τ, t).
2) Time-domain ramp filtering

C̃ij(τ
′, τ, t) = |t|Cij(τ

′, τ, t). (62)

3) Filtering with Qij,2

C̃ij,Qij,2
(z, t, τ ′, τ) = C̃ij(τ

′, τ, t)Qij,2(z, t, τ
′, τ). (63)

4) Backprojection step

R̃ρij,2
(z, τ ′, τ) =

∫
e−iω0t[1− ̂(γj(τ)−z)·γ̇j(τ)/c0]Sij(τ

′,τ,z)

×C̃ij,Qij,2
(z, t, τ ′, τ)dt. (64)

Note that C̃ij,Qij,2
(z, t, τ ′, τ) = C̃ij,Qij,2

(z, t[1−
̂(γj(τ)− z) · γ̇j(τ)/c0], τ

′, τ). Equation (64) can be
computed using the fast Fourier transform.

5) Partial image formation: We form the partial image R̃ρij
by

R̃ρij
(z) =

∫
Qij,1(z, τ

′, τ)R̃ρij,2
(z, τ ′, τ)dτ ′dτ. (65)

Finally, we form our image R̃ρ by summing over all partial
images

R̃ρ(z) =
∑
ij

R̃ρij
(z). (66)

Fig. 6 shows the block diagram of the imaging algorithm.

V. NUMERICAL SIMULATIONS

We conducted two sets of numerical simulations. In the
first set of simulations, we numerically studied the PSF of the
imaging operator under different scenarios and demonstrated
the theoretical results described in Section III-C. In the second
set of simulations, we demonstrated the performance of our
imaging method for a multiple-point-target model.

We used the digital audio broadcasting (DAB) signals used
by radio stations as the waveform of opportunity in the nu-
merical simulations. We simulated the DAB signal based on
the European standard, which uses the COded Orthogonal
Frequency Division Multiplexing modulation. The main char-
acteristics of the DAB signal are as follows: 1) The symbol
has 1-ms useful duration with a guard interval of 0.246 ms;
2) 1536 subcarriers are transmitted simultaneously per symbol;
and 3) the quadrature phase shift keying coding is used for each
subcarrier. The bandwidth of the DAB signal is 1.5 MHz. In the
simulations, the transmitter was assumed to be operating in the
VHF band at a transmission frequency of 200 MHz.

We considered a scene of size [0, 11]× [0, 11] km2 with flat
topography. The scene was discretized by 128 × 128 pixels,
where [0, 0, 0] km and [11, 11, 0] km correspond to the pixels
(1, 1) and (128, 128), respectively.

In all the numerical experiments, we used two airborne
receivers and a single stationary transmitter operating either

Fig. 6. Block diagram of the imaging algorithm.

cooperatively or noncooperatively. We assumed that both the
receiver and transmitter antennas were isotropic. We assumed
that the transmitter was located at y0 = (0, 0, 6.5) km and the
receivers were traversing the circular trajectory given by

γC(s) = (11 + 11 cos(s), 11 + 11 sin(s), 6.5) km. (67)

Let γ1(s) and γ2(s) denote the trajectories of the two receivers.
We set γ1(s) = γC(s) and γ2(s) = γ1(s− (π/4)). Note that
the variable s in γC is equal to (V/R)t, where V is the speed
of the receiver and R is the radius of the circular trajectory.
We set the speed of the two receivers to 220 m/s. We chose the
sampling rate of τ to be 0.8149 Hz so as to uniformly sample
the circular trajectory with 256 points.

For all the numerical experiments, we used (4) to generate the
data and chose the windowing function φ in (7) to be a Hanning
function.

We performed image reconstruction for each τ ′ and coher-
ently superimposed the reconstructed images obtained over a
range of τ ′.

A. Numerical Analysis of the PSF

We placed a point target with unit reflectivity at [9.625,
12.375, 0] km in the scene considered. Note that this position
corresponds to the (49, 81)th pixel in the reconstructed scene.

