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A Variational Stereo Method for the
Three-dimensional Reconstruction of Ocean Waves

Guillermo Gallego, Anthony Yezzi, Francesco Fedele and Alvise Benetazzo

Abstract—We develop a novel remote sensing technique for the
observation of waves on the ocean surface. Our method infers the
three-dimensional wave form and radiance of oceanic sea states
via a variational stereo imagery formulation. In this setting, the
shape and radiance of the wave surface are given by minimizers
of a composite energy functional that combines a photometric
matching term along with regularization terms involving the
smoothness of the unknowns. The desired ocean surface shape
and radiance are the solution of a system of coupled partial
differential equations derived from the optimality conditions of
the energy functional. The proposed method is naturally extended
to study the spatio-temporal dynamics of ocean waves and applied
to three sets of stereo video data. Statistical and spectral analysis
are carried out. Our results provide evidence that the observed
omni-directional wavenumber spectrum S(k) decays as k−2.5

in agreement with Zakharov’s theory (1999). Further, the 3-
D spectrum of the reconstructed wave surface is exploited to
estimate wave dispersion and currents.

Index Terms—Remote Sensing, marine technology, variational
methods, stereo vision, image processing.

I. INTRODUCTION

W IND-GENERATED waves play a prominent role at the
interfaces of the ocean with the atmosphere, land and

solid Earth. Waves also define in many ways the appearance
of the ocean seen by remote-sensing instruments. Classical
observational methods rely on time series retrieved from wave
gauges and ultrasonic instruments or buoys to measure the
space-time dynamics of ocean waves. Global altimeters, or
Synthetic Aperture Radar (SAR) instruments are exploited
for observations of large oceanic areas via satellites [24],
[17], but details on small scales are lost. To complement
the abovementioned instruments, this work develops a novel
video observational system that relies on variational stereo
techniques to reconstruct the 3-D wave surface both in space
and time. The front end of the system consists of two or more
camera views pointing at the ocean and providing space-time
data whose statistical content is richer than that of previous
monitoring methods. Vision systems are non-intrusive and
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have economical advantages over their predecessors, but they
require more processing power to infer information from the
ocean.

This work relates to a vast body of literature because it
covers both the topics of shape reconstruction and oceanic
sea states. The three-dimensional reconstruction of an object’s
surface from stereo pairs of images is a classical problem in
computer vision (see, for example [19], [13], [18], [26]), and
it is still an extremely active research area. There exist many
3-D reconstruction algorithms in the literature and the recon-
struction problem is far from being solved. The algorithms are
designed under different assumptions and provide a variety of
trade-offs between speed, accuracy and viability. Traditional
image-based stereo methods typically consist of two steps: first
image points are detected and matched across images by opti-
mizing a photometric score to establish local correspondences;
then depth is inferred by combining these correspondences
using triangulation of 3-D points (back-projection of image
points). The first step is significantly more difficult than the
second one, but epipolar geometry between image pairs can
be exploited to reduce stereo matching to a 1-D search along
epipolar lines, as shown in recent systems [2], [32]. This
approach is simple and fast, but it also has some major
disadvantages that motivated the research on improved stereo
reconstruction methods [7], [33], [16]. These disadvantages
are: 1) Correspondences rely on strong textures (high contrast
between intensities of neighboring points) and image matching
gives poor correspondences if the objects in the scene have
a smooth radiance. Correspondences also suffer from the
presence of noise and local minima. 2) each space point
is reconstructed independently and therefore the recovered
surface of an object is obtained as a collection of scattered 3-D
points. Thus, the hypothesis of the continuity of the surface
is not exploited in the reconstruction process. The breakdown
of traditional stereo methods in these situations is evidenced
by “holes” in the reconstructed surface, which correspond to
unmatched image regions [19], [2]. This phenomenon may be
dominant in the case of the ocean surface, which, by nature,
is generally continuous and contains little texture.

Modern object-based image processing and computer vision
methods that rely on Calculus of Variations and Partial Dif-
ferential Equations (PDE), such as Stereoscopic Segmentation
[33] and other variational stereo methods [7], [1], [16], are
able to overcome the disadvantages of traditional stereo.
For instance, unmatched regions are avoided by building
an explicit model of the smooth surface to be estimated
rather than representing it as a collection of scattered 3-D
points. Thus, variational methods provide dense and coherent
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Figure 1. Left: off-shore platform “Acqua Alta” in the Northern Adriatic Sea,
near Venice. Center: pair of synchronized cameras for monitoring the ocean
climate from the platform. Right: WASS hardware installed at the platform
for recording stereo videos of ocean waves.

surface reconstructions. Surface points are reconstructed by
exploiting the continuity (coherence) hypothesis in the full
two-dimensional domain of the surface. Variational stereo
methods combine correspondence establishment and shape
reconstruction into one single step and they are less sensitive
to matching problems of local correspondences. The recon-
structed surface is obtained by minimization of an energy
functional designed for the stereo problem. The solution is
obtained in the context of active surfaces by deforming an
initial surface via a gradient descent PDE derived from the
optimality conditions of the energy functional, the so-called
Euler-Lagrange (EL) equations.

In the context of oceanography, the first experiments with
stereo cameras mounted on a ship were by Schumacher [25]
in 1939. Later, Coté et al. [5] in 1960 demonstrated the use
of stereo-photography to measure the sea topography for long
ocean waves. Stereography gained popularity in studying the
dynamics of oceanographic phenomena during the 1980s due
to advances in hardware. Shemdin et al. [28], [27] applied
stereography for the directional measurement of short ocean
waves. A more recent integration of stereographic techniques
into the field of oceanography has been the WAVESCAN
project of Santel et al. [23]. Recently, Benetazzo [2] success-
fully incorporated epipolar techniques in the Wave Acquisition
Stereo System (WASS) and showed that the accuracy of
WASS is comparable to the accuracy obtained from ultrasonic
transducer measurements. Fig. 1 shows an example of a WASS
system currently installed at the Acqua Alta platform that
has been used to study space-time waves and spectra in the
Northern Adriatic Sea [8]. An alternative trinocular imaging
system (ATSIS) for measuring the temporal evolution of 3-D
surface waves was proposed in [32]. More recently, in [11]
it is shown how a modern variational stereo reconstruction
technique pioneered by Faugeras and Keriven [7] can be
applied to the estimation of oceanic sea states. References [20],
[31], [12], [15] show that this is an active research topic.

