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Hyperspectral Image Classification With Independent
Component Discriminant Analysis
Alberto Villa, Student Member, IEEE, Jón Atli Benediktsson, Fellow, IEEE,

Jocelyn Chanussot, Senior Member, IEEE, and Christian Jutten, Fellow, IEEE

Abstract—In this paper, the use of Independent Component (IC)
Discriminant Analysis (ICDA) for remote sensing classification
is proposed. ICDA is a nonparametric method for discriminant
analysis based on the application of a Bayesian classification rule
on a signal composed by ICs. The method uses IC Analysis (ICA)
to choose a transform matrix so that the transformed components
are as independent as possible. When the data are projected in
an independent space, the estimates of their multivariate density
function can be computed in a much easier way as the product
of univariate densities. A nonparametric kernel density estimator
is used to compute the density functions of each IC. Finally,
the Bayes rule is applied for the classification assignment. In
this paper, we investigate the possibility of using ICDA for the
classification of hyperspectral images. We study the influence of
the algorithm used to enforce independence and of the number of
IC retained for the classification, proposing an effective method
to estimate the most suitable number. The proposed method is
applied to several hyperspectral images, in order to test different
data set conditions (urban/agricultural area, size of the training
set, and type of sensor). Obtained results are compared with one
of the most commonly used classifier of hyperspectral images
(support vector machines) and show the comparative effectiveness
of the proposed method in terms of accuracy.

Index Terms—Bayesian classification, curse of dimensionality,
hyperspectral data, Independent Component (IC) Analysis (ICA).

I. INTRODUCTION

HYPERSPECTRAL images are composed of hundreds
of bands with a very high spectral resolution, from the

visible to the infrared region. The wide spectral range, coupled
with an always increasing spatial resolution, allows us to better
characterize materials and gives the ability to pinpoint ground
objects laying on the observed surface and to distinguish be-
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tween spectrally close ground classes, making hyperspectral
imagery suitable for land cover classification. Due to their
features, hyperspectral data have, in recent years, gained a
continuously growing interest among the remote sensing com-
munity [1], [2].

The huge quantity of information and the high spectral
resolution of hyperspectral images give the possibility to solve
problems which usually cannot be solved by multispectral
images. In classification of hyperspectral images, the higher
dimensionality of the data increases the capability to detect and
distinguish various classes with improved accuracy. However,
several significant issues need to be considered in the classi-
fication process for this kind of images. The most common
of such issues are the spatial variability of the spectral sig-
nature, the high cost of true sample labeling, the quality of
data, and problems associated with the very high number of
spectral channels. The large dimensionality of the data in the
spectral domain leads to theoretical and practical problems. For
example, for high-dimension data, normally distributed data
have a tendency to concentrate on the tails of the distribution,
conversely to what appears for low-dimension data (one or two
dimensions). Consequently, intuitive considerations, based on
the “bell shape” 1- or 2-D distribution, fail for high-dimension
Gaussian distributions. For the purpose of classification, these
problems are related to the course of dimensionality. Therefore,
very important information for land cover classification can be
hidden in a relatively small dimensional area of the data space
and can be easily neglected.

In the context of supervised classification, one of the most
challenging issues is related to the small ratio between the
number of samples used for training and the number of features
of the data. As the dimension of the data space becomes
higher, the number of training samples necessary to define
the statistical behavior of the data increases exponentially [7],
which makes it impossible to obtain reasonable estimates of
the class-conditional probability density functions used in stan-
dard statistical classifiers. The first consequence is that when
increasing the number of features of the data used as input
of the classifier over a given threshold (which depends on the
number of training samples and the kind of classifier adopted),
the classification accuracy decreases, according to the so-called
Hughes’ phenomenon [6]. Because of the aforementioned lim-
itations, parametric classifiers such as the maximum likelihood
classifier [5] or the Bayesian classifier [3], [4], which model
probability density functions for individual classes with param-
eters estimated from the training samples, are often ineffective
when used for classification of hyperspectral data.

