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The K&C PALSAR Mosaic of the African Continent:
Processing Issues and First Thematic Results

Gianfranco D. De Grandi, Fellow, IEEE, Alexandre Bouvet, Richard M. Lucas,
Masanobu Shimada, Fellow, IEEE, Stefano Monaco, and Ake Rosenqvist

Abstract—The Japan Space Exploration Agency Kyoto and
Carbon (K&C) Initiative seeks to demonstrate the potential of
the Advanced Land Observing Satellite (ALOS) Phased Arrayed
L-band Synthetic Aperture Radar (PALSAR) data for addressing
regional applications relating to climate change, carbon cycle
science, and environmental conservation. This paper outlines the
generation of a regional dual-polarization (HH and HV) mosaic
for the entire African continent at spatial resolution on the order
of 100 m. The main computational and radar science issues under-
taken to generate a seamless mosaic with good radiometric and
geometric accuracy are summarized. Preliminary investigations
into the thematic information provided by the K&C Africa mosaic
and comparisons with the JERS-1 SAR mosaic generated as part
of the Global Rain Forest Mapping Project are reported, with
emphasis placed on characterizing and detecting change in forests
and savannas.

Index Terms—Continental-scale radar mapping, Phased-Array
L-Band Synthetic Aperture Radar (PALSAR), synthetic aperture
radar (SAR) mosaic processing, vegetation monitoring.

I. INTRODUCTION

HE KYOTO and Carbon (K&C) Initiative [1], [2] is an
international collaborative project of the Japan Aerospace
Exploration Agency (JAXA) which aims to support terrestrial
carbon science, environmental conservation, and related inter-
national conventions through provision of global systematic
observations of Phased Array L-band Synthetic Aperture Radar
(PALSAR) aboard the Advanced Land Observing Satellite
(ALOS) [3], [4]. A key component of the K&C Initiative is to
generate mosaics from hundreds of ALOS PALSAR orbits and
to derive thematic information that is spatially consistent over
very large areas and for a similar time frame.
In this paper, we report on our experience gained in devel-
oping a wide-area PALSAR mosaic over the entire African
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Fig. 1. K&C continental-scale Africa mosaic. The mosaic was assembled
from PALSAR fine-beam dual-polarization (FBD) images (HH band shown),
which were geocoded using a latitude—longitude geographic unprojected co-
ordinate system with a pixel spacing of 0.8333 mdeg (roughly 100 m at the
equator).

continent. A snapshot of the prototype mosaic, which was
completed at the time of this writing, is shown in Fig. 1.
The mosaic is a dual-band (HH-HV) data set referenced to
a latitude—longitude coordinate system with pixel spacing of
8.333 10~*" (roughly 100 m at the equator).

The compilation of large numbers of SAR images into a
synoptic view of a wide planetary surface to support studies
of global geophysical processes is certainly not new. One of
the first—and most spectacular—of such technical endeavors
was the mapping of the planet Venus surface by the imaging
radar aboard the Magellan spacecraft in 1989 [5]. More akin
to the work presented in this paper has been the generation
of the Central Africa mosaic of C-band ERS-1 imagery in the
framework of a joint European Space Agency and Joint Re-
search Center initiative [6] and mosaics of JAXA JERS-1 SAR
data over the whole tropical and boreal forest ecozones of the
world, with their generation undertaken through international
collaborative projects [7]-[11]. These projects were indeed the
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precursors of the K&C Initiative, and they set the stage for
building the technical know-how required for the development
and analysis of wide-area medium (< 100 m) spatial resolution
radar mosaics. However, the K&C is a further development in
the scale of performance—hence complexity—with respect to
its precursors because of the availability of the following.

1) Both cross-polarized (HV) and cross-polarized (HH)
backscatter data.

2) High-quality digital elevation model (in the form of the
Shuttle Radar Topographic Mission (SRTM) DEM) with
comparable spatial resolution over the whole mosaic’s
extent.

3) New type of SAR image product developed by JAXA,
based on focusing the raw data along extended segments
of the sensor’s orbit, which is more convenient for large
area coverage [12].

4) Improved sensor performance with respect to radiometric
stability and geometric accuracy.

5) Optimized acquisition plan, which guaranteed full cover-
age of the area of interest (continent) in the shortest time
compatible with the sensor’s orbital cycle (two months in
the case of Africa).

In comparison to the JERS-1 SAR, the availability of the
cross-polarized channel increases opportunities for forestry-
based applications, including detecting and monitoring defor-
estation and retrieving biomass. The provision of a high-quality
DEM paves the way for the utilization of precision geocoding,
radiometric corrections for effects induced by topography and
terrain morphology measures as additional training sets in
classification procedures. Improving sensor performance and
optimizing data acquisition are of paramount importance for the
generation of seamless mosaics which, in turn, is a prerequisite
for successful thematic exploitation of the data at regional
scales.

The large amount of data available for generating wide-area
radar mosaics and the improved characteristics of these data
call for new approaches to processing and analysis. While the
cost of generating the data mosaics is high, this should be
weighed against the subsequent benefits in relation to thematic
applications at regional or continental scales. For Africa, such
applications include the detection of deforestation activity, clas-
sification of vegetation types, and retrieval of woody biomass.

