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 

Abstract— Target detectors using polarimetry are often 

focused on single targets, since these can be characterized in a 

simpler and deterministic way. The algorithm proposed in this 

paper is aimed at the more difficult problem of partial target 

detection (i.e. targets with arbitrary degree of polarization). The 

authors have already proposed a single target detector employing 

filters based on a geometrical perturbation. In order to enhance 

the algorithm to the detection of partial targets, a new vector 

formalism is introduced. The latter is similar to the one exploited 

for single targets but suitable for complete characterization of 

partial targets. A new feature vector is generated starting from 

the covariance matrix, and exploited for the perturbation 

method. Validation against L-band fully polarimetric airborne E-

SAR, and satellite ALOS-PALSAR data and X-band dual 

polarimetric TerraSAR-X data is provided with significant 

agreement with the expected results. Additionally, a comparison 

with the supervised Wishart classifier is presented revealing 

improvements. 

Index Terms— Synthetic Aperture Radar (SAR), Polarimetry, 

Target Detection, Classification. 

I. INTRODUCTION

HE polarization of the electromagnetic field scattered by

an object keeps valuable information about the scatterer 

and this can be exploited to detect or classify specific targets. 

The possible applications are several, from surveillance or 

land use monitoring to biophysical parameter extraction [1-4]. 

In polarimetry, one of the most fundamental distinctions 

among scatterers is between single and partial targets. A 

single target scatters a stable (and deterministic) polarization 

state and it can be completely described with a single 

scattering (Sinclair) matrix or equivalently a scattering vector, 

defined in (1): 

    1 2 3 4
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where [S] is the scattering matrix, Trace(.) is the sum of the 

diagonal elements of the matrix inside, and   is a complete 

set of 2x2 basis matrices under a Hermitian inner product [1, 

2, 5]. In case of a reciprocal medium and monostatic sensor, 

k  is a three dimensional complex vector. The scattering 

vector representation was revealed more advantageous than 

the scattering matrix for the detector proposed in this paper 

since it works with vectors in a linear geometric space (3 

dimensional complex, SU(3) [6, 7]) where inner products are 

easier to define. Finally, the scattering mechanism is defined 

as a normalized vector shown in (2) 

k k  . (2) 

On the other hand, targets observed by a SAR system are 

generally not idealized single scattering targets, but a 

combination of different targets inside the same resolution 

cell, which we refer to as a partial target [8]. The latter can be 

modeled as a stochastic process, consequently a single 

scattering matrix is not sufficient for its complete description 

and the second order statistics must be extracted. The target 

covariance matrix can be estimated as shown in (3): 

  *T
C kk , (3) 

where .  is the finite averaging operator. In general, if the 

scattering vector (in a generic basis) is  1 2 3, ,
T

k k k k , with 

1k , 2k and 3k complex numbers, the covariance matrix will 

be 

 

2 * *

1 1 2 1 3

2* *

2 1 2 2 3

2* *

3 1 3 2 3

k k k k k

C k k k k k

k k k k k

 
 
 

  
 
 
 

. (4) 

The methodology proposed in this paper takes advantage of 

the polarimetric coherence [1, 2]. If two scattering 

mechanisms 1 and 2 are considered, the polarimetric

coherence is 
*

1 2

* *

1 1 2 2

( ) ( )

( ) ( ) ( ) ( )

i i

i i i i

 


   
 , (5) 

where i is the image evaluated as 
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  *T

jji k    with 1,2j   . (6) 

Or in terms of the target covariance matrix [1]: 

 

     

*

1 2

* *

1 1 2 2

T

T T

C

C C

 


   
  . (7) 

Our objective in this paper is to design a detector using this 

coherence.  

In this paper, we propose a new partial target detector, which 

can be easily evolved into a land cover classifier. In the 

literature, the issue of detection and classification exploiting 

radar polarimetry is extensively treated. Two main 

methodologies can be delineated. The first one lists a series of 

algorithms based on physical approaches. For instance, 

several coherent and incoherent target decompositions were 

proposed [1, 2, 8]. The other family of algorithms exploits the 

statistics of the scattering process [9-13]. The most common 

classifier considers a maximum likelihood (ML) of the 

covariance matrix modeled as a Wishart probability 

distribution [14]. The classification performance can be 

substantially enhanced by adding more information and 

exploiting multi-frequencies or interferometric data. In the 

literature, many examples of the benefits provided by these 

methodologies are reported [3, 4, 15-18].  

The paper is structured as follows, in section II we first review 

the structure of the single target detector already published in 

[19-21]. We then develop an important geometrical 

interpretation of the filter which allows us to develop in 

section III a generalized form of the detector for depolarizing 

targets. In section IV we then show how this detector can be 

used to generate a supervised and unsupervised classifier 

before considering in section V its application to air and space 

borne radar data sets.  

II. SINGLE TARGET DETECTOR 

A. Physical derivation 

A single target detector was already developed and 

published by the authors in [19-21]. It can be summarized as 

follows: 

given a scattering mechanism T  proportional to the 

target to be detected, and given a second scattering 

mechanism P  close to T  within the target space, the 

polarimetric coherence between the images formed with P  

close to T  is high if in the averaging window the component 

of interest (proportional to T ) is stronger than the other 

two orthogonal components.  

First step is to define a basis for the target space where the 

target of interest lies exclusively on one component of the 3 

dimensional complex vector k . This operation is always 

possible and requires the multiplication by a unitary matrix 

[1]. In the following, the scattering mechanism after the 

change of basis is therefore always regarded as 

 1,0,0
T

T  . The covariance matrix [C] will be calculated 

starting from this basis. The resulting image when the target 

T  is selected is  

  1Ti k  . (8) 

In (8), the second and third components of the scattering 

vector (i.e. 
2k  and 3k ) disappear, since the target of interest 

lies exclusively in 
1k . For this reason, 2k  and 3k  are 

considered as clutter.  