0196-2892/$26.00 © 2011 IEEE
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It is well known that the probability of error achieved with
a Bayes classifier is the best that can be obtained [5], thus
making Bayesian classifiers attractive in pattern recognition.
Nevertheless, the construction of an optimal Bayesian classifier
is very challenging when dealing with high-dimensional data,
which would require large training sets in order to obtain
accurate estimates of the density functions of the classes. To
overcome the problem of a small size of the labeled samples,
when these classifiers are applied, it is often assumed that
each class can be represented by a multivariate normal model
depending on the mean and covariance matrix of the class-
specific data. This assumption can be accepted in the case of
low input dimensionality, but it is usually far from the reality
for hyperspectral remote sensing data, leading to low general-
ization capabilities for nonlabeled data and, consequently, to
poor classification accuracies. Many efforts have been reported
in the literature to overcome the intrinsic problems of high-
dimensionality data [8]–[13]. The main approaches that can be
found in the literature are regularization of the sample covari-
ance matrix, semisupervised classification for the exploitation
of the classified (semilabeled) samples, and projection of the
data into a lower dimensional space by preprocessing hyper-
spectral data with feature selection/extraction.

In order to reduce the small sample size problem and miti-
gate the course of dimensionality, several improved covariance
matrix estimators have been proposed to reduce the variance of
the estimate [8], [9]. The main problem involved by this kind
of estimators is the possibility that the estimated covariance
matrices overfit the few available training samples and lead to a
poor approximation of statistics for the testing set and the whole
image to be classified. Semisupervised classifiers give a rough
classification of the data using the information of the training
set and then iteratively update the class statistics according to
the results of the classification [10]. The main drawbacks of this
approach are the required high computational burden and the
risk of overfitting when a limited number of training samples is
available. Finally, another approach that has been proposed to
overcome the problem of high dimensionality of the data is to
use feature reduction/selection algorithms in order to reduce the
dimensionality of the input space. Many techniques have been
proposed, such as Decision Boundary Feature Extraction [11],
Projection Pursuit [12], and Nonparametric Weighted Feature
Extraction [13]. Nevertheless, the higher computational time
required or the inevitable loss of information introduced by
these techniques often represents an obstacle in obtaining high
performances, in terms of processing time or classification
accuracy.

Advanced classifiers like artificial neural networks (NNs)
[14]–[16] and kernel-based classifiers [17], [23], [26]–[28] have
more recently been applied for hyperspectral data classification,
because they are distribution free and do not make assumptions
about the density functions of the data. Multilayer NNs [14]
basically suffer from two main limitations. The first limitation
is that the number and the size of hidden layers need to be set,
and this is not a straightforward task. The second limitation is
that a very large number of iterations are sometimes needed
to find a solution, making feature reduction a very useful step
before the classification process. RBF NNs [15] overcome these

shortcomings, but their classification accuracy strongly depends
on the selection of the centers and widths of the kernel functions
associated with the hidden neurons of the network. Kernel
methods have been widely investigated in the last decade for
remote sensing and hyperspectral data analysis. Such methods
show even better performances than NNs in terms of accuracies,
also providing good results in case of very limited training
sets. During recent years, a number of powerful kernel-based
learning classifiers (e.g., support vector machines (SVMs) [23],
kernel Fisher discriminant analysis [26], support vector clus-
tering [27], and the regularized AdaBoost algorithm [28]) have
been proposed in the machine learning community, providing
successful results in various fields. SVMs, in particular, have
been widely investigated recently in the remote sensing com-
munity [24], [25], [29], [30]. Camps-Valls and Bruzzone com-
pared in [17] a number of these methods. SVMs provided the
most attractive classifier when dealing with high-dimensional
data, providing very good results in terms of accuracy and
robustness to common levels of noise. The main limitations of
SVMs are the training time and the need to find the optimal
parameters for the kernel. The training time, although much
smaller than other kernel methods, quadratically depends on
the size of the training set and can be very large, particularly
when a large number of labeled samples is available. The
choice of the parameters of the kernel is usually done using a
cross-validation approach. Bazi and Melgani recently proposed
a classification approach based on Gaussian processes [31],
which showed results similar to those of SVMs but with a
bigger computational burden. Due to the challenging problems
of hyperspectral data classification, several approaches have
been recently proposed to exploit also the spatial information
of the data [32], [33].