Encouraged by the results in [2], [11], [9], in this paper
we develop a novel variational framework for the recovery
of the shape and radiance of ocean waves given stereo images
acquired by calibrated cameras. In particular, motivated by the
characteristics of the target object in the scene, i.e., the ocean
surface, we first introduce the graph surface representation

in the formulation of the reconstruction problem. Then, we
present the new image processing algorithm in the context of
PDEs and active surfaces. We validate the performance of the
algorithm on experimental data and analyze the statistics of the
reconstructed surface. Concluding remarks and future research
directions are finally presented.

II. VARIATIONAL GEOMETRIC METHOD

This paper is inspired by the works of [2], [11] and [33].
In particular, the variational approach of Stereoscopic Segmen-
tation [33] is used to address the problem: the reconstructed
surface of the ocean is obtained as the minimizer of an energy
functional designed to fit the measurements of the ocean. In
every 3-D reconstruction method, the quality and accuracy of
the results depend on the calibration of the cameras. There
are standard camera calibration procedures in the literature to
characterize accurately the intrinsic and extrinsic parameters
of the cameras [19]. We assume cameras are calibrated and
synchronized, and we focus on the reconstruction of the water
surface for a fixed time.

A. Graph Surface Representation

We consider S to be a smooth surface in R3 with generic
local coordinates (u, v) ∈ R2. The geometry of the image
formation process, which states how points in 3-D are mapped
into points on the image plane, is described by the pinhole
camera model [13]. Let {Ii}Nc

i=1 be a set of images of a
static (water) scene acquired by cameras whose calibration
parameters are {Pi}Nc

i=1. Projective geometry in homogeneous
coordinates provides a convenient framework to express such
a projection mapping due to the linearity of the equations. A
surface point (or, in general a 3-D point) X = (X,Y, Z)>

with homogeneous coordinates X̄ = (X,Y, Z, 1)> is mapped
to point xi = (xi, yi)

> in the i-th image with homogeneous
coordinates x̄i = (xi, yi, 1)

> ∼ PiX̄, where the symbol ∼
means equality up to a nonzero scale factor and Pi = Ki[Ri | ti]
is the 3 × 4 projection matrix with the intrinsic (Ki) and
extrinsic (Ri, ti) calibration parameters of the i-th camera.
These parameters are known under the hypothesis of cali-
brated cameras. The optical center of the camera is the point
Ci = (C1

i , C
2
i , C

3
i )

> satisfying PiC̄i = 0. Let πi : R3 → R2

note the perspective projection maps, xi = πi(X), and
Ii(xi) ≡ Ii(πi(X)) be the image intensity at xi.

We present a different approach to the reconstruction prob-
lem discussed in [33], [7], by exploiting the hypothesis that
the surface of the water can be represented in the form of a
graph or elevation map:

Z = Z(X,Y ), (1)

where Z is the height of the surface with respect to a
domain plane that is parameterized by coordinates X and Y .
Indeed, slow varying, non-breaking waves admit this simple
representation with respect to a plane orthogonal to gravity
direction. As a natural extension of previous methods, energy
functionals can be tailored to exploit the benefits of this
valuable representation. The surface can still be obtained as
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the minimizer of a suitable energy functional but now with a
different geometrical representation of the solution.

The graph representation of the water surface presents some
clear advantages over the more general level set representation
in [11]. Surface evolution is simpler to implement since the
surface is not represented in terms of an auxiliary higher
dimensional function (the level set function). The surface is
evolved directly via the height function (1) discretized over
a fixed 2-D grid defined on the X-Y plane. The latter also
implies that for the same amount of physical memory, higher
spatial resolution (finer details) can be achieved in the graph
representation than with the level set. The X-Y plane becomes
the natural common domain to parameterize the geometrical
and photometric properties of surfaces. This simple identifica-
tion does not exist in the level set approach [33]. Finally, the
graph representation allows for fast numerical solvers besides
gradient descent, such as Fast Poisson Solvers, Cyclic Reduc-
tion, Multigrid Methods, Finite-Element Methods, etc. In the
level set framework, the range of solvers is not as diverse.

However, there are also some minor disadvantages. A world
frame properly oriented with the gravity direction must be
defined in advance to represent the surface as a graph with
respect to this plane. This is not trivial a priori and might
pose a problem if only the information from the stereo images
is used [2]. This condition may not be so if external gravity
sensors provide this information. It is also possible to choose
an initial estimate for the plane and then update it with some
feedback from the statistics of the reconstructed waves in time.
Surface evolution is constrained to be in the form of a graph
and this may not be the same as the evolution described by
an unconstrained surface. As a result, more iterations may be
required to reach convergence.

The reconstruction problem is mathematically stated in the
following section. The desired surface is given by the solution
of a variational optimization problem.

B. Proposed Vision-Based Energy Functional.

A generative model of the images consisting of the joint
estimation of the shape of the surface S and the radiance
function on the surface f has been investigated. Consider the
3-D reconstruction problem from a collection of Nc ≥ 2 input
images (most of the time we will exemplify with Nc = 2). Let
the energy functional be the weighted sum of a data fidelity
term Edata and two regularizing terms, namely, a geometry
smoothing term Egeom and a radiance smoothing term Erad,

E(S, f) = Edata(S, f) + αEgeom(S) + βErad(f), (2)

where α, β ∈ R+. The data fidelity term is designed to
measure the photo-consistency of the model: the discrepancy
(in the L2 sense) between the observed images Ii and the
radiance model f ,

Edata =

Nc∑
i=1

Ei, Ei =

ˆ
Ωi

φi dxi, (3)

where the photometric matching criterion is

φi =
1
2

(
Ii(xi)− f(xi)

)2
. (4)

The region of the image domain where the scene is projected is
denoted by Ωi. Assuming that the surface of the scene (water)
can be represented in the form of a graph Z = Z(u, v), a
point on the surface has coordinates