We performed numerical simulations to demonstrate the
impact of Lφ, the length of the support of φ(t); f0=ω0/2π, the
frequency of the transmitted waveform; and the range of τ ′ on
the PSF of the imaging operator. We reconstructed the PSF with
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Fig. 7. (a) PSF of the DSAH imaging method at (9.625, 12.375, 0) km along
with (b) its X profile and (c) Y profile for a cooperative DAB transmitter
located at y0, transmitting a DAB waveform at f0 = 200 MHz, and two
receivers traversing circular trajectories γ1(s) and γ2(s). The length of the
support of the windowing function is Lφ = 0.1707 s.

Fig. 8. (a) PSF of the DSAH imaging method at (9.625, 12.375, 0) km along
with (b) its X profile and (c) Y profile for a cooperative DAB transmitter
located at y0, transmitting a DAB waveform at f0 = 200 MHz, and two
receivers traversing circular trajectories γ1(s) and γ2(s). The length of the
support of the windowing function is Lφ = 0.6827 s.

Fig. 9. (a) PSF of the DSAH imaging method at (9.625, 12.375, 0) km along
with (b) its X profile and (c) Y profile for a cooperative DAB transmitter
located at y0, transmitting a DAB waveform at f0 = 20 MHz, and two
receivers traversing circular trajectories γ1(s) and γ2(s). The length of the
support of the windowing function is Lφ = 0.3413 s.

the following variables: 1) f0=200 MHz, Lφ=0.1707 s; 2)
f0=200 MHz, Lφ=0.6827 s; 3) f0=20 MHz, Lφ=0.6827 s;
and 4) τ ′ ∈ [0, 314.159] s with the sampling period of 19.635 s,
Lφ=0.3413 s, and f0=200 MHz. For the first three cases, we
assumed that the transmitter was cooperative and reconstructed
the PSF using τ ′=255.254 s. For the fourth case, we recon-
structed the PSF for both the cooperative and noncooperative
cases. We used 16 τ ′ values uniformly spaced in [0, 314.159] s.

Figs. 7–9 show the reconstructed PSFs along with their
profiles in X- and Y -directions for the first three cases. We also
tabulated the 3-dB mainlobe width and the peak-to-sidelobe
ratio (PSLR) of the X and Y profiles in Table II, where the
3-dB mainlobe width is used as a measure of resolution and
PSLR is used as a measure of the level of the sidelobes in the
reconstructed PSFs.

As can be seen in Figs. 7 and 8, the quality of the PSF
improves as the length of the support of the windowing function
increases from 0.1707 to 0.6827 s due to a larger data collection
manifold. Comparing the profiles of the PSFs in both cases, we
see that the level of the sidelobes of the PSF decreases as the
support of the windowing function gets longer, which is also
indicated by the PSLR values in the two cases in Table II. The
low level of sidelobes, in turn, results in an improved visual
contrast in the image, as shown in Fig. 8(a).

Note that the change in the resolution is not evident visually
when the images in Figs. 7 and 8 are compared. This may be
due to a relatively large pixel size of the reconstructed image
and a relatively small increase in the resolution. We can see
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TABLE II
MAINLOBE WIDTH OF 3 dB AND PSLR OF THE RECONSTRUCTED PSFS FOR CASES 1, 2, AND 3

Fig. 10. PSF at [9.625, 12.375, 0] km with 16 τ ′ values uniformly spaced in
[0, 314.159] s using a single cooperative DAB transmitter located at y0 and two
receivers traversing the circular flight trajectories γ1(s) and γ2(s), as shown
in Fig. 14.

Fig. 11. PSFs using the vectors in the partial data collection manifolds (a)
Ω12,τ ′=78.54 s (corresponding to s = π/2) and (b) Ω12,τ ′=255.254 s (corre-
sponding to s = 1.625π) with a single cooperative DAB transmitter located
at y0, transmitting a DAB waveform at f0 = 200 MHz, and two receivers
traversing circular flight trajectories γ1(s) and γ2(s), as shown in Fig. 14.
The length of the support of the windowing function is Lφ = 0.3413 s.