In this paper, a nonparametric method for discriminant
analysis based on the application of a Bayesian classification
rule on a signal composed by independent components (ICs)
originally presented in [34] is proposed for the classification of
hyperspectral images. The main characteristics of the method
are the use of IC Analysis (ICA) to retrieve ICs from the
original data and the estimate of the multivariate density in
the new data space computed with the ICA. When the data
are projected in an independent space, the estimates of their
multivariate density function can be computed in a much easier
way as the product of univariate densities. The use of ICA is an
elegant way which allows us to overcome the problem of the
high dimensionality of input data, obtaining reliable estimates
of the class conditional densities which can be used to build a
Bayesian classifier. A nonparametric kernel density estimator
is used to compute the density function of each IC. Finally, the
Bayes rule is applied for classification assignment. The main
contributions of this paper are the following: First, we propose
an in-depth experimental analysis to highlight the potentialities
of the method when used to classify hyperdimensional data.
Second, we propose a simple but effective approach to choose
the number of ICs which has to be retained for the classification
process, in order to make the classifier suitable for hyperspec-
tral data analysis. Finally, we perform a detailed comparison
with respect to the SVM, one of the most used hyperspectral
classifiers, considered as the one providing the best results.
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The remainder of this paper is organized as follows.
In Section II, the general framework of IC Discriminant
Analysis (ICDA) is introduced. The experimental part is shown
in Section III, and finally, conclusions are drawn in Section IV.

II. ICDA

The proposed method is a generalization of the quadratic
discriminant analysis, where the ability of ICA to retrieve
components as independent as possible is exploited to estimate
the class-conditional joint densities fk(x) as the product of the
marginal densities of the transformed components. The joint
densities, which are hard to estimate when dealing with high-
dimensional data, can be computed in a much simpler way in
an independent space. The risk incurred when performing a
classification of a measured vector x into one of K possible
classes is given by

R(k̂|x) =
∑K

k=1 L(k, k̂)fk(x)πk∑K
k=1 fk(x)πk

(1)

where πk is the a priori probability that a sample could belong
to the class k, fk is the class-conditional a priori density of
class k, and L is the cost or loss incurred when assigning the
sample x, belonging to the class k, to the class k̂. In the case
of hard classification (i.e., classification where only one class
is selected), this cost is expressed by the so-called symmetrical
loss function

L(k, k̂) =

{
0, if k = k̂
1, if k �= k̂.

By choosing k̂ such that the numerator of (1) is minimized,
this leads to the so-called Bayes decision rule. In the case of
hard classification, the Bayes rule reduces to the following rule:
Assign x to the class k̂ such that

k̂ = d(x) = argmax {fk(x)πk} k = 1, . . . ,K. (2)

The design of the Bayes classifier is then determined by the
conditional densities fk(x) and by the prior probabilities πk.
While the prior probabilities can be easily obtained from the
training set, following the relation

πk = Nk/N (3)

where Nk is the number of samples of the class k and N is the
overall number of samples of the training set, the determination
of the class-conditional density is much more challenging.
Owing to its analytical tractability, the Gaussian (or normal)
multivariate density is the most often used density for classifi-
cation. The general expression of a multivariate normal density
in d dimensions is written as

fk(x)=
1

(2π)d/2|Σk|1/2
exp

[
−1

2
(x− μ)TΣ−1

k (x− μ)

]
(4)

where x is a d-component column vector, μ is the d-component
mean vector, Σ is the d by d covariance matrix, and |Σ| and
Σ−1 are its determinant and its inverse. Finally, (x− μ)T

denotes the transpose of (x− μ). These classification rules
are, in general, derived by assuming that the class-conditional
densities are p-variate normal with mean vectors μk and
that variance–covariance matrices Σk are nonsingular [37].
These two parameters are estimated from the training samples
according to

μ̂k =
1

Nk

Nk∑
i=1

xik (5)

Σ̂k =
1

Nk − 1

Nk∑
i=1

(xik − μ̂k)(xik − μ̂k)
T (6)

where xk = {xik, i = 1, . . . , Nk} are the training samples
of the class k. This approach works well when the class-
conditional densities are approximately normal and good esti-
mates can be obtained from the training samples. However, it is
highly affected by substantial divergence from normal density
and by a limited training set [35], as it is often the case for
hyperspectral remote sensing data.