X(u, v) =
(
u, v, Z(u, v)

)>
. (5)

The chain of operations to obtain the intensity Ii(xi) given a
point u = (u, v)> in the parameter space of the surface is

u 7→ X(u) 7→ X̃i = MiX+ pi
4 7→ xi 7→ Ii(xi), (6)

where X(u) ≡ S(u) are the world coordinates of a surface
point, X̃i = (X̃i, Ỹi, Z̃i)

> are related to the coordinates of the
surface point X in the i-th camera frame, xi = (xi, yi)

> =
(X̃i/Z̃i, Ỹi/Z̃i)

> are the coordinates of the projection of X
in the i-th image plane and Pi = [Mi |pi

4], with Mi = KiRi and
pi
4 = Kiti. Also, |Mi| = det(Mi).
The radiance model f is specified by a function f̂ defined

on the surface S. Moreover, we consider its extension to
the whole embedding space f̂ : R3 → R. There are many
possible ways to define this extension; we will consider one
that simplifies the equations of the model. Then, f in (4)
is naturally defined by f(xi) = f̂(π−1

i (xi)), where π−1
i

denotes the back-projection operation from a point in the i-th
image to the closest surface point with respect to the camera.
With a slight abuse of notation, let us use f to denote the
parameterized radiance f(u), understanding that f(xi) in (4)
reads the back-projected value in f̂(X(u)) = f(u).

Motivated by the common parameterizing domain of the
shape Z and radiance f of the surface and to obtain the sim-
plest diffusive terms in the PDEs derived from the necessary
optimality conditions of the energy (2), let the regularizers be

Egeom =

ˆ
U

1
2‖∇Z(u)‖

2 du, (7)

Erad =

ˆ
U

1
2‖∇f(u)‖

2 du, (8)

where ∇Z = (Zu, Zv)
> and ∇f = (fu, fv)

> and subscripts
stand for derivatives with respect to the cited variable(s).

Now that all terms in (2) have been specified, some trans-
formations are carried out to express the integrals over a
more suitable domain. Integrals in (7) and (8) are already in
a convenient domain, the parameter space. The data fidelity
term (3) can be expressed as an integral over the parameter
space by means of a change of variables. Let the Jacobian of
the change of variables be (see appendix A-A)

Ji =

∣∣∣∣dxi

du

∣∣∣∣ = −|Mi|Z̃−3
i (X−Ci) · (Xu ×Xv). (9)

Then, the data fidelity energy (3) becomes

Ei =

ˆ
Ωi

φi dxi =

ˆ
U

φiJi du, (10)

where the last integral is over U : the part of the parameter
space whose surface projects on Ωi in the i-th image.

Furthermore, the data fidelity term can be expressed as a
surface integral, according to the relationship between area
measures (38) (see appendix A-B), with

Ei = −
ˆ
S

φi(X, f)|Mi|Z̃−3
i (X−Ci) ·N dA. (11)
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A visibility term (in the form of a characteristic function) that
indicates what part of S should be integrated according to
what part of S is visible from the i-th camera must also be
included in the integrand of (11), but it has been omitted for
the sake of clarity.

After collecting terms (7), (8), and (10), energy (2) is

E(X, f) =

ˆ
U

L(X,Xu,Xv, f, fu, fv, u, v) du, (12)

and the integrand, the so-called Lagrangian, is

L = Ldata + αLgeom + βLrad, (13)

with Ldata, Li, Lgeom and Lrad being the Lagrangians for Edata,
Ei, Egeom and Erad, respectively.

C. Energy Minimization. Optimality Condition.
Energy (12) depends on two functions: the shape X and

the radiance f of the surface. To find a minimizer of such a
functional, we derive the necessary optimality condition by
setting to zero the first variation of the functional. Before
that, let us enforce the constraint on the representation of the
surface as a graph (5). Fixing the parameterization u, energy
functional (12) becomes a function of the height Z(u):

E(Z, f) =

ˆ
U

L(Z,Zu, Zv, f, fu, fv, u, v) du. (14)

The first variation (Gâteaux derivative) of (14) is

δE

δ(Z, f)
(h, g) =

dE
(
(Z, f) + ε(h, g)

)
dε

∣∣∣∣∣
ε=0

, (15)

where h and g are arbitrary perturbations for Z and f ,
respectively. Using the chain rule and integration by parts
in (15), it follows that the first variation (16) has two terms:
one in the interior of the integration region U in the parameter
space and one boundary term (on ∂U ), where ν = (νu, νv)>

represents the outward unit normal to U :
δE

δ(Z, f)
(h, g) =

δE

δZ
(h) +

δE

δf
(g), (16)

where δE
δq (w) isˆ

U

(
Lq −(Lqu)u −(Lqv )v

)
wdu+

ˆ
∂U

(
Lquν

u +Lqvν
v
)
wdσ.

Setting the first variation to zero for all possible perturba-
tions (h, g) yields a coupled system of PDEs (EL equations)
along with natural boundary conditions:

LZ − (LZu)u − (LZv )v = 0 in U, (17)
LZuν

u + LZvν
v = 0 on ∂U, (18)

Lf − (Lfu)u − (Lfv )v = 0 in U, (19)
Lfuν

u + Lfvν
v = 0 on ∂U. (20)

After some calculations (see appendix B) equations (17), (18),
(19), and (20) become

g(Z, f)− α∆Z = 0 in U, (21)

b(Z, f) + α
∂Z

∂ν
= 0 on ∂U, (22)

−
∑Nc

i=1(Ii − f)Ji(Z)− β∆f = 0 in U, (23)

β
∂f

∂ν
= 0 on ∂U, (24)

where the non-linear terms due to the data fidelity energy are

g(Z, f) = ∇f ·
∑Nc

i=1|M
i|Z̃−3

i (Ii − f)(u− C1
i , v − C2

i ), (25)

b(Z, f) =
∑Nc

i=1φi|M
i|Z̃−3

i

(
(u− C1

i )ν
u + (v − C2

i )ν
v
)
,

the Laplacians ∆Z and ∆f arise from the regularizing
terms (7) and (8), respectively, and ∂∗/∂ν is the usual notation
for the directional derivative along ν, which is the unit normal
to the integration domain U in the parameter space.