This paper provides an overview of how the K&C mosaic
of Africa was generated, an assessment of the data set quality,
and the preliminary observations relating to the richness in
information content and potential for future thematic appli-
cations. In Section II, the bespoke processing chain designed
for generating the mosaic is outlined, and the main processing
issues which arose in the implementation phase are discussed.
In Section III, the effects of seasonality (and particularly on soil
and vegetation moisture) on radiometry and vegetation cover
are considered, and their possible causes in terms of underly-
ing scattering physics are discussed with reference to passive
microwave measurements. In Section IV, some preliminary
thematic observations obtained mainly by visual inspection are
made. The conclusion and recommendations for this paper are
provided in Section V.
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II. PROCESSING ISSUES
A. Mosaic Processing Chain

The K&C PALSAR raw data used to generate the mosaic
were acquired in 2007 and focused by JAXA using a proprietary
SAR processor (SigmaSAR). The processor generates path
images in slant range, amplitude data at two polarizations (HH
and HV; with 16 looks in azimuth and 4 looks in range), a
pixel spacing of 37.5 m in range and 50.67 m in azimuth, and
an image size corresponding to approximately 70 km in range
(ground) and up to 2000-3000 km in cross-range.

A number of features of the K&C path data (i.e., large
volumes, nonlinear geometry, and radiometric anomalies) re-
quired the development of dedicated processing chains for the
assemblage of wide-area mosaics of acceptable geometric and
radiometric quality. For this purpose, a number of algorithms
for geometrically and radiometrically revising and combining
path image assembly were developed and implemented.

The functionalities implemented in the K&C Africa mo-
saicking software include the following.

1) Housekeeping routines to handle the ingestion and the file
structure of the JAXA path image data sets.

2) Adaptive calibration revision of the original slant range
data sets. This module automatically checks for the pres-
ence of radiometric anomalies and accordingly calibrates
the data (see Section II-B).

3) Extraction of subsets corresponding to the geographical
extent of each projected strip image from the SRTM
continent-wide DEM [13] generated for Africa.

4) Geocoding into a geographic reference coordinate system
(e.g., unprojected latitude—longitude) using the solution
of the range-Doppler equations. This step also produces
auxiliary data containing the effective local incidence
angles for each pixel of the backscatter amplitude image
(see Section II-E)

5) Compression/decompression of the geocoded imagery to
optimize data volume and processing time.

6) Assemblage of the geocoded strips within a geographic
bounding box. The module uses an interstrip amplitude
blending algorithm to avoid edge effects.

7) Radiometric revision of the mosaic to correct for sea-
sonality effects and residual calibration errors, with
this based on the estimation of backscatter differences
along overlapping borders of neighboring strips (see
Section II-D).

The special-purpose modules are interfaced through a batch
processor to the underpinning functions (e.g., geocoding) pro-
vided by the commercially available software SARscape [15].
In this way, large batches of data could be processed in the
background, with the operator’s intervention then limited to
some critical steps such as revision of the mosaic’s calibration.
Indeed, optimization of processing resources (memory and disc
space) and processing time was one of the challenges posed by
the construction of the medium spatial resolution continental-
scale data set.

In the following sections and in connection with the charac-
teristics of the data used to generate the Africa mosaic, the main
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Fig. 2. Range profile as a function of incidence angle, showing the power loss
at the end of swath and the linear negative trend within the swath (black line
in graph). The red line shows the corrected profile after the adaptive calibration
procedure, which is based on linear fitting of the most homogeneous block-
averaged (in azimuth) range profiles (linear fitting function in green).

issues that had to be resolved in the design and implementation
of the processing chain are described in more detail.

B. Radiometric Revision of Path Slant Range Images

Insight into the radiometric fidelity of the K&C path data
sets can be gained by considering average slant range profiles.
The profiles are computed by selecting areas which are as
homogeneous as possible in terms of the illuminated target
from near to far range. An example is shown in Fig. 2. The
related data set is KC_004-13611N17S10FBDSLT1 (according
to JAXA file naming convention) at HH polarization. The range
(black line) and corrected profiles (red line) were extracted from
a block of 512 lines (amplitude slant range data) bracketing an
area of homogeneous dense tropical forest extending from near
to far range. On close inspection, two features are strikingly
evident: a linear negative trend of the amplitude signal from
near to far range and an abrupt almost complete loss of power
at the end of the swath. Quantitatively, the power ratio between
the near and far ranges is approximately —2 dB. This amount
of power loss cannot be justified either by the dependence on
ground scattering area or by the radar cross section on incidence
angle. In the first case, assuming that the data provided by
JAXA are proportional to power per unit area in slant range
Bo, the power ratio for the range of incidence angles in this
data set should be roughly —0.04 dB. In the second case, wave
scattering modeling of the dense tropical forest indicates that
the power ratio at HH due to dependence of the radar cross
section on incidence angle should be on the order of —0.13 dB.
Similar considerations apply for areas dominated by surface
scattering (e.g., bare soil and water).

This analysis suggests that two radiometric anomalies affect
the data and should be taken into consideration in a revision
process: 1) a complete loss of signal at image margin in range
direction and 2) a linear signal drop from near to far range
within the segment with a valid signal. However, the problem is
compounded by the fact that such anomalies are not observed
systematically and consistently throughout the data sets used
in the compilation of the mosaics. The abrupt power drop
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sometimes happens at far range, at near range, or even both
(presumably as a function of latitude in the geographic position
of the strip image). The linear negative trend in range is not
consistent in terms of the rate of decay throughout data sets and,
within the same set, depends on average backscatter. Moreover,
in many cases, the anomaly is not present at all.

This scenario strongly suggests that the radiometric revision
process of the K&C strip data cannot be based on theoreti-
cal global correction functions, even if parameterized by free
variables, but must, per force, rely on an adaptive algorithm
driven by local estimation of the radiometric trends and anoma-
lies. The basic assumptions underlying the algorithm are the
following.

