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A Spatial Contextual Postclassification Method for
Preserving Linear Objects in Multispectral Imagery

Borja Rodríguez-Cuenca, Student Member, IEEE, Jose A. Malpica, and Maria C. Alonso

Abstract—Classification of remote sensing multispectral data is
important for segmenting images and thematic mapping and is
generally the first step in feature extraction. Per-pixel classifica-
tion, based on spectral information alone, generally produces noisy
classification results. The introduction of spatial information has
been shown to be beneficial in removing most of this noise. Proba-
bilistic label relaxation (PLR) has proved to be advantageous using
second-order statistics; here, we present a modified contextual
probabilistic relaxation method based on imposing directional
information in the joint probability with third-order statistics. The
proposed method was tested in synthetic images and real images;
the results are compared with a “Majority” algorithm and the
classical PLR method. The proposed third-order method gives the
best results, both visually and numerically.

Index Terms—Classification smoothing, contextual classifica-
tion, relaxation methods, remote sensing.

I. INTRODUCTION

C LASSIFICATION of multispectral image data based on
spectral information is used in analyzing remotely sensed

data. The objective of the classification process is to categorize
all pixels in a satellite or aerial image into one of several
land cover classes. This categorized data may then be used to
produce thematic maps of the existing land cover present in an
image. There are two main classification methods: supervised
and unsupervised. In the former, samples of the information
classes (land cover type) of interest in the image, called training
sites, are identified [1]. From these training areas, statistics are
first calculated and then used to classify each independent pixel
of the entire image being examined. Decision rules are then ap-
plied; these can be nonparametric, such as minimum Euclidean
distance, or parametric, such as Gaussian maximum likelihood
(ML). In unsupervised classification, often referred to simply
as cluster analysis, a computer algorithm partitions the image
into self-defining spectral clusters. Supervised or unsupervised
classification methods have generally used only information
obtained from individual pixels; therefore, the final thematic
maps tend to be somewhat noisy, in what is known as salt-
and-pepper classified images [2], [3]. Pixels generally belong
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to cover types that form a geographic region or cartographic
entity; consequently, pixels that are close together are more
strongly related than those that are spatially distant. A normal
approach in identifying land cover classes is to complement the
use of spectral information with spatial information obtained
from neighboring pixels.

Improving per-pixel classification by incorporating both
spatial and spectral information involves a two-stage process:
First, a spatial filter is applied to achieve more homogeneous
regions; second, a per-pixel classification algorithm is applied,
as reported by Yildirim et al. [4]. These authors applied an ML
algorithm to classify land cover and achieved an improvement
over the extraction and classification of homogeneous object
algorithm presented by Ketting and Landgrebe [5].

It is more common to apply the opposite procedure—
postprocessing-rather than preprocessing, i.e., classifying by
first using a per-pixel classification algorithm and then per-
forming a postclassification operation. One of the simplest
postprocessing operations is the application of a Majority filter
[6], [7]. To conduct this operation, a moving window is passed
over each pixel in the classified image. If the class assigned
to the central pixel in the window is not the majority class of
the window, the pixel’s class is changed to the majority class.
If there is no majority class, the identity of the center pixel is
not changed. As the window progresses through the image, the
original class from the previous classified image is used, not the
assigned class as modified from the previous window position
[8]. Some authors have applied modifications to the Majority
filter and achieved some improvement, such as [9], which used
a Landsat Thematic Mapper image with an adaptive Majority
filter, resulting in some reduction in classification errors.

In recent decades, several approaches have been adopted for
incorporating contextual information into the classification of
remote sensing fields, such as Markov random fields (MRFs)
[10]–[14], knowledge-based methods or fuzzy methods [15]–
[17], probabilistic label relaxation (PLR) [18], [19], and hy-
brids, combining other methods [20]. In this paper, the term
contextual information will refer only to spatial information,
even though this concept could also be extended to other types
of miscellaneous information (ancillary data) associated with
the current pixels, as proposed by some of the aforementioned
studies.

In postprocessing methods, linear features are usually re-
moved when trying to reduce the speckled appearance in a
classified image, as found by Myeong et al. [21]. These authors
observed this phenomenon when applying the Majority filter
in postprocessing. In this paper, we develop a postprocessing
approach that aims to preserve linear features.