The second scattering mechanism P  (i.e. perturbed 

target) is obtained by rotating slightly the vector T  in the 

polarimetric space. In a first attempt, the rotation can be 

accomplished using the Huynen parameters [22] or the   

angle parameterization [1, 2, 23] (the procedure is explained 

more thoroughly in [19-21]). Having obtained the expression 

for the perturbed target in the basis exploited by the 

parameterization, the same change of basis that makes 

 1,0,0
T

T   must be performed on P . Consequently, 

 , ,
T

P a b c  , with a, b and c complex numbers. 

Considering T P  , we have 1a  , 0b   and 

0c  .  

The polarimetric coherence can then be estimated as 

 
*

* *

( ) ( )
,

( ) ( ) ( ) ( )

T P

T P

T T P P

i i

i i i i

 
  

   


, (9) 

where: 
2* * *

1 1 2 1 3( ) ( )T Pi i a k b k k c k k     , 

2*

1( ) ( )T Ti i k   , (10) 

     

2 2 2 2 2 2*

1 2 3

* * * * * *

1 2 1 3 3 2

( ) ( )

2Re 2Re 2Re .

P Pi i a k b k c k

ab k k ac k k cb k k

     

  

 

Finally, the detector is obtained setting a threshold on the 

coherence amplitude:  

 ,T P T    , (11) 

where T is a threshold. In (11) the phase of the coherence 


 does not seem to have any clear physical interpretation. 

Therefore, the proposed algorithm is currently focused on the 

exploitation of the amplitude alone. However, the authors 

leave as future work the analysis of the phase. Unfortunately, 

  cannot be used as a detector, since the cross products 

between the components of the scattering vector introduce 

biases, in case the components are correlated with each other 

[19-21]. For instance, the correlation can be introduced by a 

single target which has projection over both target and clutter 

components. Geometrically, the latter can be any single target 
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which does not lie or is orthogonal to the complex plane 

spanned by the two clutter components. In order to remove the 

bias, the cross products must be neglected. The polarimetric 

coherence operator is substituted with another operator 

working on the space of the target components power, as 

shown in (12-14): 

 
 

     

*

* *
,

T

T P

T Pd
T T

T T P P

P

P P

 
  

   
 , (12) 

where:   

2

1

2

2

2

3

0 0

0 0

0 0

k

P k

k

 
 
 

  
 
 
 

, (13) 

or    2 2 2

1 2 3, ,P diag k k k . (14) 

The modified coherence amplitude in (12) will be regarded 

as the detector. The latter is dependent exclusively on the 

power components of the scattering vector k. 

 

2

1

2 2 2 2 2 2 2

1 1 2 3

d

a k

k a k b k c k

 

 

. (15) 

After dividing both numerator and denominator by 

2

1a k , the amplitude of the polarimetric coherence 

becomes: 

2 2
2 2

2 3

2 22 2

1 1

1
.

1

d

k kb c

a ak k

 

 

 (16) 

If the powers are defined as 
2

1TP k , 
2

2 2CP k , 

2

3 3CP k , the expression of the detector can be simplified: 

2 2

2 3

2 2

1
.

1

d

C C

T T

b cP P

P Pa a

 

 

 (17) 

We regard to  
2

b a  and  
2

c a  as Reduction Ratios 

(RedR). The perturbed targets are chosen in order to have 

small RedR. Looking at (17), the lowering effect played by the 

RedR is clear. If the clutter powers are lower than the target 

power the two terms on the denominator are negligible and 

1d  .  

The final expression of the detector sets a threshold on (17):  

 ,T Pd T    . (18) 

In [19-21], the optimization of the parameters and the 

threshold selection are treated. In particular, the optimal 

choice (i.e. it does not present biases) of the perturbed target 

in absence of a priori information about clutter is b c . If 

the total power of the clutter is indicated with 
2 3C C CP P P   

the detector is further simplified: 

1

1

d

C

T

P
RedR

P

 



. (19) 

The detector derivation is based on the scattering vector 

formalism and the possibility to describe a single target with a 

three dimensional complex vector. On the other hand, partial 

targets need a wider algebraic space (i.e. with more 

dimensions). In order to proceed in the development and 

extend the detector to partial targets, a useful geometrical 

generalization must be provided, which will allow the 

extension to a higher dimensional space. 

B. Geometrical interpretation 

In this section, a new geometrical interpretation of the 

polarimetric detector will be provided. Given a vector x in the 

target space (SU(3)), a linear transformation can be defined as  

[ ]A x b ,  (20) 

where [A] is a 3x3 matrix (in general it can be any 3xN 

matrix). [A] is a transformation of the vector x into a resulting 

vector b, which lies in the subspace spanned by the columns 

of [A] (or its null subspace) [24, 25]. If [A] is a diagonal 

matrix the columns of [A] will always represent a basis for the 

entire 
3

 space (as long as all the elements of the diagonal 

are different from zero). In particular, if [A]=[I] the 

transformation is from the entire space to the entire space 

using the same ortho-normal basis. Clearly, this 

transformation leads to b=x. In case [A] is a diagonal matrix 

with at least one element different from 1, the basis used is not 

the ortho-normal one (i.e. the axis are not normalized). 

The matrix [A] can be generated as   1 2 3( , , )A diag k k k , 

where again  1 2 3, ,
T

k k k k  is the scattering vector in the 

basis which makes  1,0,0
T

T  . If the coordinate basis is 

defined as  1 1,0,0
T

e  ,  2 0,1,0
T

e   and  3 0,0,1
T

e   

the transformed vector b is  

1 2 31 1 2 2 3 3b x k e x k e x k e      , (21) 

where  1 2 3, ,
T

x x x x . Therefore, [ ]A x b  can be 

interpreted as a weighting of the components of x, where the 

weights are the diagonal elements of [A]. The metric of the 

space will be clearly redefined and all the vectors will be 

stretched along a preferential axis. 