1) The negative linear trend in range is system induced by a
multiplicative gain function such that

9(r) = g(0) +m xr ()

where 7 is the range coordinate (pixel index in the column
direction of the slant range data) and m and g(0) are the
parameters of the linear fit. This function can be estimated
from averaged range profiles in homogeneous regions.
Homogeneous regions are defined as along-track blocks
(consecutive image lines) where targets with similar and
constant radar reflectivities are present at near and far
ranges. The best candidate region for the range profile
estimation is searched by dividing the strip image into
along-track segments and by selecting the one where two
conditions are verified: minimum global backscatter vari-
ance and normalized difference between mean backscat-
ter values at near and far ranges less than 10%. The range
profile is fitted linearly, and a correction multiplicative
function is defined as

g(0)

2) In the same data set, the rate of decay of the linear
trend (if present) can be characterized by two functions,
namely, g1 () and g2 (r), corresponding (in a loose sense)
to areas dominated by volume scattering (e.g., forests
and woodlands) and surface scattering (e.g., bare soil
and sparse vegetation) respectively. These areas can be
identified by segmenting the range of backscatter values
in the data set into two classes: high and low backscatters.
Specific threshold values for identifying the two classes
must be chosen as a function of the polarization. The
two-class segments are disjoint. Therefore, the region
in-between is characterized by a continuous functional
F (g1, g2) of the two functions g; and go.

e(r) =

2

In a nutshell, the algorithm is composed of the following
three steps.

1) The detection and removal of the power drop at the data
set margins.

2) The estimation of the linear power trend in range by
a search of the most homogeneous block and for two
backscatter classes (a proxy for volume and surface
scattering).
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Fig. 3. Range profile of an FBD (slant range) HV data set estimated in a block

corresponding to a homogeneous (along the full swath) target featuring low
backscatter. The corresponding average backscattering coefficient o is on the
order of the noise equivalent backscattering coefficient (—29 dB). The impact of
system thermal noise (generated by electron conduction in the system) becomes
relevant and results in a nonlinear increasing trend in intensity data (black
line in the graph). An empirical additive correction function is derived by
polynomial fitting of this range profile (red line), and it is applied to calibrate all
HV data sets. The green line shows the same range profile after the correction
for thermal noise.

3) The application of an inverse gain function based on the
estimated trends.

The automatic calibration procedure reports an error status
when a homogeneous region cannot be detected. In this case,
the range profile is evaluated by a manual procedure based on
the search of the best homogeneous block by visual inspection
of the strip image. In practice, only a few such cases occurred
during the mosaic processing.

C. Thermal Noise

The noise equivalent o (NES) for PALSAR dual-pol im-
agery is rated at —29 dB. In some desert areas of Northern
Africa, the response at cross-polarization falls below such a
figure. Therefore, the contribution of thermal noise becomes
noticeable in areas of low backscatter and is dependent on
the incidence angle. The theoretical noise floor is a nonlinear
function of the antenna pattern, the range distance, and the
incidence angle [16]. In our approach, the additive noise com-
ponent was estimated using an empirical method based on a
second-degree polynomial fitting of a range intensity profile
measured over a homogeneous (from near to far range) area
with a backscatter coefficient lower than the NES and assumed
constant throughout the swath. The estimated additive noise
component was then used to compensate the trend in range of
all HV data sets. A typical range profile corresponding to a dark
area before and after the correction is shown in Fig. 3.

D. Radiometric Interstrip Mosaic Balancing

Within the mosaic compiled from the geocoded and range
calibrated strips, radiometric discontinuities between strips
were evident. In particular, differences in backscatter values
between strips were on the order of 2 dB (see Fig. 4). Such
discontinuities were related to seasonality and local weather

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 10, OCTOBER 2011

(b)

Fig. 4. West Africa part of the mosaic. Relevant radiometric differences
(on the order of 2 dB) are clearly visible between adjacent strips in the
(a) original (uncorrected) mosaic. The mosaic after radiometric balancing,
based on interstrip discrepancy measures, is shown in (b).

conditions, as documented in Section III. Indeed, to assure
spatial continuity, part of the 2007 acquisitions corresponding
to the dry season within tropical Central Africa was necessarily
complemented with acquisitions during the wet season. This
difference in acquisition time can account for differences in
radar reflectivity because of the evolution of the target’s prop-
erties (e.g., change in vegetation cover or soil and vegetation
moisture).

In the overlap area between two adjacent strips, the same
target on the ground is seen by the radar with a different incident
angle (far and near ranges). Assuming a cosine law for the radar
cross section dependence on incidence angle, the difference in



DE GRANDI et al.: K&C PALSAR MOSAIC OF THE AFRICAN CONTINENT

backscatter due to the near—far range incidence angle difference
is roughly 0.78 dB and is on the order of the PALSAR radio-
metric accuracy. However, this figure in decibels corresponds
to a power DN ratio of 1.196, which would still result in visible
edge effects in the imagery. Other minor interstrip unbalancing
is produced by residual errors in range calibration.

For this reason, the first approximation mosaic needs to be
corrected to arrive at a more radiometrically homogeneous
version, which could be suitable for successive automatic inter-
pretation or the retrieval of biophysical parameters (e.g., forest
biomass). This correction is achieved by an interstrip balancing
algorithm which relies on information derived by along-track
profiles of the backscatter values estimated within the area of
overlap between one strip and those surrounding.