The computations are involved, but a simple classification
of the PDEs can be done as follows. For a fixed surface, (23)
and (24) form a linear elliptic PDE (of the inhomogeneous
Helmholtz type) with Neumann boundary conditions. On the
other hand, for a fixed radiance, (21) and (22) lead to a
nonlinear elliptic equation in the height Z with nonstandard
boundary conditions. Observe that if there was no regularizing
term on the radiance (β = 0), equation (23) would be linear
in f , and the solution would be a weighted average of the
intensities at the image projections of the surface (42).

A common approach to solve difficult EL equations, such
as those presented in (21)-(24), is to add an artificial time
marching variable t dependency in the unknown functions
(height, radiance) and set up a gradient descent flow that will
drive their evolution such that the energy (14) will decrease in
time. Thus the solution of the elliptic PDEs (EL equations) is
obtained as the steady-state of the gradient descent equations.
This is the context of the so-called active surfaces. The
gradient descent equations are:

Zt = α∆Z − g(Z, f), (26)

ft = β∆f −
∑Nc

i=1Ji(Z) f +
∑Nc

i=1IiJi(Z). (27)

To simplify the equations, we approximate the boundary
condition (22) by a simpler, homogeneous Neumann boundary
condition. This can be interpreted as if the data fidelity
term vanished close to the boundary and it is a reasonable
assumption since the major contribution to the energy is given
by the terms in the interior of the discretized domain, not at
the boundary.

D. Numerical Solution.

An iterative, alternating approach is used to find the mini-
mum of energy (2) via the evolution of the coupled gradient
descent PDEs (26) and (27). During each iteration there are
two phases: (1) evolve the shape, keeping the radiance fixed
and (2) evolve the radiance, leaving the shape unchanged.
The PDEs (26) and (27) are solved numerically after being
discretized on a rectangular 2-D grid in the parameter space,
with equidistant step size h = ∆u = ∆v in both dimensions,
i.e., along directions u and v of the integration region U .
Forward differences in time and central differences in space
approximate the derivatives, yielding an explicit updating
scheme. The time step ∆t is determined by the stability
condition of the resulting PDE. In the case of the linear PDE
in the radiance, (27), the time step for `2 stability satisfies

∆t ≤
(4β
h2

+
1

2
max

Nc∑
k=1

Jk
)−1

, (28)
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where Jk(Z) ≥ 0 and the maximum is taken over the 2-D
discretized Jacobians for the current height function. Thus,
the time step may change at every iteration, depending on
the value of the evolving height. On the other hand, since
equation (21) is a nonlinear PDE, the stability analysis is more
complicated than in the linear case above. Nevertheless, we use
the stability condition derived from the linearized PDE. The
time step for `2 stability of (26) satisfies

∆t ≤
(4α
h2

+
1

2
max |ġ(Z)|

)−1
, (29)

where ġ(Z) is the derivative of (25) and the maximum is taken
over the 2-D discretized grid at the current time. The maximum
time step (29) may change at every iteration, as in the case of
(28). In the experiments, the time steps used are a conservative
proportion of the maximum allowable time steps: 0.8max∆t.

The previous time-stepping methods are used as relaxation
procedures inside a multigrid method [4] that approximately
solves the EL equations. Multigrid methods are the most
efficient numerical tools for solving elliptic boundary value
problems.

So far, the regularizing terms (7) and (8) have no physical
meaning according to the dynamics of the water waves. They
are the simplest smoothness penalties to support the conjecture
that the problem is well posed and a solution exists, without
providing a rigorous proof. Since the regularizer on the shape
of the surface (7) acts on a geometric object, a more sensible
geometric choice that does not significantly complicate the
model is to penalize the total area of the reconstructed surface:

Egeom =

ˆ
S

dA =

ˆ
U

√
1 + Z2

u + Z2
v du. (30)

Surfaces that minimize the above energy are called minimal
surfaces and they have the property of zero mean curvature.
If (30) is used in (2), the diffusive term in the PDE (21), i.e.,
the Laplacian ∆Z = Zuu + Zvv , is replaced by the mean
curvature:

2H =
(1 + Z2

v )Zuu − 2ZuZvZuv + (1 + Z2
u)Zvv

(1 + Z2
u + Z2

v )
3/2

.

Calculations show that the new regularizer does not alter
the homogeneous Neumann boundary condition. Assuming the
explicit updating scheme is used to relax the modified non-
linear PDE in the height, an `2 stability condition for the time
step can be derived using Fourier analysis under reasonable
approximations. The maximum time step has the same form
as (29), but with 4α/h2 replaced by 5α/h2.

III. EXPERIMENTS

A. Experiment 1 – Images of "Canale della Giudecca"
in Venice (Italy).

After validating the numerical implementation of the pro-
posed variational stereo method with synthetic data, some
experiments with real data are carried out. Figs. 2, 3 and 4
show an example of a reconstructed water surface from images
of the Venice Canal. Cropped images in Fig. 2 are of
size 600 × 450 pixels and show the region of interest to
be reconstructed. Fig. 2 also displays the modeled images

Figure 2. Experiment I (Venice). Left: projection on image 1 of the boundary
of the estimated graph, which has been discretized by a grid of 129 × 513
points. Center: modeled image (computed from surface height and radiance)
superimposed on original image 1. Right: modeled image 2 superimposed on
original image 2.
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Figure 3. Experiment I (Venice). From left to right: estimated height function
Z(u, v) (shape of the water surface) in pseudo-color; height represented by
gray scale intensities, from dark (low) to white (high), and estimated radiance
function f(u, v) (texture on the surface).