In order to overcome problems linked to the aforementioned
limitations, the parametric approach to discriminant analysis
has been extended to the case where nothing is known about the
densities fk except for some assumptions about their general
behavior [36]. The idea is to apply a nonparametric density
estimator to the training samples and then to substitute the
obtained estimates into the Bayes decision rule (2). This family
of density estimators does not assume any prior knowledge
about the distribution of the data like parametric estimators
do. Many other nonparametric estimators can be found in the
literature, such as the histogram approach, k-nearest neighbor,
and the expansion by basis function method [38]. Owing to its
properties in terms of computation and accuracy, one of the
most common procedures is to use a multivariate kernel density
estimator of the form

f̂k(x) =

Nk∑
i=1

K{x− xik;Hk} (7)

where K denotes an unbiased kernel function and Hk is a
diagonal covariance matrix. It has been shown that the choice
of the kernel used for the estimation is, in general, not crucial
[38]. In our experiments, we have considered one of the most
widely used kernels, the Gaussian one

K =
1

h
√
2π

exp

{
− x2

2h2

}
. (8)

Multidimensional density estimation is highly affected by
the high dimensionality of the data and, practically, is not
tractable when the dimension of the data is comparable with
the size of the training data, as it often happens in hyperspectral
data analysis. In these cases, the kernel K is substituted by
the product of univariate Gaussian kernel function, leading to
estimates of the form [39]

f̂k(x) = (2π)−p/2HN−1
k

Nk∑
l=1

p∏
j=1

exp

{
− (xj − xlkj)

2

2h2
kj

}
(9)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

where hkj is the jth element in the Hk diagonal matrix, xljk

is the ljth observation of the samples belonging to the class k,
and

H =
1∏p

j=1 hkj
. (10)

The main drawback of this approach is that some important in-
formation for the classification process is not retrieved. In fact,
it particularly occurs when dealing with high-dimensional data
where very important information for the classification process
can be hidden in relatively low density regions. Therefore, the
estimation of the tails of the distribution becomes crucial in
order not to degrade the final results. Consequently, in such a
case, a Gaussian kernel product estimator can be inappropriate,
due to the short-tailed normal density.

In [34], Amato et al. proposed an interesting approach to
circumvent the problems of nonparametric multivariate kernel
density estimators and used ICA to enforce independence to the
components of the analyzed data. In their approach, the compo-
nents become as independent as possible after a transformation
based on ICA, which allows one to estimate a multivariate
density as the product of univariate densities, which is then
fitted to normality with the use of normal densities. The results
obtained are finally substituted in the Bayes rule for the class
assignment.

The basic steps of the proposed approach are stated as
follows.

1) Center the data on the k class, for each class k =
1, . . . ,K, and use the ICA to derive the optimal transform
Âk according to the training samples of the class.

2) Project the data using the computed transform and use an
adaptive univariate kernel density estimator to estimate
the density of each component.

3) For a new observation x, the joint density of Y = Âkx
is first computed for each class as the product of the
estimated marginal densities, since the components are
independent. The density of x can then be derived from
that of Y with a simple change of variable. The results
are then substituted into the Bayes rule to obtain the final
assignment.

In the rest of this paper, we refer to the aforementioned
approach as ICDA.

A. ICA

ICA consists of finding a linear decomposition of observed
data into statistically ICs. Given an observation model

x = As (11)

where x is the vector of the observed signals, A is a scalar
matrix of the mixing coefficients, and s is the vector of the
source signals, ICA finds a separating matrix W such that

y = Wx = WAs (12)

where y is a vector of ICs. This means that the value of any of
the components does not give any information about the value

of the other components. ICA basically makes the following
three general assumptions, in order to make sure that its basic
model can be estimated.

1) The components of y, estimated from the observed signal
x, are statistically independent. This is the basic principle
on which all the ICA models rest.

2) At most one signal has a Gaussian distribution. If more
than one component has a Gaussian distribution, we do
not have enough information to separate mixtures of
Gaussian sources. In the case of two or more Gaussian
distributions, the higher order cumulants are equal to
zero. This information is essential in order to estimate the
ICA model; thus, the algorithm cannot work under these
conditions.

3) The unknown mixing matrix A is square and invertible.
This assumption is equivalent to saying that the number
of ICs is equal to the number of observed mixtures. It is
done in order to simplify the estimation very much, but it
can sometimes be relaxed.

Under these three assumptions (or at least the first two),
the ICs and the mixing matrix can be estimated under some
indeterminacies that will necessarily hold. In fact, for (11), if
both A and s are unknown, at least two ambiguities cannot
be avoided. First, the variances of ICs cannot be computed. In
fact, any scalar multiplier in one of the sources could always be
canceled by dividing the corresponding column of the mixing
matrix. Due to this, the energy of the components is, at first,
fixed by whitening in order to make them all have variances
equal to unity, and consequently, the mixing matrix is adapted.
Second, because of similar reasons, the ICs cannot be ranked
because any change in their order will not change the possibility
to estimate the model. Due to its attractive properties, ICA is
receiving a growing interest among the remote sensing com-
munity for feature reduction and spectral unmixing [52]–[54].
A detailed explanation of the basics of ICA is out of the scope
of this paper. In the next section, we briefly review several
possibilities to compute independence. We refer the reader
interested in a complete explanation of the general framework
of ICA to [49]–[51].