Since the radiometric discrepancies depend on the position
within the strip (land cover and conditions), it was not possible
to define a global stripwise gain factor. Therefore, a gain
function was defined for each strip which depended linearly
on the column coordinate (approximate range direction) of the
strip frame and was a piecewise linear approximation along
the line coordinate (along-track direction) of the ratio between
the strip border profile and the corresponding profiles of the
neighboring strips. A strip frame was defined as the area where
values were available in the geocoded image. Thus, calling
P} (i) and P;'#"" (i) estimates of the mean DN values along
the left and right borders at position ¢ along track of strip k£ and
P (i) and P (i) estimates of the corresponding profiles
of adjacent strips at the left and right of strip k, we define the
discrepancy measures as

Pright (Z)
left
D (Z) Pleft (Z)
Dright - Iie-‘ftl ( ) 3
)= pram ®

An example of the discrepancy measure and the related
gain function is shown in Fig. 5. These discrepancy measures
formed the basis for the mosaic correction algorithm. As the
first step, the measures D(i) were used to locate the strips
affected by large radiometric discrepancies. For this purpose,
the mode of the distribution (density function) of D' and
Drieht was computed. This figure of maximum discrepancy
between adjacent strips was further screened by an operator and
used to flag the strips as anomalous. Automatic detection of
anomalous strips was difficult because the eventual occurrence
in the same mosaic of strips with higher and lower than normal
DN values led to ambiguities in the discrepancy measures.

Once the anomalous strips had been flagged, the algo-
rithm proceeded according to the following principle. Gain
functions were defined for the anomalous strips using D' (7)
and D"'eht(7) measures with respect to normal adjacent strips.
In the event that a second anomalous strip was present near to
the first, then the gain function was computed from the only
available measure (left or right) and assumed constant in range.
This approach limited the possible number of consecutive
anomalous strips to two. Indeed, this condition was satisfied in
the processing of the whole Africa mosaic.
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Fig. 5. Profiles in the along-track direction of mean DN values within the

overlap area at the margin between two adjacent strips (the black line is the first
strip profile, and the red line is the overlapping second strip profile in graph a).
The radiometric differences are not constant along track, which is a fact that
suggests the use of a variable gain function. This gain function is estimated by
a piecewise linear fitting of a smoothed version of the ratio between the two
along-track profiles (red line in graph b). The segments in black are the gain
function resulting from the piecewise linear fitting algorithm.

These gain functions balanced the radiometry of the anoma-
lous strips to match that of adjacent strips. Next, the residual
trends in range calibration and other minor interstrip unbalances
were corrected by sharing the correction weight between the
neighboring strips (moving the trend half way up and half way
down). In this way, the propagation of errors was avoided. In
more detail, the mosaic balancing algorithm is comprised of
the following steps.

1) Construction of a data structure that held information
on the neighbors of each strip. This was achieved by
assigning each strip position in the mosaic’s canvas with
a unique identifier.

2) Computation, for each geocoded strip k, of profiles P
and discrepancy measures Dj. Since one strip can have
several neighbors at the left or right, a data structure ID
was also generated, which kept track of the neighbor for
each value of the profile and how the line coordinates
of the two strips were related. Thus, Py (i) < ID(4).
The structure ID was used when a discrepancy measure
needed to be updated (e.g., where an anomalous strip was
corrected by a gain function). This was the only step that
required ingestion of the actual strip data sets.
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3) Discrepancy analysis and choice of the anomalous strips
based on an interactive procedure.

4) Generation of gain functions for the correction of anoma-
lous strips. As explained previously, these functions were
derived from the discrepancy measures relative to adja-
cent normal strips. The gain functions were computed by
a piecewise linear fitting of the Dy, functions. In fact, the
Dy, functions, being ratios of two samples from speckle
noise, would introduce artifacts if used as multiplicative
factors of the strip amplitude data. The Dy, functions were
first low-pass filtered and downsampled by a factor of 64
to obtain a slow-varying trend. This trend function was
then approximated by a piecewise linear function by an
iterative algorithm. At each step of the iteration, the trend
function was split into an increasing number of consec-
utive segments by halving the length of each segment.
Each segment was fitted linearly, and the global root mean
square (rms) differences between the trend function and
the piecewise linear approximation were computed. The
procedure was halted when the rms differences between
two successive iterations increased or a predefined max-
imum number of divisions was reached. The piecewise
linear trend was then upsampled to the original resolution
by spline interpolation. The gain functions for anomalous
strips were stored as vectors in files to be used later by
the mosaicking procedure and in the compilation of the
second approximation revised mosaic.

5) Upgrade the profiles Pj, of the anomalous strips with
respect to the gain functions defined in the preceding step,
and recompute the discrepancy measures Dy which had
been affected by a change of P.

6) Generate gain functions for all strips from the D}, func-
tions as

. 1
gi" (i) = SLININTERP (D"(i)) + ;

. 1 i
gl () = SLININTERP (Df;ght(i)) + @

N |

The gain function used by the mosaicking procedure for
mosaic balancing was finally

right /- oft [+
I U0
) A]

j+ g1 (5). (5)

The results obtained by the strip balancing algorithms are
shown in Fig. 6. Note that the automatic balancing algorithm
could introduce local artifacts while still adjusting globally
the radiometric balance. This problem can, in particular, be
expected when the margin of one strip is corrupted, for instance,
by a residual power drop at far range. In this case, the error
would propagate to the neighboring strip. Given the extent of
the data set, these local artifacts are difficult to evaluate by
visual inspection. Manual fine tuning of the mosaic radiometric
balancing will be necessary at the stage when continental-
scale thematic products will be generated by automatic pattern
classification.
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(b)

Fig. 6. Result of the strip balancing algorithm (b) when applied to a set
of strips with one radiometric anomaly viz. higher backscattering coefficient
(a) possibly due to vegetation water content and soil moisture change (see
Section III for related analysis).