The standard Euclidean inner product between T  and 

P  can be written as 
*T

T P   [24, 25]. The weighting of the 

scattering mechanism can be accomplished with  

[ ] T TA b   and [ ] P PA b  . (22) 

The detector is based on the calculation of an inner product 
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between target and perturbed target in a basis set which 

amplifies the direction represented by the observed target. 

Clearly, the inner product 
*T

T Pb b  cannot be calculated pixel 

by pixel, since the pixel statistical variation (i.e. speckle) can 

result in improper estimation of the actual observed target [26-

29]. The average over independent realizations is required to 

obtain reliable results. Therefore, the inner product 
*T

T Pb b  is 

substituted with the averaged one  

   
*

*

* *

*

[ ] [ ]

[ ] [ ]

[ ] ,

T
T

T P T P

T T

T P

T

T P

b b A A

A A

P

 

 

 

 

 



  (23) 

where again    2 2 2

1 2 3, ,P diag k k k .  Please note, 

the expression of [P] is exactly equivalent to the one obtained 

in (13).  

Last step is the normalization of the weighted inner 

product: 

 

     

*

* *

T

T P

d
T T

T T P P

P

P P

 


   
 . (24) 

The latter represents the same expression obtained with the 

physical approach. 

Now, we want to address the question: why the weighted 

inner product results in a detector? When the standard 

normalized inner product between T  and P  is estimated, 

the correlation (which increases the value of the coherence) is 

introduced solely by the first component. The second and third 

components cannot be correlated since T  has only one non-

zero component. Specifically, the amplitude of the correlation 

is equal to the cosine of the angle   between the two vectors 

(since they are normalized) [24, 25]: 

*
cos

T

T P a    . (25) 

Since the first component is the only one bringing 

correlation, the inner product varies on the base of the amount 

of weight allocated to the first component (compared to the 

others). Generally, the weighting has two main effects on the 

scattering mechanisms: a rotation and a rescaling. The 

rescaling can be neglected since the inner product is 

subsequently normalized. On the other hand, the rotation 

affects only P , because T  cannot change direction and it 

will always be along the first component, 

   A ,    1T T Tb A k   . (26) 

The perturbed target becomes: 

  2 31 2 3 1 2 2[ ] , ,
T

P T C Cpb A k a k b k c k a k b k c        , (27) 

where   2 0,1,0
T

C   and  3 0,0,1
T

C  . 

In conclusion, if the rotation makes the resulting vector Pb  

closer to Tb  the angle between them reduces and the 

coherence increases. By definition, the normalized inner 

product between the weighted scattering mechanisms is the 

detector, consequently the angle between Pb  and Tb  

becomes  1cos d  . This angle decreases after the 

weighting if  

   1 1cos cosd a      , (28)  

d a  . (29) 

Geometrically, this occurs when the observed target has a 

1k  component stronger than the others. In other words, the 

correlation increases if P  is stretched toward a direction 

where the 1k  component is stronger. 

Clearly, the fact that the angle is reduced is not sufficient to 

guarantee detection, since the coherence d  is required to be 

over the threshold as well. We can now use this idea to 

construct a new detector for depolarizing targets. 

III. PARTIAL TARGET DETECTOR 

A. Formulation 

In order to extend the detectability of the algorithm to 

partial targets, a new formalism similar to the one used for 

single targets must first be introduced. To this end, a feature 

partial scattering vector is defined: 

    1 2 3 4 5 6

2 2 2 * * *

1 2 3 1 2 1 3 2 3

, , , , ,

, , , , , .

T

T

t Trace C t t t t t t

k k k k k k k k k

   

 
 

 (30) 

where   is a set of 6x6 basis matrices under a Hermitian 

inner product. The t vector lies in a subspace of 
6

 (it is 

closed for sum and scalar multiplication and includes the 

zero). In particular, the first three components are real positive 

and the second three complex. To have physical feasibility the 

last three elements must obey the Cauchy–Schwarz [24] 

inequality, that always happens since [C] is a covariance 

(positive semi-definite) matrix 

 
*T

x y x y  : (31) 

1 2 4t t t , 
1 3 5t t t , 

2 3 6t t t . (32) 

Any physically realizable t represents completely and 

uniquely a partial target. In particular, the partial target to be 

detected and the perturbed target are regarded as  

     ˆ
T T Tt Trace C Trace C   , 

     ˆ
P P Pt Trace C Trace C   . (33) 

The latter could be seen as the equivalent of the scattering 

mechanisms for partial targets. Although the optimization of 

the perturbation has mathematical foundations [19-21], 

physical meaning can be attributed to the process. For 
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instance, the covariance matrix for the target  TC  can be 

mapped into a Kennaugh matrix  TK [1]. Subsequently, the 

Huynen transformations can be performed on the Kennaugh 

matrix generating a slightly different target  PK [22]. Finally, 

the perturbed Kennaugh matrix  PK  is mapped back into a 

covariance matrix  PC  (and the vector ˆ
Pt ). The latter is 

merely an example of physical perturbation of the partial 

target and any other parameterization can be exploited. 

Again, a change of basis is performed which makes the 

target of interest lie only in one nonzero component:  

 ˆ 1,0,0,0,0,0
T

Tt   and  ˆ , , , , ,
T

Pt a b c d e f . (34) 

In case the perturbation is performed without any physical 

model, ˆ
Pt  must be selected preserving the physical 

feasibility: 

, ,a b c   , 

ab d , ac e , bc f , (35) 

2 2 22 2 2 1a b c d e f      .  

Additionally, by definition of perturbed target:  

a b , a c , a d , a e , a f .  (36) 

The elements on the diagonal of [A] are the components of 

the partial scattering vector t after the change of basis which 

makes  ˆ 1,0,0,0,0,0
T

Tt  . The change of basis can be 

achieved by multiplying by a unitary matrix, where the 

columns can be derived by solving a linear equation system, 

where the unknowns are 5 rotation angles and 5 phase angles.  