Figure 4. Experiment I (Venice). Left: perspective, 3-D wire-frame represen-
tation of the estimated surface shape (height) according to grid points. Right:
texture-mapped surface obtained by incorporating the radiance function in the
wire-frame model. The vertical axis has been magnified by a factor of 5 with
respect to the horizontal axes for visualization purpose.

created by the generative model within our variational method.
The data fidelity term compares the intensities of the original
and modeled images in the highlighted region, in all images.
As observed, the modeled images are a good match of the
original images. Figs. 3 and 4 show the converged values of the
unknowns of the problem: the height and the radiance of the
surface, as well as the 3-D representation of the reconstructed
surface obtained by combining both 2-D functions. The values
of the weights of the regularizers were empirically determined:
α = 0.035 and β = 0.01. At the finest of the 5-level multigrid
[4] algorithm, the gradient descent PDEs are discretized on a
2-D grid with 129×513 points. The distance between adjacent
grid points is h = 5 cm. Therefore, the grid covers an area of
6.45 × 25.65m2. An example of a surface discretized at the
finest grid level is shown in Fig. 4. Observe the high density of
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the surface representation, typical of variational methods. The
step size h must be chosen so that it approximately matches
the resolution in the images: a displacement of 1 pixel is
observable at the finest grid level in the multigrid framework
and it corresponds to a physical displacement of at least h.
Due to perspective projection, the maximum value of h is
determined by the grid points closest to the cameras.

B. Experiment 2 – Image sequence I

The method proposed in this paper is naturally extended
to process stereo video on a snapshot-by-snapshot basis by
estimating the new surface shape and radiance based on the
previously reconstructed surface. This sequential processing
is the simplest way in which the method can be applied to
stereo video imagery. We test the method on a different video
data consisting of 10 consecutive snapshots (i.e., frames) with
images of size 1000× 1000 pixels. A grid of size 513× 513
points and with a step size h = 1.5 cm is selected. Thus, the
grid covers an area of 7.7 × 7.7m2. The deforming surface
is initialized by the plane Z = 0. A multigrid method with
6 levels and 200 V-cycles (with 1 pre- and post-relaxation
sweeps per level) is used to solve the problem at each snapshot.
For the first frame, a full multigrid method (FMG) with 200
V-cycles per level is performed prior to entering the above
processing schedule. In this experiment, the weights of the
regularizers are α = 4 · 10−2 and β = 4 · 10−3. Another
reconstruction of the wave surface from video data collected
by Benetazzo [2] is shown in Fig. 5. In the same figure we
also report the the omni-directional spectrum S(k) (averaged
over the frames), computed by numerically integrating the 2-D
spectrum S(kx, ky) of the elevation map over all directions,
where the wavenumber is k = |k| =

√
k2x + k2y . In agreement

with Zakharov’s theory [34], the spectrum tail decays as k−2.5.
The results of the mean curvature diffusive term from (30) are
a minor modification of the ones obtained with the Laplacian
term.
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Figure 5. Experiment II (San Diego). Left: Surface reconstruction from a
snapshot of the data in [2]. Right: Average omni-directional wave number
spectrum. Straight lines: k−2.5 (solid), k−3 (dashed).

C. Experiment 3 – Image sequence II

We apply our variational method to a sequence of 2000
snapshots acquired at 10 Hz and at an off-shore platform
near the southern seashore of the Crimean peninsula, in the
Black Sea. Two cameras mounted 12 m above the mean sea
level and with a baseline of 2.5 m acquire images of size
1624× 1236 pixels. Fig. 6 (left) shows a sample image from

Figure 6. Experiment III (Crimea): Original image (left) and modeled image
superimposed on original image (right).

one of the cameras. A grid with 513×513 points and resolution
h = 2.5 cm, covering an area of 13 × 13m2, is used to
discretize the graph of the surface. Fig. 6 (right) shows the
approximate region of interest occupied by the projection of
the reconstructed surface on one of the images. Roughly, 1
image pixel corresponds to a physical displacement of 1.06 cm
(1.88 cm) for grid points near (resp. far from) the cameras.
Both displacements are of the same order as h. The same
multigrid processing scheme as in experiment 2 is used, but
with 1000 V-cycles per level. The weights of the regularizers
are α = 0.1 and β = 0.025.

The four-dimensional reconstructed wave surface can be
represented in the form of a space-time volume of wave
heights, V = Z(x, y, t), as visualized in Fig. 7, where the
oscillating pattern of the waves is evident by the oscillating
color patterns. The spectra and statistics of the waves can be
computed from the reconstructed surface.

The mean omni-directional spectrum S(k), averaged over
all 2000 snapshots, is shown in Fig. 8. According to the
wave turbulence theory of Zakharov [34], the spectrum tail
initially decays as k−2.5 as a result of an energy cascade
from large to small scales up to ∼ 10 rad/m and then
switch to a k−3 equilibrium range [22]. Fig. 8 clearly shows
such behavior of the tail of the spectrum. More generally,
Fourier analysis can be applied directly to the wave space-time
volume Z(x, y, t), resulting in a 3-D spectrum Z(kx, ky, ω),
where frequencies kx, ky and ω are the Fourier transformed
variables of x, y and t, respectively. Recall that ω = 2πf is
the angular frequency and f ≡ ft is the linear frequency,
measured in Hertzs. Similarly, let us use fx = kx/(2π) and
fy = ky/(2π) for the wavenumbers in units of cycles/m.
The 3-D spectrum contains information of the propagation
characteristics of the waves, such as their wavelengths, fre-
quencies, and their directions and speeds of propagation.
From a practical point of view, the 3-D spectrum of the
reconstructed 513× 513× 2000 wave height grid is computed
by averaging the 3-D spectra of non-overlapping pieces of the
grid. We split the wave space-time volume along the temporal
dimension to compute the 3-D spectrum on a Fourier grid with
512×512×512 points; thus, each piece consists of Nt = 512
snapshots. The Nyquist wavenumbers are [fx, fy, f ]max =
[h−1, h−1,∆t−1] = [20 cycles/m, 20 cycles/m, 5Hz]. The
spectral resolutions are given by ∆fx = ∆fy = 1/(Nh) ≈
0.078 cycles/m and ∆f = 1/(N∆t) ≈ 0.02Hz for the
3-D fast Fourier transform (FFT) with N = 512 points in
each dimension. Fig. 9 shows the 3-D wave spectrum, and



7

Figure 7. Experiment III (Crimea). Vertical (left) and Horizontal (right)
slicing of the wave space-time volume Z(x, y, t): reconstructions for fixed
x-t or y-t planes. The wave heights Z have been pseudo-colored from blue
(low) to red (high).