E. Geocoding

Terrain geocoding of the slant range path data sets was
performed using a module of the SARscape software [15].
The continent-wide DEM of Africa derived from the SRTM
[13] was adopted. This DEM was provided in a geographic
projection (latitude/longitude coordinates) using the WGS-84
horizontal datum, with a pixel size of 3" (i.e., 0.8333 mdeg
equating to approximately 100 m at the equator). The geocoded
PALSAR imagery of the Africa mosaic was generated in the
same projection and spatial resolution of the DEM. This choice
assured the best geometric and radiometric accuracy (see also
Section II-F). Moreover, past experience with thematic applica-
tions based on the Global Rain Forest Mapping (GRFM) data
sets indicated that the adopted pixel spacing was best suited
for regional-scale vegetation mapping studies. Higher spatial
resolution data are more suited to local-scale applications, such
as the detection of selective logging.

The vertical error in the C-band SRTM DEM varies as a
function of the physiographical features and the land cover type.
For instance, the rms vertical errors reported in the literature are
around 5 m over forested areas and around 3 m for bare ground
and water bodies [14]. However, this range of vertical errors
in the DEM would propagate into horizontal displacements on
the order of 4.5 m for the PALSAR observational geometry and
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for elevations up to 1000 m. Since the mosaic was geocoded
with a pixel size of approximately 100 m, the variation in
DEM vertical error was not considered to be an important error
source, and no action was taken to compensate for it.

SARscape geocoding was based on the classical range-
Doppler approach, with this being the only appropriate way to
obtain precision geocoding of SAR data. SAR systems cause
nonlinear distortions (particularly because of the presence of
topography), and unlike in the case of optical data, affine
polynomial transformations (which assume a flat earth) are
insufficient for converting coordinates into a cartographic ref-
erence system.

Mapping from the slant range SAR geometry into a carto-
graphic projection was achieved by considering the parameters
of the synthetic aperture imaging. Therefore, the range-Doppler
approach called for the solution of the following relations:

R¢=S5—-P ©6)
p —Us) ® Rs )
AlRs|
where S and P are the sensor and target position vectors, ¥, —
Uy s the velocity of the target relative to the sensor, and A is the
wavelength of the carrier.

Geocoding was implemented by a backward solution of
the range-Doppler equations. Starting from each point within
the DEM reference system, the corresponding point in the
slant range radar geometry was found using the range-Doppler
equations. Elements from the SAR geometry frame were then
resampled into the earth projection (DEM) coordinate system.
The JAXA K&C path products were not processed at zero-
Doppler and hence, the proper values of the Doppler centroid
had to be used in the solution of (7), with these provided by
JAXA in an auxiliary file in the form of a polynomial approxi-
mation of the Doppler dependence on slant range distance.

Sources of geometric errors in SAR geocoding propagate
from satellite orbit, range time, Doppler frequency and DEM
accuracies [17]. In our case, the assessment of the geocoding
accuracy was conducted a posteriori by establishing common
features within the same DEM used in the geocoding procedure.
As such, the measures of accuracy are relative. Difference
vectors between control points in the SAR image and reference
DEM image were defined through visual inspection, with the
maximum difference vector magnitude being < 1 pixel.

FE. Radiometric Correction for Topographic Effects

SAR radiometry is affected by topography due to changes
of the ground scattering area and local incidence angle, which,
in turn, has an impact on the backscattering properties of the
targets. Correction of these effects is important if the data
are to be used in automatic classification [18], [19]. On the
other hand, such corrections tend to smooth features related to
terrain morphology and render the data set less amenable to
visual interpretation by the expert, at least for certain thematic
applications. Therefore, in our implementation, radiometric
normalizations for topography were applied a posteriori.
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Fig. 7. Effect of the radiometric correction for topographic effects portrayed
in a scene at the border between the Democratic Republic of Congo and
Gabon, featuring moderate relief. The images are a composite of HH-HV-HH
PALSAR mosaic amplitude data.

The normalization entailed two corrections, with these ac-
counting for the effective scattering area and radar cross section
dependence on local incidence angle. The effective ground
scattering area Agjope Was obtained by projecting the pixel area
in slant geometry to the corresponding tilted terrain surface, as
derived by finite differences of DEM adjacent values

Tal's

®)

Asiope = sin 0)4¢

where 60, is the SAR local incidence angle (i.e., the angle
between the incident electromagnetic wave vector d and the
normal at the terrain surface 7). In our case, 7 was derived
directly from the DEM at each pixel (x,y) by calculating the
cross-product of the two 3-D vectors formed by the adjacent
pixels in longitude and latitude, respectively

i = U1 A O )

These two vectors are given by

2 pm 0
0 Uy = 2:Pm
H:erl,y_Hzfl,y Hm,yfl_szyﬁLl

(10)

=
I
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Fig. 8. Subset of the mosaic (RGB channels HH, HV, and HV/HH) portraying an area in the Democratic Republic of Congo (a) before and (b) after topographic
correction. K-means unsupervised clustering and supervised class labeling were applied to this data set to test the impact of the radiometric corrections on the
classification accuracy. Classification from the original data in (c) and from the corrected data in (d).

where p,, represents the pixel size in meters and H , is
the altitude of the terrain at pixel (x,y) as given by the
DEM. Finally, the correction factor for the effective scattering
area was

sin B¢

Carea = (1 1)

sin 6

where 6 is the nominal incidence angle for flat terrain.