B. Independence Measures

Independence is a much stronger assumption than uncor-
relatedness. Unlike common decorrelation methods, such as
Principal Component Analysis and Factor Analysis, which use
information provided by a covariance matrix in order to retrieve
uncorrelated components, ICA considers higher (than second)
order statistics. However, starting from the probabilistic defi-
nition of independence, several practical independence criteria
can be defined. In addition to the basic concept of contrast func-
tions, two of the most classical criteria are based on nonlinear
decorrelation and maximum non-Gaussianity.

1) Nonlinear decorrelation. Find the matrix W so that the
components yi and yj are uncorrelated and the trans-
formed components g(yi) and h(yi) are uncorrelated,
where g and h are some suitable nonlinear functions.
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Possible nonlinear functions can be derived through the
maximum likelihood or the mutual information.

2) Maximum non-Gaussianity. Find the local maxima of
non-Gaussianity of a linear combination under the con-
straint that the variance of y is constant and the compo-
nents not correlated (i.e., after prewhitening). Each local
maximum gives one IC.

Classical algorithms, such as FastICA [40] and Infomax [41],
have been developed using the aforementioned criteria. Another
approach for the estimation of the ICs is joint diagonalization
of eigenmatrices (JADE) [42], which makes use of fourth-order
cumulant tensors. In the following experiments, we have used
JADE as ICA algorithm to enforce independence, due to the
effectiveness shown when dealing with hyperspectral remote
sensing data [46], [47] and since it has provided better results
than FastICA and Infomax in a preliminary test.

Cumulant tensors can be considered as the generalization of
the covariance matrix at an order higher than the second. If we
consider a random vector x with a probability density function
p(x), its characteristic function is defined as the inverse Fourier
transform of the pdf [43]

Φ(ω) = E {exp(jωx)} =

∞∫
−∞

exp(jωx)p(x) dx (13)

where j is equal to
√
−1 and ω is the transformed row vector

corresponding to x. Every probability density function cor-
responds to a unique characteristic function and vice versa.
Due to its attractive properties, the natural logarithm of the
characteristic function is often considered. Given the Taylor
series expansion of the characteristic function

Φ(ω) =

∞∑
k=0

ak
(jω)k

k!
(14)

the ath cumulant is defined as the derivative

ak = (−j)k
dkΦ(ω)

dωk

∣∣∣∣
ω=0

. (15)

It can be shown that the second- and third-order cumulants for
a zero mean random vector are [44]

cum(xi, xj) =E{xixj} (16)

cum(xi, xj , xk) =E{xixjxk}. (17)

We refer the reader interested in a more detailed explanation of
the cumulants and their properties to [45] and [48]. The fourth-
order cumulants contain all the information about the fourth-
order statistics of the data. In the case the data are independent,
all the cumulants with two or more different indices are equal
to zero.

The cumulant tensor is a linear operator defined by the
fourth-order cumulants cum(xixjxkxl) in an analog way to the
case of a covariance matrix, which defines a linear operator. In
this case, we have a linear transformation in the space of n× n
matrices instead of the space of n-dimensional vectors. The
space of such matrices is a linear space of dimension n× n,

so it is simple to define the linear transformation. The elements
of this transformation can be defined as

Fij(M) =
∑
kl

mklcum(xi, xj , xk, xl) (18)

where mkl are the elements in the matrix M that is transformed.
JADE refers to one of the principles of solving the problem

of equal eigenvalues of the cumulant tensor. As any symmetric
linear operator, the cumulant tensor has an eigenvalue decom-
position. An eigenmatrix of the tensor is, by definition, a matrix
M such that

F(M) = λM (19)

where λ is a scalar eigenvalue.
Let us consider data which follow the ICA model with

whitened data

z = VAs = HTs (20)

where HT denotes the whitened mixing matrix. The eigenvalue
decomposition allows us to point out some interesting features
of the cumulant tensor of z. Every matrix of the form

M = hmhT
m (21)

is an eigenmatrix. The vector hm represents here one of the
rows of H and, thus, one of the columns of the whitened
mixing matrix HT. Due to the independence of the sources,
the corresponding eigenvalues are given by the kurtosis of the
ICs and all the other eigenvalues are zero. By determining these
eigenvalues, we can obtain the independent sources that we are
looking for.