Fig. 12. X and Y profiles of the reconstructed PSFs shown in Figs. 10 and 11.

in Table II that the resolution in the X-direction improves
moderately, while the resolution in the Y -direction remains
almost the same.

Comparing Figs. 8 and 9, we see that the quality of the
reconstructed PSF degrades due to the decrease in the carrier
frequency of the transmitted waveform from 200 to 20 MHz as
indicated by the theory. This is also indicated by the spreading
of the mainlobe in Fig. 9(b) and (c) and an increase in the 3-dB
mainlobe width and a moderate decrease in PSLR as shown in
Table II.

To demonstrate the effect of the superposition of images
reconstructed for each τ ′, we reconstructed the PSF for a
range of τ ′ values. For this simulation, we used both coop-
erative and noncooperative transmitters with the parameters
described earlier. Fig. 10 shows the reconstructed PSF, which
is the superposition of the images obtained for 16 different τ ′

values uniformly spaced in [0, 314.159] s for a cooperative
transmitter. Fig. 11(a) and (b) shows the reconstructed images
corresponding to two different values of τ ′. The profiles of the
reconstructed PSFs in the X- and Y -directions are shown in
Fig. 12. Table III includes the 3-dB mainlobe width and PSLR
of the X and Y profiles.
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TABLE III
MAINLOBE WIDTH OF 3 dB AND PSLR OF THE RECONSTRUCTED PSFS FOR DEMONSTRATING THE SUPERPOSITION EFFECT

Fig. 13. Reconstructed image for a point target with 16 τ ′ values uniformly
spaced in [0, 314.1] s using a single noncooperative transmitter located at y0,
transmitting a DAB waveform at f0 = 200 MHz, and two receivers traversing
the circular flight trajectories γ1(s) and γ2(s) as shown in Fig. 14. The length
of the support of the windowing function is Lφ = 0.0853 s.

As expected, since the partial data collection manifold
Ω12,τ ′,z for a fixed τ ′ is significantly smaller than ∪τ ′Ω12,τ ′,z ,
the visual quality of the images in Fig. 11 is poorer than that
of the superimposed image in Fig. 10. This is also indicated by
Fig. 12 and the 3-dB mainlobe widths tabulated in Table III.
Furthermore, as shown in Fig. 12 and indicated by the PSLR
values in Table III, the superposition suppresses the sidelobes
significantly. This can be also observed visually in Fig. 10.

For the case of noncooperative transmitters, we assumed
that the scene was illuminated by an isotropic antenna and set
R̃T = 1. Furthermore, we set |T− z|2 = 1 for all z ∈ R3 in
Gij for the image reconstruction. This can be interpreted as a
uninformative prior on the transmitter antenna beam patterns
and the transmitter-related geometric spreading factors.

The reconstructed PSF for the case of a single noncooper-
ative transmitter is shown in Fig. 13. Without the transmitter-
related geometric spreading factors in the reconstruction for-
mula, the strength of the target appears weak because of the
range-dependent attenuation. If a priori information on the
rough location of the transmitters is available, this range-
dependent attenuation can be easily corrected by rescaling the
correlated received signal.

B. Numerical Simulations for Multiple Point Targets

In accordance with the incoherent field approximation, we
used the following multiple-point-target model for the scene
reflectivity:

ρ(z) =

L∑
l=1

glδ(z − zl) (68)

Fig. 14. (a) 3-D and (b) 2-D views of the scene with multiple
point targets, illuminated by a single DAB transmitter located at
y0 = (0, 0, 6.5) km and the circular receiver trajectory γC(s) =
(11 + 11 cos(s), 11 + 11 sin(s), 6.5) km, as shown by the red solid
line. At a certain time instant, two receivers are located at the positions shown
in the figure.