The effect of incidence angle on the backscattering coef-
ficient depends on the nature of the target as well as on the
polarization. These effects can be accounted for by the follow-
ing: 1) Postponing the correction to the classification phase,
given that a priori information on the target type at the scale
of the whole mosaic will be available from auxiliary data sets
(e.g., MODerate resolution Imaging Spectrometer (MODIS)
optical data) or 2) Tailoring the correction to one specific
thematic application, accepting that this may be suboptimal for
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Fig. 9. Radiometric correction (mean difference in decibels between HH intensity after interstrip balancing and HH intensity before interstrip balancing) for
each thematic class defined in the global land cover (GLC) map and computed for strip images acquired at different dates. This analysis indicates how different
land-cover classes are affected by strip balancing. For dense vegetation (forest), there is almost no correction (the ground is not reached by radiation; therefore,
moisture does not affect backscatter), while for more open vegetation (woodlands, shrublands, and grasslands), there are large corrections (more than 1.5 dB),
which regard strips acquired mostly from June to mid-July (dry season strips whose intensity need to be increased to match the intensity of adjacent wet season

strips).

a general land cover mapping task. In view of our applications
of interest (primarily mapping of tropical forest and savanna
woodlands where volume scattering is more dominant), the
latter correction was applied.

The angular dependence of forest backscatter is quite well
represented by a cosine function, which accounts for the mod-
ified path length of the wave into the canopy [20]. Therefore,
the related correction factor was

cos

Cangle = (12)

coS Oloc

The backscatter coefficient corrected for the overall effect of
topography was

tan O)o¢

Ugorr (dB) = QOLOglo(DN) + 10L0g10 < né

> — 83 dB.
(13)

The cosine law, when applied globally, will introduce a
distortion of the intensity values for those land cover classes
for which this specific dependence does not apply (e.g., when
surface scattering dominates). As a consequence, care must be

taken for data analysis based on wave scattering modeling (e.g.,
biophysical parameter retrieval by model inversion). Data mod-
ified by the cosine law are intended for specific thematic ap-
plications and supervised class labeling techniques (i.e., when
the relative intensity values are used), while for more physically
based applications (when the absolute backscatter coefficient is
important), the original intensity data, complemented by a local
incidence angle map, should be used. A discussion on the merits
and problems related to cosine function correction can be found
in [21].

The efficacy of the topographic corrections in our thematic
context of interest is documented by the following cases. For a
small subset of the mosaic on the border between Congo and
Gabon (Fig. 7), non-forest areas are more visible in the topo-
graphically corrected image (see, for example, the circled area),
where the backscatter variation associated with relief distortion
is removed. The impact of the topographic correction is also
illustrated for the Democratic Republic of Congo (Fig. 8). Here,
an unsupervised classification based on K-means clustering has
been applied to both uncorrected and corrected HH and HV
images. Greater consistency in the classification using the latter
was obtained.
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III. SEASONALITY EFFECTS

Seasonal effects (and particularly the change in soil/
vegetation moisture and vegetation cover from the dry to the
wet season) can influence the SAR backscatter [22]. As a
consequence, the backscatter can change abruptly from one
strip to another, particularly if the acquisition dates are far
apart. Such an effect is particularly evident in the west of
Africa, where the acquisition dates of PALSAR (June to Au-
gust 2007) spanned over the dry and wet seasons, with the
transition period being around mid-June. Such abrupt changes
in radiometry were balanced (see Section II) to obtain a
seamless data set suitable for regional-scale land cover clas-
sification. Nevertheless, the uncorrected mosaic can provide
information on the biophysical properties of the surface in
terms of soil/vegetation moisture and surface roughness (e.g.,
presence of tussock grasses), although this is a topic of further
research.

To investigate the effects of surface moisture as a function of
surface cover, differences in corrected and uncorrected L-band
HH data at the time of ALOS PALSAR acquisitions (which
were more evident compared to L-band HV) are shown in Fig. 9
for a range of land cover types given by the GLC2000 land
cover map [23]. Radiometric differences of more than 2 dB
were observed for the more open vegetation types (e.g., wooded
savannas) but less for forests. In Fig. 10, a map of the per-
strip radiometric discrepancies is shown [Fig. 10(a)] together
with the corresponding acquisition date (Fig. 10(b); color coded
from August 2007 to June 2008). The map highlights that such
effects are most evident in the data acquired from June to
mid-July.

Lucas et al. [22] highlighted that the backscatter variation
over time was attributed to differences in the moisture content
of the soil (surface and subsurface) and vegetation. As with
this paper, Advanced Microwave Scanning Radiometer—EOS
(AMSR-E) brightness polarization ratio data were obtained for
dates corresponding to acquisitions of the ALOS PALSAR data.
The microwave polarization difference index (MPDI) is defined
as [24], [25]

Tyy — Ton

MPD] = ———
Ty + Ton

(14)

where Ti,;, is the brightness temperature at polarization p. At
6.6 GHz, the MPDI contains information both on the canopy
optical depth and soil dielectric properties through emission.
Therefore, a trend in a yearly time series of MPDI can be
related to changes in vegetation development and water content,
while the residual response, which is more random in time, can
be linked to variations in soil moisture (see Fig. 11). As an
example, the MPDI has been shown to effectively capture the
soil moisture dynamics in the Sahelian region [26].
Preliminary comparisons gave some insight into the
cause—effect relation. The anomaly signature (proportional to
soil moisture) and the seasonal trend (an indicator of vegeta-
tion water content) were mapped for each strip at PALSAR
acquisition dates (see Fig. 12). From these data, regions were
identified, where the vegetation water content was low with
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b)

Fig. 10. Map of the radiometric corrections applied to each strip (a) and
corresponding acquisition date (b). The dates are color coded: June to mid-
July 2007 and 2008 in light green, mid-July to end of July 2007 in dark green,
August to September 2007 in blue, and November 2007 in white. This color
scheme highlights the fact that large radiometric corrections [white in (a)]
concern only the dry season strips (light green) which are surrounded by wet
season strips (blue).