Fig. 10 shows two of its slices through the frequency axes: the
frequency-wave number spectra ω-kx and ω-ky , respectively.
The white curve in the vertical slices of Z(kx, ky, ω) corre-

sponds to planar projections of the linear dispersion manifold
in deep water, namely

√
k2x + k2y = ω2/g, where g is gravity

acceleration. Other researchers [6] have measured the ω-k
spectrum for long wave ranges at nearshore events to estimate
surface currents and the water depth below the waves. Their
measurements are also shown in comparison to the linear
dispersion relation. At the Crimean platform, the water depth is
approximately 30 meters. Therefore, for all practical purposes
with respect to our wavenumber resolution, the depth can be
regarded as being infinite. The components of the current v
can be estimated from the observed deviations from the theo-
retical dispersion curve, as shown in Fig. 10, by a best fit of the
wave-current dispersion relation k = (ω − k · v)2/g, where
k = |k| (see [29], [14]). This yields v ≈ (−0.17,−0.45)
m/s, with the dominant component in the y direction. This
propagation direction agrees with the one observed by visual
inspection of the stereo video data. Fig. 10 shows strong
physical evidence to support the hypothesis that the variational
graph method presented in this work is capturing real waves
propagating in the observed direction.

10
−1

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

k [rad/m]

S
(k

) 
[m

3 /r
ad

]

k−2.5

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

k [rad/m]

S
(k

)*
kr

 

 

r=2

r=2.5

r=3

Figure 8. Experiment III (Crimea). Left: Mean omni-directional spectrum
S(k) averaged over 2000 snapshots. Right: mean saturation spectrum S(k)kr

for r = {2, 2.5, 3}.

Figure 9. Experiment III (Crimea). Two orthogonal slices of the wave 3-D
spectrum Z(kx, ky , ω) through the frequency origin. Slices correspond to the
values of Z(kx, ky , ω) at planes kx = 0 and ky = 0. Axes fx, fy and ft
stand for kx/(2π), ky/(2π) and ω/(2π), respectively.

Time series at virtual probes. Statistical analysis. The rich
content of the space-time reconstruction of the surface wave
allows for the extraction of time series of wave displacements
Zi(t) = Z(xi, yi, t) from the space-time volume V at virtual
probes (xi, yi) in space, as illustrated in Fig. 11. Several
statistical and spectral parameters that characterize the sea
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half of both plots: (white curve) vertical slice of the linear wave dispersion
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of the wave-current dispersion manifold |k| = (ω − k · v)2/g, with v ≈
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Figure 11. Experiment III (Crimea). Left: Location of the virtual probes.
Right: Illustration of extracted time series at probe points within the space-
time volume Z(x, y, t).

states can be computed from such time series. The significant
wave height and mean wave period are Hs = 0.3 m and
Tm = 2.77 s, respectively. Fig. 12 shows the observed Power
Spectral Density estimated from time series extracted from
the wave space-time volume. An FFT with 2048 points was
used, i.e., the spectral resolution is ∆f = 5 · 10−3 Hz. If the
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Figure 12. Experiment III (Crimea). Normalized frequency spectrum (σ2

is the variance of the wave surface) averaged over all virtual probes (blue
line) and estimated counterpart using classical epipolar method (black line).
Note that the Nyquist frequency (half of the sampling frequency) is 5 Hz,
according to the snapshot (e.g. frame) rate.

tail of the wave number spectrum decays as F̃ (k) ∝ k−2.5,
the tail of the frequency spectrum decays as F (f) ∝ f−4.
This behavior is observed in Fig. 12, which also shows a
verification of our variational method against an earlier WASS
measurement technique based on epipolar geometry [2]. The
peak at 2 Hz observed in the black curve is due to vibrations
induced by fishermen walking on the Crimea platform while
WASS was recording. The epipolar reconstruction [2] is purely
based on the imaged data with no regularizing term as in
the variational approach. The variational method unveiled the
small-scale range of the spectrum improving the estimate at
large wave numbers and frequencies. By collecting the time
waves observed at all the virtual probes indicated in Fig. 11,
one can estimate the wave height distribution, which is shown
in Fig. 13. A fair agreement with the Boccotti asymptotic form
given by [3], [10]

P (wave height > H) ≈ c exp

(
− H2

4σ2(1 + ψ∗)

)
, (31)

is observed. Here, the parameters c and ψ∗ ≡ |ψ(T ∗)| both
depend upon the first minimum of the wave covariance ψ(T ).
In particular the mean values of c and ψ∗ over the time series
ensemble are c ≈ 1 and ψ∗ ≈ 0.52.

IV. CONCLUSION

Building upon the multiple benefits of variational stereo
methods over earlier traditional stereo methods, we develop
a variational stereo method for the case of smooth surfaces
representable in the form of a graph supporting a smooth
radiance function. We successfully apply this method to re-
construct small regions of the ocean surface in several datasets
(including video data) and begin to tailor the method for
this particular problem, where the initially chosen regularizing
terms (7) and (8) have no physical meaning according to the
dynamics of the ocean waves. However, other regularizers such
as (30) can be used in the variational framework to account
for more physical properties of the waves. In future research
we plan to elaborate on better choices for the regularizers as
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Figure 13. Experiment III (Crimea). Wave height exceedance probability
estimated from all time series at virtual probes, compared to Rayleigh’s
distribution and Boccotti’s distribution (31) (σ is the standard deviation of
the wave surface).

well as new ones that include global and/or local properties
of the dynamics of ocean waves such as statistical distribution
of wave heights, the wave equation, etc.

Departing from the simple snapshot-by-snapshot sequen-
tial temporal processing used in some of the experiments,
the variational framework allows for better ways to enforce
coherence in space-time of the reconstructed surface. This
topic is now under investigation. Preliminary research shows
that Variational Wave Acquisition Stereo System (VWASS) is
a promising remote-sensing observational technology with a
broader impact on ocean engineering since it will enrich the
understanding of the oceanic sea states and wave statistics, en-
abling improved designs of off-shore structures and platforms.