A simpler way to generate [A] considers a Gram-Schmidt 

ortho-normalization (GS) in 
6

, where the first axis is the 

vector ˆ
Tt . The components of [A] are calculated with the 

inner product of the basis for the observable t. If 1
ˆ

Tu t , 

2u , 3u , 4u , 5u  and 6u  represent the ortho-normal basis 

then  

   * * * * * *

2 3 4 5 6
ˆ , , , , ,

T T T T T T

TA diag t t u t u t u t u t u t . (37) 

The detector can be achieved with 

   
*

* **ˆ ˆ ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ]
T

T TT

T P T P T PA t A t t A A t t P t  , (38) 

where    1 2 3 4 5 6, , , , ,P diag P P P P P P . (39) 

 
 

     

*

* *
,

T

T P

T Pd
T T

T T P P

t P t
t t

t P t t P t

  , 

2 2 22 2

3 5 62 4

2 2 2 2 2

1 1 1 1 1

1
.

1

d

d e fP P PP Pb c

a P a P a P a P a P

 

    

 (40) 

The partial detector is formally similar to the single one in 

(17) (except for the number of terms), consequently all the 

mathematical optimizations performed for the single target 

detector can be adopted here [19-21]. Specifically, in absence 

of a priori information about the clutter, the perturbed target 

is chosen as 

b c d e f    . (41) 

If we define the clutter as 
2 3 4 5 6cP P P P P P     , the 

target as 
1 TP P  and  

2
RedR b a   the detector 

becomes 

1

1

d

C

T

P
RedR

P

 



. (42) 

The detector is finalized with a threshold T on d . The 

result of the algorithm, here referred to as detection mask, is 

zero if the detector is under the threshold or equal to the 

detector if it is above the threshold. In other words: 

   

     

, 0       ,

, ,        , ,

d

d d

m x y if x y T

m x y x y if x y T



 

 


 

 (43) 

where m is the image mask,  ,x y  represents the 

coordinate of a generic pixel. Using this typology of mask 

(and not a 1 or 0 binary format), we want to preserve 

information about the dominance of the target in the cell. This 

will be useful for the design of a classifier as we show in 

section IV. 

B. Physical feasibility 

 In this section, clarifications about the uniqueness and the 

Gram-Schmidt ortho-normalization (GS) are provided. 

The former is guaranteed since, by definition, any partial 

target can be described by a covariance matrix [C] 

(specifically, 9 real independent parameters). Additionally, all 

the independent elements of [C] are unequally mapped in the 

feature vector t. In the proposed 6 dimensional complex space, 

any partial target can be uniquely related to a single feature 

vector t, independently on the target degree of polarization: 

from pure (single targets) to completely unpolarized (random 

noise). In conclusion, there is a 1 by 1 relationship between 

the physically feasible t and any partial target.  

Regarding the GS, generally, the resulting basis does not 

represent a set of physical feasible targets, except for the first 

axis, which is calculated starting from a physical realizable 

vector ˆ
Tt . GS generates a basis for 

6
 but not all the vectors 

of 
6

 are physically feasible. This does not however 

represent a limitation of the detector. The axes 2u , 3u , 4u , 

5u  and 6u , obtained with the GS ortho-normalization, span a 

subspace of 
6

 which is completely orthogonal to the first 

axis ˆ
Tt  (i.e. the orthogonal complement of ˆ

Tt  in 
6

). This 

means that given a vector  
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2 3 4 5 62 3 4 5 6u c u c u c u c u c u          ,  (44) 

we have 

1
ˆ

Tu t u  , 
2 3 4 5 6, , , ,c c c c c C  . (45) 

The first vector of the GS basis 1u  is always physically 

realizable, since it is equal to ˆ
Tt  (i.e. the target to be 

detected). We refer to the orthogonal complement subspace of 

ˆ
Tt  in 

6
 as Z. Clearly only a portion (i.e. subspace) of Z 

represents physically feasible targets. Moreover, a physically 

feasible target extracted from the data, will generally have a 

component in the Z subspace, called z. The length of z is 

independent of the basis used to represent Z (since the length 

is an invariant property of the vector z) [24, 25]. Therefore, 

we do not require that 2u , 3u , 4u , 5u  and 6u  are physically 

feasible vectors, as long as they represent a basis for Z.  

As (42) shows, we are interested in TP  while CP  represent 

the rest of the power. Clearly, equal results are obtained 

starting from (42) and considering C tot TP P P  , where  

*T

totP t t   (46) 

is the total power of t evaluated in the original basis. The 

final simplified expression of the detector is 

*2

22 *

1 1

1 1
1 1

1 5 ˆ

d

Ttot

T T

T

T
P

RedR b t t
P

b t t

   
   

          
 

.

 (47) 

Summarizing, the detector obtained with the projections on 

the GS basis and the one with the total power are entirely 

equivalent when b c d e f     (i.e. absence of a 

priori information about clutter), since b, c, |d|, |e| and |f| can 

be collected, and the expression of CP  can be substituted. 

C. Parameter selection 

The partial target detector proposed in this paper shares the 

same mathematical formalism of the single target detector in 

[19-21]. As a consequence, all the mathematical optimizations 

can be extended to this case. For the sake of brevity, we only 

present the selection of threshold and RedR. This can be 

accomplished starting from a dispersion equation based on the 

angular distance between the observed partial target and the 

one of interest. 

After some algebraic manipulation of (42) and substituting 

1
1totT

C T

PP
SCR

P P SCR
    , we can find the dispersion 

expression: 

 
2

1 1 1
0 1C

T

P

P SCR RedR T

 
    

 
. (48) 

The first inequality is consequence of the fact that the 

power of the clutter cannot be bigger than the total power. 