where gl, l = 1, . . . , L, are independent Gaussian random vari-
ables with mean μl and variance σ2

l . The corresponding scene
radiance is given by

Rρ(z) = E [ρ(z)ρ∗(z)] =
∑
l

(
μ2
l + σ2

l

)
δ(z − zl). (69)

In our simulations, we considered a deterministic reflectivity
and set σ2

l = 1. We used L = 5 and approximated the Dirac-
delta functions in (69) by square target reflectors of size
344× 344 m2, each having a unit reflectivity, i.e., μl = 1,
l = 1, . . . , 5. Fig. 14(a) and (b) shows the scene with targets,
receiver trajectories, and the transmitter antenna location.



WANG et al.: DOPPLER-HITCHHIKER: A NOVEL SAR USING ULTRANARROWBAND SOURCES OF OPPORTUNITY 3533

Fig. 15. Reconstructed image for multiple point targets with 16 τ ′ values
uniformly spaced in [0, 314.159] s using a single cooperative transmitter located
at y0 and two receivers traversing the circular flight trajectories γ1(s) and
γ2(s) as shown in Fig. 14.

Fig. 16. Images reconstructed for multiple point targets using the vectors in
the partial data collection manifolds (a) Ω12,τ ′=78.54 s (corresponding to s =
π/2) and (b) Ω12,τ ′=255.254 s (corresponding to s = 1.625π), with a single
cooperative transmitter located at y0 and two receivers traversing circular flight
trajectories γ1(s) and γ2(s) as shown in Fig. 14.

1) Cooperative Transmitters: For the case of a cooperative
transmitter, the reconstructed image is shown in Fig. 15. The
two images corresponding to the fixed τ ′ values are shown in
Fig. 16(a) and (b). Fig. 17 shows the profiles in the X- and
Y -directions of the reconstructed point target indicated by the
white square in Fig. 15.

Fig. 17. X and Y profiles of one of the reconstructed targets (indicated by the
white dashed square) shown in Fig. 15.

As expected, due to a smaller data collection manifold, the
quality of the reconstructed images for fixed τ ′ values, as shown
in Fig. 16(a) and (b), is poorer than that of the image obtained
by the superposition of all the images reconstructed for a range
of τ ′ values, τ ′ ∈ [0, 314.159] s, as shown in Fig. 15. We
observe that some of the targets do not appear as sharp as the
ones in Fig. 15. The analysis of the X and Y profiles of one
of the reconstructed point targets shows the improvement of the
reconstruction more clearly. As can be seen in Fig. 17, the main-
lobe width becomes narrower, and the level of the sidelobes is
significantly reduced in the superimposed image, which results
in better visual quality reconstruction, as shown in Fig. 15.

2) Noncooperative Transmitters: For the case of noncoop-
erative transmitters, we assumed that the scene was illuminated
by an isotropic antenna and set R̃T = 1. Furthermore, we set
|T− z|2 = 1 for all z ∈ R3 in Gij for the image reconstruc-
tion. This can be interpreted as a uninformative prior on the
transmitter antenna beam patterns and the transmitter-related
geometric spreading factors.

Fig. 18 shows the reconstructed image for multiple point
targets using a noncooperative transmitter. Since the location of
the transmitter was assumed to be unknown, the received sig-
nal was not compensated for the transmitter-related geometric
spreading factors. As a result, the scatterers closer to the trans-
mitter appear brighter in the reconstructed image than those
that are further away from the transmitter. Table IV tabulates
the amplitudes of each target. The amplitude is calculated by
averaging the values of the pixels where the target is located.
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Fig. 18. Reconstructed image for multiple point targets with 16 τ ′ values
uniformly sampled in [0, 314.159] s using a single noncooperative transmitter
located at y0 and two receivers traversing the circular flight trajectories γ1(s)
and γ2(s) as shown in Fig. 14.