respect to the annual mean [red areas in Fig. 13(a)] and where
the soil moisture was high with respect to the annual mean [blue
areas in Fig. 13(b)]. Assuming a correlation between vegetation
water content, soil moisture, and strip image radiometric imbal-
ance, the red areas should correspond to strip images featuring
a lower backscattering coefficient and requiring a positive cor-
rection, while the blue areas should correspond to strip images
requiring a negative radiometric correction. Comparison with
the actual radiometric correction map (Fig. 10) suggests the
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Fig. 11. Use of AMSR-E polarization difference index (MPDI) to assess

the vegetation water content (seasonal trend) and soil moisture (anomaly).
(a) MPDI profile (fine line) and seasonal trend (thick line). (b) MPDI anomaly.

following conclusion. Matching between the areas affected by
water content and radiometric corrections can be found only
in the western part of the mosaic. Here, at higher latitudes
(where there is a presence of more open vegetation cover), the
radiometric discrepancies between adjacent strips seem to be
mostly caused by the effect of vegetation water content [red
patterns in Fig. 13(a) and high correction values in Fig. 10],
except when this effect is compensated by higher than usual
soil moisture [blue patterns in Fig. 13(b)]. At lower latitudes,
the radiometric imbalance cannot be explained so far by this
type of analysis.

IV. PRELIMINARY THEMATIC ANALYSIS

Preliminary thematic analysis of the Africa mosaic was
conducted with the objective of assessing the potential of
the data set for regional scale (e.g., mapping forest resources
and forest cover changes) and/or local thematic applications.
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(b)

Fig. 12. Maps of (a) anomaly and (b) seasonal trend derived from AMSR-E
data at PALSAR acquisition dates.

The analysis was also undertaken to establish the potential of
using the ALOS PALSAR mosaic in combination with optical
remote sensing (e.g., MODIS and Landsat TM) for generating
a vegetation map of the Africa continent with added-value
indicators (e.g., biomass of wooded savannas). In this section,
results and observations relating to characterization, mapping,
and monitoring of vegetation in the central and western part
of the continent are reported. These observations indicate that
the Africa mosaic offers a rich source of thematic informa-
tion, especially for characterizing the humid forest/savanna
interface, detecting deforestation and logging patterns, and
characterizing dry forest and woodlands at the margin with
Saharan Africa.
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(b)

Fig. 13.  Map of regions where vegetation water content is low with respect
to the mean annual value [red areas in (a)]. These regions should correspond to
strip images featuring a positive correction. Map of regions where soil moisture
is high with respect to the annual mean [blue areas in (b)]. These areas should
correspond to strip images where a negative correction would be needed.

A. Class Separability and the Role of Polarization Diversity

A first approximation test was performed to assess the sep-
arability of some land-use classes of interest in the feature
space of each polarization channel (HH and HV) and of the
combination of two polarization channels. This test highlighted
the importance of polarization diversity.

A supervised classification of L-band HH and HV polariza-
tion data, as well as the HV/HH power ratio, was undertaken
based on training areas for the following classes: lowland rain
forest, mountain forest, savanna, secondary forest, agriculture,
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Fig. 14. Estimates of mean backscattering coefficients and standard deviation
of the mean for selected classes and for HH and HV polarizations and the
polarization ratio HV/HH. These class-separability measures indicate that the
polarization ratio performs much better in this context.

and swamp grassland. Secondary forest refers to a mixture of
degraded forest and rural complex.

The mean of the backscatter values and the backscatter
ratio, together with the standard deviation of the mean, are
shown in Fig. 14. Using single polarimetric channels, land
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Fig. 15.
effects.

Capability of the HV/HH polarization ratio in reducing topographic

covers with relatively low backscatter (agriculture, savanna, and
swamp grasslands) could be separated from those of higher
backscatter (secondary forest, mosaic agriculture/forest, and
forest), although, within each group, confusion occurred among
all classes at HH (in line with the analysis reported in [27]),
while at HV, the rainforest class was well discriminated.
However, the HV/HH power ratio provided better overall
separation, which was attributed partly to reduced dependence
on topographic variation. In particular, the ratio decreased the
effect of terrain slope as the same effective area is illuminated
in both channels and the difference in the radar cross section
to local incidence angle between the HH and HV channels
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(b)

Fig. 16. (a) PALSAR Africa mosaic’s subset of an area near the town
of Pokola, Republic of Congo (1.868 N, 16.252 E), acquired in 2007 and
(b) corresponding image acquired by JERS-1 in the context of the GRFM
project in 1997.

is low. The effectiveness of the HV/HH ratio in reducing
the topographic effects is shown in Fig. 15. Furthermore, use
of the ratio increased vegetation class separability because
relative differences in diffuse versus surface scattering were
considered.

B. Comparison With the GRFM Africa Data Set

The availability of the GRFM radar mosaic, derived from
JERS-1 acquisitions at HH polarization in 1997 [7], allows
ecosystem changes in Central and West Africa over a time span
of ten years to be investigated. Automatic change detection
between the two data sets will pose some challenges since
the two sets were acquired by opposite satellite viewpoints
(ascending orbit for PALSAR and descending for JERS-1).
However, in flat or gently undulating areas, some comparisons
are possible through simple comparison of the imagery, as
highlighted in Figs. 16 and 17.

At the northern part of the Republic of Congo, containing
the town of Pokola, thin linear features are observed (within
the composite of HH, HV, and HV/HH in RGB), with these
corresponding to logging roads (Fig. 16). Such features are not
detected within the GRFM data sets, which suggests change
associated with logging. However, such features may be better
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b)

Fig. 17. (a) PALSAR mosaic’s subset of an area at the margin between the
rain forest and savanna in Central Africa (40° 45’ 36’" N, 160° 49’ 37" E).
The corresponding JERS-1 image acquired in 1997 is shown in (b).

detected within the PALSAR because of the better radiometric
resolution compared to the JERS-1 SAR.