Equation 48 exhibits a relationship among Signal to Clutter 

Ratio (SCR), threshold and RedR. Here, the SCR has a slightly 

alternative geometrical interpretation compared with classical 

detection. In general, it represents the ratio between the power 

of target and clutter located in the scene. Now, this ratio 

corresponds to a measure of the angular distance between the 

observed vector (i.e. target) and the one of interest. Its 

selection conforms to selectivity requirements of the detector 

and it can be related to the target properties. On real data, the 

extraction of the second order statistics (and consequently the 

characterization of a partial target) is not ideal since a finite 

averaging is needed and the target of interest may not be 

completely homogeneous. For this reason, the extracted t 

vector of a real target still presents statistical variation and 

could be seen as a random variable. In general, when the 

target of interest is expected to be polarimetricaly stable, a 

higher SCR can be utilized, leading to a smaller false alarm 

rate. With polarimetricaly stable we mean that the angular 

distance of its t vector instances (realizations) is small (i.e. the 

representation of the target is stable over all the scene). 

However, if the target is anticipated to change slightly over 

the entire scene, a smaller SCR is to be preferred, which leads 

to higher probability of detection. In the following 

experiments, the SCR for detections is chosen equal to 50, 

since this value seems to provide the best compromise 

between probability of detection and false alarm. However, 

common values can go from 2 to 100.  

Having defined the SCR, two unknowns remain in (48). 

Therefore, one unknown can be expressed as function of the 

other. Equation 49 presents one of the two possible solutions 

of (48) when the equality sign is substituted: 

2

1
1RedR SCR

T

 
  

 
. (49) 

The threshold can be freely set. In the following 

experiments T=0.98, although any other values smaller than 1 

could be theoretically employed. However, a relatively high 

value of T entails a smaller variance of the polarimetric 

coherence, which increases the statistical performances of the 

detector. 

Once selected T, the last parameter (i.e. RedR) can be set. In 

our experiments, RedR=1.85. 

D. Dual polarimetric detection 

This final section is dedicated to the use of dual 

polarimetric data. The proposed algorithm is based on a 

geometrical operation which is theoretically independent on 

the dimensions of the space considered, as long as it is 

Euclidean. Consequently, it can be exported to any Euclidean 

vector space. The demand of quad polarimetric data is a 

physical requirement, since the acquisition of all the elements 

of the scattering matrix is needed to characterize uniquely a 

generic depolarized target. Using dual polarimetric data, only 

a portion of the target space can be explored and the target 

behavior in the rest of the space generally cannot be retrieved. 

For this reason, in order to obtain optimal results, it is strongly 

suggested to exploit the detector with quad polarimetric data. 
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However, in case only dual polarimetric data are available, the 

algorithm can still be executed as we now show.  

The final formal expression of the detector does not suffer 

significant changes: 

*2

22
*

1 1

1 1
1 1

1 2 ˆ

d

Ttot

T
T

T

T
P

RedR b d d
P

b d d

   
   

          
 

.

 (50) 

where the d vector is the dual polarimetric counterpart of t: 

    1 2 3

2 2 *

1 2 1 2

, ,

, ,

T

d d

T

d Trace C t t t

k k k k

   

 
 

. (51) 

 dC  is a 2x2 coherency matrix calculated starting from the 2 

dimensional complex scattering vector for dual polarimetric 

data. 

IV. CLASSIFIER 

A. Formulation 

A classifier can be designed starting from the partial target 

detector, where any class (i.e. partial target) is described by a 

specific covariance matrix  iC . The proposed partial target 

detector is exploited to generate several masks for the specific 

classes. If only few areas are of interest (e.g. different states of 

sea ice) a small number of classes are sufficient (the extreme 

scenario is with one single detection mask). Otherwise, 

several covariance matrices must be taken into account. The 

classification output is similar to the supervised Wishart 

approach [16, 30].  

The detections of the classes are performed in series 

generating a stack of masks: 

   

     

, 0       ,

, ,        , ,

i i

i i i

m x y if x y T

m x y x y if x y T



 

 


 

 (52) 

where 1,...,i n  indicates the respective class. 

The selection of the SCR (or equivalently the threshold) has 

the purpose of generating the class of unknown targets. In 

case that the class of unknown targets is not required, the 

threshold of the detectors can be eliminated (or set to zero). In 

this case, the discrimination among classes is exclusively 

performed on the base of the magnitude of d .  

Subsequently, the mask with the maximum value is selected 

for each pixel. The normalized inner product returning the 

higher value is the one with the smallest angular distance to 

the regarded class. If 
1,..., nm m  are the n obtained masks, a 

pixel is allocated to the class Y  if: 

 
1,...,

maxY i
i n

m m


 . (53) 

In an actual implementation of the classifier, the partial 

target detector is executed n times one after the other. In any 

execution, the vector representing the specific class is 

selected. The classifier is completed by a simple algorithm 

which pixel by pixel selects the mask presenting the maximum 

value. The classifier does not require iterations, since it 

converges after the first attempt. 

B. Parameters selection 

A straightforward strategy could be to simply use the same 

parameters exploited for standard detection. However, we 

believe the selection of SCR=15 reveals a significant 

advantage. As shown by (53), the classifier decision rule is 

based on the comparison of different masks and selection of 

the maximum. In this way, the algorithm assigns the pixel to 

the class with a characteristic vector closer to the observed 

one. With a lower SCR (i.e. lower selectivity), we are able to 

detect observed targets presenting some slight dissimilarity 

from the class characteristic vector. For instance, the dense 

forest class should include a relatively large collection of 

volumes (e.g. clouds of particles with different shapes). 

Clearly, when the difference is too large, a new class must be 

introduced.  

As a general consideration, in the classifier architecture, the 

use of a detection threshold is exclusively related to the 

rejection of unknown targets. In case this is not required, we 

could choose SCR=0 (which corresponds to T=0) and the 

discrimination would be performed only by the maximum 

selection (53). 

C. Supervised and Unsupervised versions 

Depending on the strategy exploited to extract the class 

coherency matrix, the classifier can be supervised or 

unsupervised.  