TABLE IV
AMPLITUDES OF THE RECONSTRUCTED TARGETS

VI. CONCLUSION

We have introduced a novel SAR modality, which we
referred to as the Doppler-hitchhiker, for synthetic aperture
imaging. Doppler-hitchhiker uses ultranarrowband waveforms
of opportunity transmitted by radio, television, cell phone,
etc., stations and one or more receivers traversing arbitrary
trajectories.

Doppler-hitchhiker performs image formation in two steps:
In the first step, the received signal by each receiver is par-
titioned into windows and then scaled, translated, and corre-
lated with the received data in other windows measured by
the same and/or different receivers. The second step involves
high-frequency analysis of the resulting forward model and the
filtered backpropagation of the correlated signals onto the hitch-
hiker iso-Doppler contours to form an image. Our resolution
analysis shows that the spread of the hitchhiker iso-Doppler
curves is directly related to the Doppler ambiguity function of
the transmitted waveforms. The Doppler ambiguity functions
of the CW or ultranarrowband waveforms have narrow peak
resulting in narrow hitchhiker iso-Doppler contours. Thus, in-
tuitively speaking, backprojecting onto these curves results in
high-resolution imaging. Our analysis shows that the resolution
of the reconstructed image is determined primarily by the
temporal duration and frequency of the transmitted waveforms,
which is consistent with the ambiguity theory of the CW or
ultranarrowband waveforms.

We used microlocal techniques to backproject the correlated
signals onto the hitchhiker iso-Doppler contours. Our recon-
struction is a filtered-backprojection type and has the desirable

property of preserving the visible edges of the scene. We
presented a high-frequency analysis of the PSF of our imaging
operator and showed that the filtered-backprojection operator
recovers the scene at the intersection of the hitchhiker iso-
Doppler and hitchhiker iso-Doppler-rate contours. We note that
the our image reconstruction technique easily accommodates
arbitrary trajectories, nonflat topography, and system-related
parameters. Furthermore, it is an analytic technique that can
be made computationally efficient using the fast-backprojection
algorithms [22]. We demonstrated the performance of our imag-
ing method in numerical simulations using the DAB signals as
the illumination source of opportunity and verified the theoret-
ical results.

While our image formation was performed in a deterministic
setting, following the methodology that we introduced in [20],
[30], [33], and [34], we can show that the correlation of scaled
and delayed measurements is an optimal detection scheme for
a point target in the presence of additive white Gaussian noise.
This result, as well as imaging in the presence of more general
noise models and performance analysis, is described in our
work [21].

Although we presented our approach specifically for passive
SAR, our method is also applicable to other passive imaging
problems, such as passive geophysical or acoustic imaging.

APPENDIX A
DERIVATIONS RELATED TO THE DSAH

ISO-DOPPLER-RATE CONTOURS

Substituting (18) into

∂τ

(
ω0t

[
1− ̂(γj(τ)− z) · γ̇j(τ)/c0

]
[Sij(τ

′, τ,z′)− Sij(τ
′, τ,z)]

)
= 0 (70)

we reduce (70) to

−ω0t
[
1− ̂(γi(τ

′)− z′) · γ̇i(τ
′)/c0

]
× ∂τ

[
1− ̂(γj(τ)− z) · γ̇j(τ)/c0

1− ̂(γj(τ)− z′) · γ̇j(τ)/c0

]
︸ ︷︷ ︸

Δ

= 0. (71)

We now express Δ as

∂τ

[
1− ̂(γj(τ)− z) · γ̇j(τ)/c0

1− ̂(γj(τ)− z′) · γ̇j(τ)/c0

]

= −
1− ̂(γj(τ)− z) · γ̇j(τ)/c0[
1− ̂(γj(τ)− z′) · γ̇j(τ)/c0

]2
× ∂τ

[
1− ̂(γj(τ)− z′) · γ̇j(τ)/c0

]
+

1

1− ̂(γj(τ)− z′) · γ̇j(τ)/c0

× ∂τ

[
1− ̂(γj(τ)− z) · γ̇j(τ)/c0

]
. (72)
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Introducing (72) into (71), we obtain