At the interface between the rainforest and savanna
(at ~ latitude 4.4° N), encroachment of the savanna into the
rainforest domain is evident, with this attributed to changes
in fire and management regimes. However, detection of low
biomass vegetation (e.g., savannas) is better using the HV
channels, and so, some caution is needed in interpreting these
observations.

C. Differentiation of Vegetation Types

A preliminary investigation into the ALOS PALSAR mosaics
indicates that differentiation of grass and woody savannas
and mapping of flooded forests, mangroves, plantations, and
secondary forests are achievable. Within the Congo Basin,
differences between forests (bright azure), woody (shrub/tree),
savannas (orange), and grass savannas (brown) were evident
within the ALOS PALSAR data (Fig. 18), with these confirmed
through reference to Google Earth optical imagery. ALOS
PALSAR observations of swamp forest along the Congo River
near Brazzaville (Fig. 19) highlight the enhancement of L-band
HH backscatter from inundated forests. The different shades
of orange relate to the state of the surface, with this varying
from very wet to flooded. When standing water is present under
the canopy, the double-bounce interaction between the surface
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Fig. 18. Mosaic of savanna patches intertwined with the rain forest as
portrayed (a) by a PALSAR image (color composite RGBs are HH, HV, and
HV/HH) and (b) by a Google Earth optical image.
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4

Fig. 19. (a) PALSAR image (color composite RGBs are HH, HV, and
HV/HH) of the swamp forest along the Congo river near Brazaville. The
different orange shades in the swamp forest at the center of the image indicate
the soil state: from very wet to flooded. (b) Optical image from Google Earth is
shown for comparison.

and tree trunks increases, leading to greater HH scattering.
By contrast, the HV scattering coefficient, which is associated
largely with volume scattering from the canopy, remains similar
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Fig. 20. Coastline with mangrove forests near the Nigeria—Cameroon border
as portrayed (a) by a PALSAR image (color composite RGBs are HH, HV,
and HV/HH) and (b) by a Landsat image. Radar backscatter distinguishes
two types of mangroves (flooded in orange shades and nonflooded in blue
shades). Comparison with the Landsat image indicates that this distinction is
not possible using optical data.

or can increase only if the crown-stem interaction term is not
negligible. Logging roads are also visible within the primary
forest (blue) at the left of the image.
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Fig.21. Analysis of the thematic classes’ separability provided by the HV/HH

ratio for the data set in Fig. 20. Flooded and nonflooded vegetation classes can
be well discriminated using the polarization ratio.

Similarly, mangroves near the border of Nigeria and
Cameroon (Fig. 20) are discernible, with variations in backscat-
ter attributed to different structures associated with different
species types but also different levels of tidal inundation. Such
differences are less evident within the Landsat imagery avail-
able through Google Earth. Mangroves can be discriminated
from rain and swamp forests by the lower HV backscatter-
ing coefficient (about 1.5 dB lower). Flooded and nonflooded
vegetation can be discriminated by using the HV/HH ratio, as
documented by estimates of the class HV/HH mean and vari-
ance shown in Fig. 21. The swamp and the rain forest classes
cannot be mapped using only one-point statistics (they are
not radiometrically pure classes). Two-point statistics (texture)
need to be called into play [28].

Plantations are also evident within the PALSAR data, with
an example given for an area near Kribi, Cameroon (Fig. 22).
The palm oil plantations in this area are evident (bright orange)
within the composite of HH, HV, and HV/HH but are not within
the corresponding Landsat image. By contrast, plantations of
Hevea species are less evident. The combination of ALOS
PALSAR and data from optical satellite sensors is therefore
advocated for classifying plantation developments. As in other
studies [27], differentiation of secondary from primary forest
using L-band SAR data is complex and cannot be achieved
easily using single-channel data alone. However, the HV/HH
ratio (Fig. 23) shows differences between the rural complex
(with secondary forests) and the surrounding primary forests,
as observed within the Google Landsat image (at the right),
although delineation is likely to be a significant challenge.

V. SUMMARY AND CONCLUSION

Using ALOS PALSAR L-band HH and HV strip data ac-
quired in 2007 and as part of the JAXA K&C Initiative, a
mosaic of the African continent was generated at 100-m spa-
tial resolution. A range of preprocessing routines (radiometric
calibration, geocoding, incidence angle, and topographic cor-
rection) was implemented to facilitate combining the strip data
into the mosaic. However, the backscatter (particularly at HH
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Fig.22. (a) Plantation area near Kribi, Cameroon, as seen in a PALSAR color
composite image. (b) Same area is shown in the Landsat color composite image
(band 4-band 5-band 6 in the RGB channels). Bright orange patches represent
palm oil plantations in the PALSAR image, but they cannot be detected in
the optical image. On the other hand, Hevea plantations appear in the Landsat
image (orange patches) but cannot be seen in the PALSAR image.

polarization) was enhanced in some strips, with this attributed
to increased vegetation and soil moisture at the time of the
ALOS PALSAR data acquisition.
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(b)

Fig. 23. Area in South East Cameroon where a secondary forest (a rural
complex) emerges from the primary forest as seen (a) from a PALSAR
polarization ratio image and (b) from a Landsat image.

A number of potential applications for the mosaic have
been highlighted, including mapping of mangroves, plantations,
secondary forests, and boundary between savannas and forests.
Comparison with the JERS-1 SAR mosaics suggests significant
potential for detecting changes in vegetation cover associated
with deforestation and encroachment.
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