The supervised version requires the user interaction for the 

selection of known areas. This operation can be easily 

accomplished on a RGB Pauli composite image. 

The unsupervised version trains the detector exploiting 

polarimetric scattering models. A large assortment of models 

was developed in the past [1]. Considering the proposed 

algorithm represents a general geometrical operation on 

polarimetric data, any model can be equally exploited. 

Therefore, it is left to the user to select the most appropriate 

model for the particular application of interest. We present 

examples of both supervised and unsupervised detection and 

classification in section V. 

V. VALIDATION 

A. Datasets employed 

In order to provide a large validation of the detector, several 

datasets with different settings and scenarios were employed.  

The first quad polarimetric dataset was acquired by the E-

SAR airborne system of DLR (German Aerospace Agency) 

during the SARTOM campaign (Landsberg, Germany) in 

2006 [31]. One aim of the campaign was target detection 

under foliage, for this reason several manmade targets were 

deployed on open field and under forest canopy cover. The 

frequency band is L and the image has a spatial resolution of 
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1.1m in azimuth and about 2m in range. 

Subsequently, a quad-polarimetric L-band ALOS-PALSAR 

dataset is exploited for the detection of distributed targets. In 

particular, we consider detection of historical firescars based 

on their depolarization behavior. The images were acquired in 

Canada close to the town of Manning, Alberta and present a 

mix of agricultural and forested areas. The pixel size of ALOS 

quad polarimetric data is around 24m x 4.5m (ground range x 

azimuth). In order to process the images an initial multilook of 

1 x 5 (range x azimuth) was followed by a boxcar averaging 

of 9 x 9. The latter led to a final equivalent number of looks 

(ENL) equal to 253. 

Moreover, another quad-polarimetric L-band ALOS-

PALSAR scene is exploited for a further investigation of land-

use classification. The latter was acquired in China in May 

2008, close to the city of Taian and the mountain of Culai and 

represents a mixed urban, agricultural and mountain forest 

sites. 

 

 

     
 (a) HH polarization (b) STD: odd bounce (c) STD: even bounce 

     
 (d) HV polarization (e) PTD: odd bounce (f) PTD: even bounce 

Figure 1 Comparison of detection for single and partial targets. (a) HH image with markers for relevant targets; (b) Single 

target detector (STD): odd bounces; (c) STD: even bounces; (d) HV image with markers for relevant targets; (e) Partial target 

detector (PTD): odd bounces; (f) PTD: even bounces; CR: Trihedral Corner Reflector. (ESAR L-band, DLR, Landsberg, 

Germany, September 2006) 

 

The last dataset used is a TerraSAR-X Stripmap dual 

polarimetric HH/VV acquisition. The represented scene is 

again Taian in China and the data were acquired in March 

2009. The resolution of the sensor is 1.2m x 6.6m (range x 

azimuth), however the pixel dimension is about 0.9m x 2.4m. 

In order to process the images we performed an initial multi 

look of 2 by 3 (range x azimuth) and a following average of 9 

x 9. This led to a final ENL equal to 136. 

With the intention of testing different modalities of the 

proposed algorithm, the validation is subdivided in separate 

sections. 

A. Comparison between single and partial target detector 

Firstly, the ability to detect single targets is examined. The 

new algorithm is compared with the single target detector 

(already validated in [19-21]). Single targets represent a 

subspace of the partial targets, described by rank one 

covariance matrices [32]. Therefore they are also detectable 

by the new partial target detector.  

Although the detectors can be used to find an arbitrary 

rank-1 matrix, here as an example we consider the simpler 

problem of detecting scattering mechanisms represented by 
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the first two axes of the Pauli basis, i.e. with scattering 

matrices given by diag(1,1) and diag(1,-1). These targets are 

more commonly known as odd and even-bounce respectively.  

 

    
 (a) First Pauli component  (b) Third Pauli component  (c) PTD: Supervised (d) PTD: Unsupervised 

Figure 2 Partial target detector of ancient fire scar. (a) First Pauli component, HH+VV; (b) Third Pauli component, 2*HV; (c) 

supervised detection; (d) unsupervised detection. (ALOS-PALSAR, JAXA, Keg River, Canada, June 2009) 

 

 

In point target detection a high resolution dataset is 

favorable, therefore the DLR L-band dataset is employed [31]. 

Figure 1 presents the comparison between the single and 

partial target detectors. The amplitudes at HH and HV 

polarization are presented as comparison. The two algorithms 

perform similarly, but the resulting masks are not exactly 

equal. More information is added in the new detector (i.e. the 

second order statistics of k) hence slightly better outcomes are 

expected (i.e. lower false alarm and missed detection rate). 

The mask for even-bounces (even number of reflections) 

identifies mainly the jeep in the middle of the scene, since it 

generates a horizontal dihedral with the ground surface. 

Moreover it is possible to recognize some trunk-ground 

double-bounces, especially on the edge of the forest and on a 

clearing, where the wave attenuation due to the canopy is less 

significant. The masks of odd-bounces (odd number of 

reflections) reveal the trihedral corner reflectors and some 

weaker points on the bare ground. The metallic nets are 

rejected since they resemble horizontal dipoles (as illustrated 

in [19-21]). The capability to reject bright targets is an 

indicator that the discrimination is based on the polarimetric 

information and not the intensity of the return. 

A. Satellite data: historical fire scar (hfs) detection 

This section is concerned with the exploitation of satellite 

radar data. The latter are particularly important for the 

scientific community and end users since they provide 

periodical coverage of large areas. 

In this section, a quad polarimetric ALOS-PALSAR dataset 

will be used. Figure 2.a and Figure 2.b illustrate respectively 

the first and third components of the Pauli scattering vector 

(i.e. HH+VV and 2*HV) of a scene acquired in Canada and 

presenting a combination of agricultural fields (up left corner) 

and forests. Considering that the rectangular shape of the pixel 

introduces severe visual distortions in the image, the data were 

multi-looked using an asymmetric window size of 1x5. 