APPENDIX A
RECASTING THE INTEGRAL FROM THE IMAGE DOMAIN TO

THE PARAMETER SPACE

A. Jacobian of the change of variables

Let us derive an expression for the Jacobian of the change
of integration variables from the image domain to the surface:
Ji =

∣∣dxi

du

∣∣ . Applying the chain rule to (6), we have

dxi

du
=

dxi

dX̃i

dX̃i

dX

dX

du
=

1

Z̃2
i

(
Z̃i 0 −X̃i

0 Z̃i −Ỹi

)
Mi (Xu,Xv).

(32)
Using the fact that a point with homogeneous coordinates
C̄i = (C>

i , 1)
> is the optical center of the i-th camera if

it satisfies PiC̄i = 0, i.e.,

MiCi + pi
4 = 0 ⇔ Ci = −(Mi)−1pi

4, (33)

the determinant of (32) becomes

det

(
dxi

du

)
= |Mi|Z̃−3

i (X−Ci) · (Xu ×Xv), (34)

where Mi = (ni
1,n

i
2,n

i
3)

> is the left 3 × 3 sub-matrix of the
projection matrix Pi = (pikl), and Z̃i = ni

3 ·X+ pi34 can also

be expressed as

Z̃i = ni
3 · (X−Ci). (35)

Here, Z̃i > 0 is the depth of the point X with respect to the
i-th camera (located at Ci), as is customary, in the direction
of the normal ni

3 to the principal plane of the camera. We use
the standard notation [13] that states that the depth is positive
for points in front of the camera. Finally, since the Jacobian
is positive, it is the absolute value of (34).

Visibility of a surface point with respect to the camera
can be included in the Jacobian. Recall that Xu × Xv is
proportional to the outward unit normal to the surface at
X(u, v):

N =
Xu ×Xv

‖Xu ×Xv‖
, (36)

Observe that (X−Ci) ·N < 0 for neighborhoods of surface
points (i.e., patches) pointing toward the camera and (X −
Ci) ·N > 0 for patches pointing away from the camera. The
latter are occluded by the former from the viewpoint of the
camera. Therefore,

Ji = |Mi|Z̃−3
i max

(
−(X−Ci) · (Xu ×Xv), 0

)
. (37)

Beware that, for a given surface point X, the condition
of positive Jacobian is not sufficient for that point to be
visible from the camera viewpoint since the surface may be
self-occluded. Therefore, a positive Jacobian is a necessary
visibility condition, but not a sufficient condition.

B. Area measures in the image and on the surface
With the expression of the Jacobian of the change of

variables at hand (37), it is straightforward to derive a formula
for the relationship between area elements in the image plane
and on the surface: dxi = Ji du. Since the surface area
element is dA = ‖Xu × Xv‖dudv and the outward unit
normal to the surface at X(u, v) is (36), the relationship
between area elements can be rewritten as

dxi = |Mi|Z̃−3
i max

(
−(X−Ci) ·N, 0

)
dA. (38)

The term (X−Ci)·N is proportional to the cosine of the angle
between the unit normal to the surface at X and the projection
ray (the ray joining the optical center of the camera and X).
One may observe the extreme cases: (i) If (X−Ci) ⊥ N, the
surface patch at X projects to a line in the image plane, hence
dxi = 0 (zero area) and that patch makes no contribution to
the energy Ei. (ii) On the other hand, if the projection ray is
parallel to the normal of the surface patch at that point, i.e.,
(X − Ci) ‖ N, the surface patch projects onto a maximum
area region dxi. This qualitative behavior of the model agrees
with our physical intuition.

To simplify calculations related to the evolution of the
surface height and radiance according to the data fidelity term
we will use the former expression for the Jacobian that does
not take into account the necessary visibility condition, i.e.,

Ji = −|Mi|Z̃−3
i (X−Ci) · (Xu ×Xv), (39)

but we will bear in mind that if the surface point under
consideration is not visible, it will not be allowed to evolve
according to the data fidelity component.
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APPENDIX B
EULER-LAGRANGE EQUATIONS

Here it is shown how to calculate the necessary optimality
conditions to minimize the proposed energy functional (2). The
variation of the energy with respect to the surface radiance
will be presented first because it is easier to compute than the
variation with respect to the shape.

A. Variation with respect to the surface radiance

Let us derive the PDE related to the first variation of
the energy with respect to the radiance (19). Since Egeom
does not depend on the radiance f , it has no effect on
the aforementioned first variation. Straightforward calculations
show that for the regularizer (8),

(Lrad)f −
(
(Lrad)fu

)
u
−
(
(Lrad)fv

)
v
= −fuu − fvv, (40)

which is the Laplacian in (23). Focusing now on the data
fidelity term, Li does not depend on fu, fv . Therefore

(Li)f −
(
(Li)fu

)
u
−
(
(Li)fv

)
v
= −(Ii − f)Ji. (41)

It is straightforward to derive (23) by substituting (40), (41),
and (13) in (19) and applying linearity. Observe that if β = 0
in (23), the optimal f is the weighted average

f =
∑Nc

i=1wiIi, wi =
Ji∑Nc

j=1 Jj
, (42)

where the weights wi may not yield a convex combination
because the non-negative Jacobians might all vanish for an
occluded surface point.

a) Boundary condition for the PDE in the radiance of the
surface: Neumann boundary conditions naturally arise from
(20). The regularizer (8) yields the directional derivative of f
along ν, the unit normal to ∂U :

(Lrad)fuν
u + (Lrad)fvν

v = fuν
u + fvν

v =
∂f

∂ν
. (43)

Because Li and Lgeom do not depend on the gradient of f , the
left hand side of (20) is β ∂f

∂ν . If β 6= 0, it follows that (20) is
equivalent to the boundary condition ∂f

∂ν = 0 on ∂U .