∂τ [1− ̂(γj(τ)− z) · γ̇j(τ)/c0]

1− ̂(γj(τ)− z) · γ̇j(τ)/c0

=
∂τ

[
1− ̂(γj(τ)− z′) · γ̇j(τ)/c0

]
1− ̂(γj(τ)− z′) · γ̇j(τ)/c0

. (73)

Let us focus on the numerators on both sides of (73). Using
the notations γj = [γ1

j ,γ
2
j ,γ

3
j ]

T and γ̇j = [γ̇1
j , γ̇

2
j , γ̇

3
j ]

T , the
partial derivative of the numerator on the left-hand side of (73)
with respect to τ can be expressed as

∂τ

[
1− ̂(γj(τ)− z) · γ̇j(τ)/c0

]
= ∂τ

−1

c0|γj(τ)− z|

×
[(
γ1
j (τ)−z1

)
γ̇1
j (τ)

+
(
γ2
j (τ)− z2

)
γ̇2
j (τ) +

(
γ3
j (τ)− z3

)
γ̇3
j (τ)

]
=

[
1

c0|γj(τ)− z|2
γj(τ)− z

|γj(τ)− z| · γ̇j(τ)

]

×
[
(γj(τ)− z) · γ̇j(τ)

]
− 1

c0|γj(τ)− z|

×
[(
γ̇1
j (τ)

)2
+
(
γ1
j (τ)− z1

)
γ̈1
j (τ)

+
(
γ̇2
j (τ)

)2
+
(
γ2
j (τ)− z2

)
γ̈2
j (τ)

+
(
γ̇3
j (τ)

)2
+
(
γ3
j (τ)− z3

)
γ̈3
j (τ)

]
=

1

c0|γj(τ)− z|
[

̂(γj(τ)− z) · γ̇j(τ)
]2

− 1

c0|γj(τ)− z|
[
|γ̇j(τ)|2 + (γj(τ)− z) · γ̈j(τ)

]
=

−1

c0

[
1

|γj(τ)− z|

[
|γ̇j(τ)|2 −

(
̂(γj(τ)− z) · γ̇j(τ)

)2
]

+ ̂(γj(τ)− z) · γ̈j(τ)

]

=
−1

c0

⎡⎢⎣ 1

|γj(τ)− z| |γ̇j,⊥(τ, z)|2 + ̂(γj(τ)− z) · γ̈j(τ)︸ ︷︷ ︸
aj(τ,z)

⎤⎥⎦
(74)

where

γ̇j,⊥(τ, z) = γ̇j(τ)− ̂(γj(τ)− z)
(

̂(γj(τ)− z) · γ̇j(τ)
)
(75)

denotes the projection of the receiver velocity γ̇j(τ) onto the

plane whose normal direction is along ̂γj(τ)− z and aj(τ, z)
denotes the projection of the receiver acceleration γ̈j(τ) along
̂γj(τ)− z. We see that the summation of the two terms in

the square bracket of (74) is the total radial acceleration of
the jth receiver evaluated at τ . We denote these two terms by

a

∑
j (τ, z), i.e.,

a

∑
j (τ, z) =

1

|γj(τ)− z|
∣∣γ̇j,⊥(τ, z)

∣∣2 + ̂(γj(τ)− z) · γ̈j(τ).

(76)
Introducing (74) into (73), we obtain

a

∑
j (τ, z)

1− ̂(γj(τ)− z) · γ̇j(τ)/c0
=

a

∑
j (τ, z′)

1− ̂(γj(τ)− z′) · γ̇j(τ)/c0
.