III. EXPERIMENTAL RESULTS

A. Data Sets

In order to have a representation of the possible scenarios
provided by the hyperspectral images as complete as possible
(satellite/airborne sensors, urban/agricultural/geological area,
and large/small/very small size of the training set), four hyper-
spectral data sets were considered in this paper.

The first one is an airborne data set from the ROSIS-03 with
115 spectral bands in the spectral range from 0.43 to 0.86 μm
acquired over the University of Pavia, Italy. The spatial
resolution is 1.3 m/pixel. The data set is 610 by 340 pixels.
Twelve data channels were removed due to noise, and the re-
maining 103 spectral dimensions were processed. Nine classes
of interest were considered. The training set is composed by
about 10% of all the labelled samples that were available for
the data.

The second data set is a small segment of an Airborne Visible
InfraRed Imaging Spectrometer (AVIRIS) data set over the
agricultural area of Indiana. For each spectral channel, the im-
age contains 145 × 145 pixels. There are 220 spectral channels
(spaced at about 10 nm) acquired in the 0.4–2.5 μm region.
Four of the original 224 channels were removed, because they
were containing only zeros. All the remaining 220 bands were
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TABLE I
INFORMATION ABOUT THE TRAINING AND THE TESTING SET OF THE FOUR CONSIDERED DATA SETS

processed, without discarding channels affected by atmospheric
absorption. Sixteen reference data classes were considered. The
ground truth is composed of 10 366 pixels. Different training
sets were randomly constructed from the reference data with a
total of, respectively, 320 pixels (20 samples per class). Due to
the very small size of the training set, to increase the statistical
significance of the test, the experiment was repeated ten times
with different training sets and the average results reported.

The third study site is the region surrounding the central
volcano Hekla in Iceland, one of the most active volcanoes in
the country. Since 1970, Hekla has erupted quite regularly every
ten years, in 1970, 1980–1981, 1991, and 2000. The volcano is
located on the southwestern margin of the eastern volcanic zone
in South Iceland. Hekla’s products are mainly andesitic and
basaltic lavas and tephra. AVIRIS data that were collected on a
cloud-free day, June 17, 1991, were used for the classification.
The image contains 560 × 600 pixels. As in the previous
case, the sensor system has 224 data channels, utilizing four
spectrometers, whereas the width of each spectral band is
approximately equal to 10 nm [55]. During image acquisition,
spectrometer 4, which operates in the wavelength range from
1.84 to 2.4 μm (64 bands), was not working properly. These
64 bands were deleted from the imagery along with the first
channels for all the other spectrometers, so that only 157 data
channels were considered. The training set was composed of
50 samples per class randomly chosen from the labeled data,
and ten different training sets were selected.

Finally, airborne data from the Hyperspectral Digital Im-
agery Collection Experiment (HYDICE) sensor were used
for the experiments. The HYDICE was used to collect data
from flightline over the Washington DC Mall. Hyperspec-
tral HYDICE data originally contained 210 bands in the
0.4–2.4-μm region. Noisy channels have been removed, and
the set consists of 191 spectral channels. It was collected in
August 1995, and each channel has 1280 lines with 307 pixels

each. Seven information classes were defined. Also in this case,
ten experiments were performed with the same training set size
(ten samples per class). All the pieces of information about
the ground truth (name of the classes, number of training, and
testing samples) are listed in Table I.

B. Influence and Choice of the Number of ICs

The proposed method ICDA was used to classify the four
data sets, and the results of the experiments were compared
with those obtained by a one-versus-one SVM, with a Gaussian
kernel and tenfold cross-validation selection of the kernel’s
parameter [56] applied to the full feature space. When applying
ICDA, the number of components considered to compute the
density estimation has an influence both on the final classifica-
tion accuracy and on the computational burden. The maximum
number of ICs that can be used for the classification depends
on the rank of the covariance matrix obtained from the training
samples of each class, and it is equal to the number of training
samples of a class. In order not to bias the final assignment of
the analyzed samples, the number of ICs computed in step 1
of the proposed algorithm should be the same for each class.
Therefore, when the covariance matrix obtained from the
training samples of a class is singular, that will decrease the
maximum number of components which can be retained and
it will influence all the classes. Because of the singularity of
the covariance matrix of some classes, the maximum number
of components which can be retrieved in the case of AVIRIS
Indian Pine data set is 19, while it is 9 in the case of the
HYDICE DC Mall. A larger number of components could be
computed for the other two data sets. Fig. 1 shows the variation
of the coefficient of agreement (Kappa), the average class
accuracy, which represents the average of the classification
accuracies for the individual classes and the processing time
with respect to the ICs retained for the four considered data
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Fig. 1. Comparison of (first column) Kappa coefficient of agreement, (second column) average class accuracy, and (third column) classification processing time
obtained with SVM (full feature space) and ICDA, with respect to different number of ICs retained for the four considered data sets. The rows respectively
correspond to ROSIS, AVIRIS Indian Pine, AVIRIS Hekla, and HYDICE data sets.