B. 3-D extensions of the radiance and the images

To simplify the calculations involved in the EL equations,
let us define extensions of the radiance and image intensities to
the whole 3-D space, namely, f̂ : R3 → R and Îi : R3 → R,
respectively. It is natural to define the latter as being constant
along optical rays (projection rays) from the camera,

Îi|S ≡ Îi(X)
.
= Ii

(
πi(X)

)
. (44)

The extension of the radiance f̂ has been introduced in section
II-A. Let us define the extension to be constant along the
third dimension, i.e., the Z axis. In the considered world
frame (where the parameter space of the surface is the plane
Z = 0), this equation implies that f̂(X,Y, Z) .

= f(X,Y ).
The photometric matching criterion (4) can also be extended
to the whole space, φ̂i : R3 → R, by the definition:
φ̂i(X)

.
= 1

2

(
Îi(X)− f̂(X)

)2. It is clear that for surface points
the restriction of the extension satisfies φ̂i|S ≡ φi.

C. Variation with respect to the shape of the surface

Now, let us compute each term in the left hand side of (17).
Since Lrad does not depend on Z, it has no effect on (17).
On the other hand, straightforward calculations show that the
chosen regularizer (7) yields the Laplacian, ∆Z, as in (40). Let
us focus now on the data fidelity term. The extensions defined
in appendix B-B make it possible to rewrite the Lagrangian Li

in (13) as a function of X, Li = φ̂i(X, f̂)Ji(X,Xu,Xv). The
chain rule can be used to compute the left hand side of (17)
for Li because the derivatives in Z are projections of the ones
in X:

LZ−(LZu)u−(LZv )v =
(
LX−(LXu)u−(LXv )v

)
·e3, (45)

where e3 = (0, 0, 1)> is the direction of variation of the
height. Now, it remains to calculate (Li)X,

(
(Li)Xu

)
u

and(
(Li)Xv

)
v
. As is customary, let ∇ denote the spatial deriva-

tive, then image derivatives will arise in the calculations:

∇Î>i = ∇I>i
∂πi
∂X

, (46)

with ∂πi/∂X as in (32). As a space point X moves along
the optical ray from a camera, the corresponding image point
xi = πi(X) remains unchanged. This implies that

∂πi
∂X

(X−Ci) = 0. (47)

The proof is based on (33) and the formula for ∂πi/∂X.
Combining (46) and (47) one can show that, since the intensity
of the extension Îi is constant along the projection ray, ∇Îi
lies in the plane orthogonal to such projection ray:

∇Îi · (X−Ci) = 0. (48)

This result will lead to a simplification of the term (Li)X
that will have an important consequence: no derivatives of the
image data appear in the final EL equations. This desirable
feature makes the algorithm less sensitive to image noise when
compared to other variational approaches for stereo 3-D re-
construction. This feature is shared by the standard Mumford-
Shah [21] formulation for direct image segmentation. In our
case, it arises from the fact that the stereo discrepancy is
measured in the image domain rather than on the surface [30].
Observe that it is a purely geometric result, thus independent
of the choice of φi.

If the surface is sufficiently smooth such that Xuv = Xvu

(twice continuously differentiable), one can show that

(Li)X −
(
(Li)Xu

)
u
−

(
(Li)Xv

)
v

= (φ̂i)XJi − (φ̂i)u(Ji)Xu − (φ̂i)v(Ji)Xv

+ φ̂i

(
(Ji)X −

(
(Ji)Xu

)
u
−
(
(Ji)Xv

)
v

)
,

= −|Mi|Z̃−3
i

(
(Îi − f̂)W(∇Îi −∇f̂)

+ 3φ̂i
(
(Xu ×Xv)− Z̃−1

i W(ni
3)
))
,

(49)

where we define the vector

W(b) = (X−Ci) · (Xu ×Xv)b

− (b ·Xu)
(
Xv × (X−Ci)

)
− (b ·Xv)

(
(X−Ci)×Xu

)
.
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Next, we show that this vector is proportional to the unit
normal N and the value of b only affects its magnitude. Let
A = (X−Ci,Xu,Xv), then from I = A−>A> we derive the
matrix relationship

det(A)I−
(
Xv × (X−Ci)

)
X>

u −
(
(X−Ci)×Xu

)
X>

v

= (Xu ×Xv)(X−Ci)
>,

which can be used to obtain

W(b) = (Xu ×Xv)(X−Ci)
>b. (50)

Substituting (50) in (49) and using (35), (45), and (48), yields
important simplifications: the term multiplying φ̂i vanishes and
no image derivatives appear in the final expression. Therefore,
the left hand side of (17) for Li becomes

(Li)Z−
(
(Li)Zu

)
u
−
(
(Li)Zv

)
v
= |Mi|Z̃−3

i (Îi−f̂)(X−Ci)·∇f̂ ,

after substituting Xu×Xv = (−Zu,−Zv, 1)
> in (Xu×Xv) ·

e3 = 1. The freedom in the definition of f̂ allows for further
simplifications: ∇f̂ = (∇f>, 0)> implies that

(Li)Z −
(
(Li)Zu

)
u
−
(
(Li)Zv

)
v

= |Mi|Z̃−3
i (Ii − f)(u− C1

i , v − C2
i ) · ∇f,

where Ci = (C1
i , C

2
i , C

3
i )

>. The terms affected by Z
are the image intensity at the current surface point, Ii ≡
Ii(xi(X(u, v, Z(u, v)))), and the depth of the surface point
with respect to the camera, Z̃i = ni

3 ·X(u, v, Z(u, v)) + pi34.
Collecting terms for multiple images and regularizers, the EL
equation (17) of the composite energy becomes (21). Observe
that (21) does not depend on the image derivatives (∇Ii), as
previously announced.

b) Boundary condition for the PDE in the height of
the surface: The PDE (17) comes with natural boundary
condition (18) because the surface is not closed. The geometric
regularizer (7) yields the directional derivative of Z along ν, as
in (43). The boundary condition arising from the data fidelity
term is b(Z, f) by the chain rule and previous results:

(Li)Zuν
u + (Li)Zvν

v

=
(
νu(Li)Xu + νv(Li)Xv

)
· e3

= φ̂i|Mi|Z̃−3
i

(
νu

(
(X−Ci)×Xv

)
+ νv

(
Xu × (X−Ci)

))
· e3.

Collecting expressions from all terms in (13) yields (22).
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