The multi-look was accomplished on the covariance matrix 

[C] with the intention of preserving the polarimetric 
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information [33]. The detector uses a subsequent window 

average of 9x9 in order to minimize speckle and accurately 

characterize depolarized targets in the scene [34].  

 

 

    
 (a) RGB Pauli (b) Google Earth photograph 

     
 (c) PTD supervised (d) Wishart supervised 

Figure 3. Partial target detection on ALOS data (China): (a) RGB Pauli image of the area (b) Google Earth photograph of the 

scene (c) supervised classification after the detection of 4 partial targets (d) Wishart supervised classification (same classes as 

before). Red: dense forest; Light blu: surfaces; Blue: agricultural; Yellow: villages; Green: urban area. (ALOS-PALSAR, JAXA, 

Taian, China, May 2008) 

 

 

The test area includes a forest region subject to a fire in 

2002 (close to the bottom right corner). The historical fire scar 

(hfs) presents structural differences with the old one due to the 

younger age of the trees and the absence of understory. Figure 

2.c depicts the detection mask when the algorithm is trained 

with pixels marked as hfs by the ground surveillance. The 

training process consisted in extracting the t vector for a small 

portion (13x65 pixels) of the fire scar and utilizing it in the 

following detection. 

The detector reveals the capability to separate the hfs from 

the rest of the scene, with very low false alarms rate. The 

subsequent step considers the examination of a forest model 

able to link the presence of an hfs with some key parameter. 

The exploited model is the RVoG (Random Volume over 

Ground) [35, 36], where the return from the forest is described 

by random volume scattering plus a coherent component. The 
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latter is commonly generated by the ground beneath the 

canopy and is described by a rank one coherency matrix (since 

it is a single target). The volume contribution is modeled as 

scattering from dipoles randomly oriented: 

     S VT T T  , 

 
     

     

2

2

cos cos sin 0

cos sin sin 0

0 0 0

j

j

S S

e

T m e





  

  

 
 

  
 
 

, (54) 

 

2 0 0

0 1 0

0 0 1

V VT m

 
 


 
  

. 

Where [T] is the covariance matrix expressed in the Pauli 

basis (also referred as coherency matrix) Sm  and Vm  are the 

magnitudes of the two backscattering contributions, and   is 

the phase difference between first and second elements of the 

Pauli basis.  

Their ratio is the ground-to-volume ratio  

S

V

m

m
  .  (55) 

  is the characteristic angle with the same meaning as in 

the eigenvector decomposition of the coherency matrix [T] 

[1]. 

In this experiment, we exploited a model in absence of 

slopes, since the DEM (Digital Elevation Model) of the image 

is particularly flat, however, in case of relevant topography a 

preliminary slope correction should be accomplished [37]. In 

order to find the initial values for the model parameters which 

fit the hfs, the model was inverted on the data. The resulting 

parameters were found to be: 

19o   and 7.7dB  . (56) 

(similar results, especially regarding  , were found for 

other hfs in Canada). The extracted values were used to 

reconstruct a [T] matrix to train the detector (Figure 2.d). 

The model seems to approximate adequately the typology 

of target, since a bad fit would not allow a correct 

reconstruction of [T]. The latter is an example of exploiting a 

model to train the unsupervised detector, however different 

models can be employed, such as the oriented volume over 

ground (OVOG) or other multi-layer decompositions [1]. 

A. Satellite data: classification 

In this section the algorithm is evolved into a classifier and 

tested over a second L-band ALOS-PALSAR dataset in 

China. The city of Taian (upper left corner) and the mountain 

of Culai (lower right corner) are clearly visible in the RGB 

Pauli composite image (Figure 3.a, where 1200x1200 pixels 

are visualized here). 

Figure 3 presents the classification mask compared with the 

Wishart supervised [14, 16]. The latter is a classifier 

exploiting an assumed a priori probability distribution of the 

coherency matrix [T] [1, 2, 14]. In this comparison, a basic 

version of the Wishart supervised classifier was utilized. This 

is freely available in the software package POLSARpro. 

We are conscious that more elaborated versions employing 

supplemental pre-processing can result in more accurate 

classification masks. However, in order to make the 

comparison as fair as possible, the two classifiers had exactly 

the same pre-processing and they both are executed in the 

most basic version. The absence of corrections or further 

processing should allow us to evaluate anticipated theoretical 

advantages. 

In Figure 3.a, labels identify the training areas. Area1 

represents agricultural fields (blue), Area2 is surfaces (light 

blue), Area3 is urban area (green), Area4 is a village 

characterized by small structures and sparse trees (yellow) and 

Area5 is a dense forest (red). The proposed classification has a 

total of 6 classes, since the black color is reserved to areas not 

falling in any class (i.e. unknown targets). Performing a 

preliminary detection (setting SCR=15) of the different 

typologies, the areas are not forced to adhere to any class 

avoiding misclassification. 

The proposed algorithm seems able to separate the different 

areas in the scene showing significant agreement with the 

RGB Pauli image and the Google Earth photograph. Please 

note, as in the previous case, the coherency matrix is multi-

looked 1x5, however the pixel is not completely square and a 

distortion of the radar image is still visible. Moreover, the 

azimuth is not perfectly aligned with the north-south direction. 

The urban area presents an interesting scenario. The 

classification mask presents a conspicuous heterogeneity (due 

to the natural heterogeneity of the city). Specifically, there are 

several point targets which do not fall in any class and are 

separated in black. Additionally, the suburban areas resemble 

more the villages (yellow), rather than the dense city area. 

The supervised Wishart classifier (statistical based) [14, 16] 

seems to have an overall agreement with the proposed 

algorithm for two classes: bare surface and agricultural fields. 