sets. The Kappa coefficient of agreement is a parameter that
estimates the correct percentage classification without consider-
ing the percentage accuracy that could be expected, performing
a random classification [57].

Although the number of components has a large influence on
the final results, it can be seen that there is a wide region where
the proposed method outperforms SVM. In three among the

four cases (AVIRIS Indian Pine, AVIRIS Hekla, and HYDICE
DC Mall), once a minimum number of ICs is computed (in
order to have enough information for the probability density
estimation), the accuracy is much better than that of the SVM.
In the case of the ROSIS data set, the trend is not so linear,
but still, the choice of the number of ICs is not critical, i.e., we
have a large range of values for which ICDA performs better
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TABLE II
COMPARISON OF CLASSIFICATION ACCURACY OBTAINED WITH THE PROPOSED METHOD ICDA (BEST CASE) AND SVM IN THE FOUR ANALYZED

DATA SETS AND PROCESSING TIME OF THE TWO METHODS. WHERE SEVERAL TRAINING SETS HAVE BEEN SELECTED ON THE

SAME DATA SET, THE STANDARD DEVIATION IS ALSO INDICATED

than SVM. The difference of the behavior of the ROSIS data
set with respect to the others has to be attributed to the way the
training samples were collected. While in the other three cases
the samples were randomly selected from the reference data,
in this case, the training set was composed by spatially close
zones, thus granting a worse capability of generalization.

Nevertheless, the choice of the appropriate number of ICs
used during the classification process is a very important task
in order to obtain a good accuracy of classification. In [34],
the authors propose to retain the maximum possible number
of ICs. This criterion is not appropriate for hyperspectral data:
The computation of so many ICs can be very demanding from
a computational viewpoint, and if the information provided
by the components is redundant, the increase of ICs can lead
to a decrease of classification accuracy, as pointed out in the
first two columns of Fig. 1. In order to choose the number of
ICs which has to be retained by the algorithm, we propose a
simple but effective method. We apply the ICDA to the training
set, using the same samples for testing. Since we just have to
choose the number of ICs which better characterize the classes
of the image, we do not expect problems of the generalization
of the results, as could appear when selecting the kernel’s
parameter of SVM. The cross-validation approach has been
discarded because of two reasons: 1) The very limited number
of training samples of some data sets can lead to misleading
results, and 2) splitting the number of samples in the cross-

validation procedure influences the maximum number of com-
ponents which can be retained. Since preliminary experiments
have shown that the smallest and biggest values of ICs are not
useful, because they do not contain enough information or they
have redundant features, to avoid a large computational time,
the range investigated was [10–30] in the case of ROSIS and
AVIRIS Hekla data sets, [10–19] for the AVIRIS Indian Pine,
and [3–9] for the HYDICE data set. This way, a finer step can
be used, avoiding too much computational effort.

C. Performance Analysis

Table II presents a comparison between the results obtained
by the SVM (applied to the full feature space) and the ICDA
(with the proposed method to choose the number of ICs). The
comparison is in terms of overall accuracy (OA), which is
the number of correctly classified test samples with respect
to the total number of test samples, average accuracy (AA), and
the Kappa coefficient of agreement (κ). In all the considered
data sets, the Kappa coefficient of agreement provided by the
ICDA is better than the corresponding result for SVM. The
ROSIS data set gives the only case where the average class
accuracy of SVM is higher than ICDA. In the three experiments
where multiple training sets were considered, the standard de-
viation was also computed. In two cases, the standard deviation
obtained with the SVM was smaller than that for the ICDA.
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Fig. 2. (a) Ground truth of the ROSIS data set. (b) Classification map obtained with the SVM. (c) Classification map obtained with the ICDA.