(77)

APPENDIX B
DERIVATIONS RELATED TO THE DSAH

DATA COLLECTION MANIFOLD

Introducing (18) in (45)

Ξij(τ
′, τ,z)=ω0

[
1− ̂(γj(τ)−z) · γ̇j(τ)/c0

]
∇zSij(τ

′, τ,z)

(78)

we obtain

Ξij(τ
′, τ,z) =ω0

[
∇z

(
1− ̂(γi(τ

′)− z) · γ̇i(τ
′)/c0

)

− 1− ̂(γi(τ
′)− z) · γ̇i(τ

′)/c0

1− ̂(γj(τ)− z) · γ̇j(τ)/c0

· ∇z

(
1− ̂(γj(τ)− z) · γ̇j(τ)/c0

)]
(79)

where ∇z = [∂z1 , ∂z2 ]
T .

Defining μ = Sij(τ
′, τ,z), (79) can be expressed as

Ξ(τ ′, τ,z) =ω0

[
∇z(1− ̂(γi(τ

′)− z) · γ̇i(τ
′)/c0)

−μ∇z

(
1− ̂(γj(τ)− z) · γ̇j(τ)/c0

)]
=

ω0

c0

[
μ∇z

(
̂γj(τ)− z · γ̇j(τ)

)
−∇z

(
̂γi(τ

′)− z · γ̇i(τ
′)
)]

. (80)

Let us write

̂(γi(τ
′)− z) · γ̇i(τ

′) =
1

|γi(τ
′)− z|

[
(γ1

i (τ
′)− z1)γ̇

1
i (τ

′)

+(γ2
i (τ

′)− z2)γ̇
2
i (τ

′) + (γ3
i (τ

′)− ψ(z1, z2))γ̇
3
i (τ

′)
]

(81)

where γi = [γ1
i ,γ

2
i ,γ

3
i ]

T and γ̇i = [γ̇1
i , γ̇

2
i , γ̇

3
i ]

T . Calculating
the first-order partial derivative of (81) with respect to z1,
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we obtain

∂ ̂(γi(τ
′)− z) · γ̇i(τ

′)

∂z1

=
−1

|γi(τ
′)−z|2

[
−(γ1

i (τ
′)−z1)− ∂ψ

∂z1

(
γ3
i (τ

′)−ψ(z1, z2)
)

|γi(τ
′)−z|

× ((γi(τ
′)− z) · γ̇i(τ

′))

]

+
1

|γi(τ
′)− z|

[
−γ̇1

i (τ
′)− ∂ψ

∂z1
γ̇3
i (τ

′)

]
. (82)

Similarly, we obtain the partial differential of (81) with respect
to z2.

Let

Dψ(z) =

[
1 0 ∂ψ(z)/∂z1
0 1 ∂ψ(z)/∂z2

]
. (83)

Then, using (82), we have

∇z
̂(γi(τ

′)− z) · γ̇i(τ
′) =

−1

|γi(τ
′)− z|

×Dψ(z) ·

⎡⎢⎢⎢⎣γ̇i(τ
′)− ̂(γi(τ

′)− z)
(

̂(γi(τ
′)− z) · γ̇i(τ

′)
)

︸ ︷︷ ︸
γ̇i,⊥(τ ′)

⎤⎥⎥⎥⎦ .

(84)

Similarly, we obtain

∇z
̂(γj(τ)− z) · γ̇j(τ) =

−1

|γj(τ)− z|

×Dψ(z) ·

⎡⎢⎢⎢⎣γ̇j(τ)− ̂(γj(τ)− z)
(

̂(γj(τ)− z) · γ̇j(τ)
)

︸ ︷︷ ︸
γ̇j,⊥(τ)

⎤⎥⎥⎥⎦ .

(85)

Note that γ̇i,⊥(τ
′) and γ̇j,⊥(τ) are the projections of the re-

ceiver velocities γ̇i(τ
′) and γ̇j(τ) onto the planes perpendicular

to the directions ̂γi(τ
′)− z and ̂γj(τ)− z, respectively.

Substituting (84) and (85) into (80), we obtain

Ξij(τ
′, τ,z) =

ω0

c0
Dψ(z)

·
[

1

|γi(τ
′)− z| γ̇i,⊥(τ

′)− μ∣∣γj(τ)− z
∣∣ γ̇j,⊥(τ)

]
. (86)
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