On the other hand, the other areas present rather scarce 

agreement. Specifically, in Wishart the urban area is much 

more extended and confused with the villages. For instance, 

the upper right corner is classified as a town/village while it is 

an agricultural area. Moreover, the forest on the mountainous 

area is completely misclassified presenting a mix of village 

and urban areas. 

From this experiment, a major advantage of the proposed 

classifier is noticeable: the independence on the total intensity 

of the backscattering. Wishart is strongly dependent on the 

Trace of [T] in the calculation of its interclass distance. On the 

other hand, the independence on the overall amplitude focuses 

our detector exclusively on the polarimetric characteristics 

(relative weight of the matrix elements). Please note, if in (16) 

we multiply [P] by a scalar factor the resulting detector does 

not change. For Wishart, two objects can have a small 

distance if their power backscattered is similar even though 

they present some polarimetric difference.  

However, in case the overall amplitude keeps essential 

physical meanings for a specific target, its information can be 

taken into account performing a subsequent amplitude 
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analysis over the obtained mask. Nevertheless, the possibility 

to separate the polarimetric and amplitude information is 

considered the most significant advantage of the proposed 

classifier. 

Obviously, if the effect of amplitude modulation can be 

corrected with ancillary information (e.g. a DEM) the 

accuracy of the Wishart supervised classification mask is 

expected to improve, but such corrections are not always 

stable and robust and here we have demonstrated an approach 

that is not so sensitive to errors in topography compensation. 

 

 

     
 (a) HH reflectivity (b) Random volume detection 

Figure 4. Partial target detection on TerraSAR-X dual polarimetric (HH/VV) data (China): (a) HH reflectivity image of the 

scene (b) detection mask of volume composed of randomly oriented dipoles. (TerraSAR-X, DLR, Taian, China, March 2009) 

 

 

A. Satellite data: dual polarimetric detection 

In this final experiment, the detector is tested with dual 

polarimetric data. The basic difference with quad polarimetric 

data is the lack of uniqueness in the description of an observed 

target [32]. For this reason, an appropriate use of the 

algorithm should restrict the detection to target typologies 

which can be represented with sufficient accuracy by only two 

polarisations. An example is the scattering from a random 

volume.  

In this experiment, TerraSAR-X Stripmap dual polarimetric 

HH/VV data are exploited. As for the ALOS dataset, the scene 

was acquired in China over the city of Taian. However, now 

the scene is slightly more north showing the Choushui 

Xuneng Reservoir (i.e. mountainous area covered by dense 

forests). 

An initial multi-look of 2x3 (azimuth x range) was 

performed on the dual polarimetric covariance matrix. 

Subsequently, the detection was achieved employing a 9x9 

boxcar filter. The detection is aimed at volume scattering 

composed of randomly oriented dipoles. In case of HH/VV 

dual polarimetry, we do not have direct access to a cross-

polarized HV channel to detect volume scattering. Instead, the 

latter can be identified through its signature coherency matrix 

in the HH/VV subspace, expressed as shown in (57):  

2 0

0 1

d

V VT m
 

     
 

. (57) 

Figure 4 presents the detection mask (b) compared with the 

HH reflectivity image (a). The algorithm seems able to 

identify the mountainous areas covered by dense forest, based 

on their level of volume scattering. The water reserve, in the 

middle left of the image, is detected since its backscattering is 

particularly low and close to the noise floor. Consequently, it 
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resembles random volume with slightly stronger surface 

component. In order to remove these points, a simple 

threshold on the amplitude could reject areas with 

backscattering close to the noise floor. Regarding the detected 

points externally to the mountainous area, they mainly 

correspond to trees in the city, besides roads or around fields. 

Here, they are more apparent than in the ALOS data due to the 

enhanced resolution and the use of X band which is more 

sensitive to canopy. However, we cannot neglect that part of 

these points are merely false alarm due to the absence of the 

complete polarimetric information. 

VI. CONCLUSIONS 

In this paper, a geometric interpretation has been provided 

for the single target detector developed in [19-21] and based 

on a perturbation filter. The detector is constituted by a 

weighted (by the observables) and normalized inner product 

(i.e. coherence) between the target of interest and a perturbed 

version. The use of a coherence was found convenient since it 

is a normalized entity in the closed interval 0 to 1. Therefore 

the overall amplitude of the backscattering is neglected and 

the detection (classification) is performed exclusively on the 

base of the polarimetry. 

In order to extend the detection to partial targets, a new 

vector formalism was proposed. The new formalism can 

describe uniquely the partial target space. Finally, the new 

detector was exploited as first stage of a subsequent classifier.  

Validation against airborne (DLR E-SAR, L-band) and 

satellite data (ALOS-PALSAR and TerraSAR-X) is provided 

showing the capability of the detector to discriminate among 

different single and partial targets. The detector is an algebraic 

operation on a Euclidean space independent of its dimensions. 

Therefore, a dual polarimetric version can be developed, 

although we expect lower performances due to the loss of 

physical information. Both the supervised and unsupervised 

detection strategies were exploited. 

The classification mask is compared with a basic Wishart 

supervised algorithm (freely available in the software package 

POLSARpro), revealing what we believe to be a major 

enhancement: the independence on the overall intensity of the 

return (i.e. the proposed algorithm works solely with the 

polarimetric information). Therefore, misclassifications due to 

modulations of the amplitude, as for example a consequence 

of layover, are solved, making the new algorithm particularly 

suited for detection and classification in mountainous regions. 

Clearly, if ancillary information (as a DEM) is available and 

further pre-processing is performed the classification result of 

the Wishart supervised can be significantly improved. 

As a future work, the algorithm will be tested over different 

typologies of data (e.g. RADARSAT2) and presenting diverse 

scenarios (e.g. sea ice classification, ship detection, 

agricultural classification). Moreover, the possibility of 

exploiting a priori information about the clutter (i.e. 

hypothesis b c d e f    ) will be investigated for 

detection in controlled background. 
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