Fig. 3. (a) Ground truth of the AVIRIS Indian Pine data set. (b) Training set n.3. (c) Classification map obtained with the SVM. (d) Classification map obtained
with the ICDA.

That happened for the AVIRIS Indian Pine and the HYDICE
data sets, where very small training sets were selected. The best
results were obtained with a number of ICs retained, which was
varying for the different training sets. Due to the small number
of training samples, large variations were seen according to the
number of ICs retained, also for small differences, thus leading
to a higher value of standard deviation. This phenomenon was
less important for the AVIRIS Hekla data set due to the larger
number of training samples selected. As an example, Figs. 2
and 3 show some classification maps obtained with the SVM
and with the proposed method. It has been shown in [58] that
the comparison of two classification results in terms of OA may
be inappropriate, being explicitly based on an assumption that
the two sets considered are independent. This is not true in
our experiments, where the samples used for the training and

testing processes of the two different classifications are exactly
the same. In order to better evaluate the statistical significance
of the difference between ICDA and SVM, we performed
McNemar’s test, which is based upon the standardized normal
test statistic

Z =
f12 − f21√
f12 − f21

(22)

where f12 indicates the number of samples classified correctly
by classifier 1 and incorrectly by classifier 2. The difference in
accuracy between classifiers 1 and 2 is said to be statistically
significant if |Z| > 1.96. The sign of Z indicates whether clas-
sifier 1 is more accurate than classifier 2 (Z > 0) or vice versa
(Z < 0). This test assumes related testing samples and, thus,
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TABLE III
STATISTICAL SIGNIFICANCE OF THE DIFFERENCES BETWEEN THE TWO

CLASSIFIERS. THE FIRST THREE COLUMNS REPRESENT HOW MANY

TIMES SVM WAS PERFORMING SIGNIFICANTLY BETTER, THERE WERE

NO STATISTICAL DIFFERENCES, AND ICDA WAS PERFORMING BETTER.
DIFFERENCES ARE CONSIDERED SIGNIFICANT IF |Z| > 1.96

is adapted to our situation since the training and testing sets
were the same for each experiment. The results of McNemar’s
test [58] are shown in Table III and confirm the conclusions of
previous experiments.

Finally, the computational burdens of SVM and ICDA were
investigated. The processing time of SVM quadratically de-
pends on the size of the training set, and it is longer where a
large number of training samples is used. In opposite, ICDA
has a very short training time, due to the fast computation of
density estimations of the training samples, and a longer testing
time, because these densities have to be calculated for each
of the testing samples. Fig. 1 shows in the third column how
the processing time of ICDA varies according to the number
of IC retained. As could be expected, SVM is computationally
less demanding than the ICDA when considering data sets with
small or very small number of training samples. The opposite
situation occurs when medium/large training sets are available,
as in the case of ROSIS or AVIRIS Hekla data sets.

IV. CONCLUSION

In this paper, a new approach for hyperspectral data classifi-
cation, the ICDA, has been proposed. The proposed approach is
based on the application of ICA to the data in order to retrieve
ICs, the use of a kernel density estimate to obtain reliable
estimation of class-dependent densities, and the substitution on
the Bayes rule for the final assignment. Experiments have been
carried out on four different real data sets. The results of the
experiments showed the effectiveness of the proposed method,
which provided better results than those of the state-of-the-
art hyperspectral classifier, the SVM. Moreover, the proposed
method presents several other advantages: 1) Its Bayesian na-
ture allows the integration of any kind of prior information
in the classification process, as long as they can be stated as
a probability function, and 2) it is suitable to be used jointly
with spectral–spatial techniques recently developed for SVM
[32], [33].

Although the classification accuracy obtained by the ICDA is
influenced by the number of components retained after applying
ICA, this choice is not critical, since there is a large region
around the optimal number for such accuracy for which the

proposed method has similar results and outperforms SVM
in terms of classification accuracy. Moreover, a simple and
effective technique for choosing the number of components
to retain was proposed, providing results significantly better
than those of the SVM. The computational burden of the
proposed method is smaller with respect of the SVM when
a medium/large amount of training samples is available. The
SVM is computationally less demanding for small training sets,
but in such cases, time is not a critical issue. Further devel-
opments of this work include a comprehensive research of the
influence of the ICA algorithm used to enforce independence
and an investigation of the possibility of including contextual
spatial information within the Bayesian framework.
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