This paper is organized as follows. Higher order statistics
are described in Section II. The methodology applied with the
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proposed method is described in Section III. The results
obtained using synthetic and real images are presented in
Section IV. Finally, our conclusions are given in Section V.

II. HIGHER ORDER STATISTICS WITH PROBABILISTIC

LABELING RELAXATION

Natural images exhibit statistical regularities that differen-
tiate them from images in which pixels have been generated
randomly; moreover, the human visual system appears to have
evolved to exploit such statistical regularities. Many studies
support the notion that our visual system presents an efficient
means for coding the statistical structures found in nature
[22], [23]. First-order statistics deal with single pixels and
do not take into account relationships between neighboring
pixels in an image. This first order implicates the histogram,
mean, standard deviation, skew, and kurtosis of gray levels in
an image. Second-order statistics examine relationships and
regularities between pairs of pixels in an image. Examples
include image gradients and power spectra, which are computed
in Fourier space and are related to autocorrelation functions.
Third-order statistics examine ternaries of pixels, as in the
work of Gagalowitz and Ma [24], using co-occurrence matrices;
these authors showed that such a third-order model was able
to capture most of the information about macroscopic planar
textures such as wool, sand, etc.

Studies on PLR focus on measuring second-order statistics
or the covariation between the properties of paired pixels, such
as their grayscale levels [19]. We show that it is practical to
directly measure higher order statistics using the strategy of
estimating the probability along different directions. Structural
information about linear features can be retrieved through
statistics of triples of pixel values (third-order statistics).

In the following equations, the procedure for supervised
classification is considered from a statistical perspective. Let
the classes be

ωi, i = 1, . . . , C

where C is the total number of classes.

pm

(
ωi

ℵm

)
, i = 1, . . . , C (1)

is the probability of class ωi occurring, given that pixel m and
the neighborhood ℵm surrounding pixel m have been observed.
In principle, a label is influenced by the real label of all other
labels in the image, but in order to model the phenomenon of
spatial context, we will here suppose that a label is influenced
only by a few close neighbor pixels. We also suppose that this
property of being influenced by only a small neighborhood is
independent of the position in the image of the actual pixels.
This is similar to the properties established in MRF [25].

Pixel m is assigned to class ωi if
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From Bayes’ theorem, we have
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(m) · p
(
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)
(3)

where pωi
(m) is the class conditional probability for class

ωi given pixel m and p(ωi/ℵm) is the prior probability of
the ωi class for neighborhood ℵm. This is a measure of how
appropriate it is to assign pixel m to class ωi, in view of the
current neighborhood surrounding m, defined as ℵm.

Following Richards and Jia [26], the question is how to
find a value for p(ωi/ℵm). These authors have modeled this
probability by both MRF and PLR with Dempster–Shafer; they
found the latter to be better than the former. We will present a
modification of the latter algorithm with a third-order statistic.
Herein, the original PLR as applied by Richards and Jia [26]
will be called PLR2 (as it utilizes second-order statistics), and
our proposed method will be called PLR3.

Mahalanobis Classifier and Labeling Relaxation PLR2

The term p(ωi/ℵm) in (3) is the initial estimate of the proba-
bility of each pixel’s label for a neighborhood ℵm. These prob-
abilities can be assigned from a previous classification based
on pixel information alone. In our case, this was done using
the Mahalanobis classifier. Per-pixel classification approaches,
such as minimum Euclidean distance and ML, have been widely
used in many remote sensing applications. The Mahalanobis
classifier has been widely applied in the remote sensing com-
munity [19], [27]–[29]. It is a derivation of the ML discriminant
function, specifically when the prior probabilities are con-
sidered to be equal [15]. The Mahalanobis distance is given by

(x−mi)
t
∑−1

(x−mi) (4)

where mi is the mean for class ωi and
∑

is the covariance
matrix. Richards stated that “The maximum likelihood classi-
fier can be regarded as a minimum distance measure that is
direction sensitive and modified according to class.” Simple
minimum Euclidean distance classifiers have some limitations
that can be overcome using a Mahalanobis metric. In particular,
this can often address problems caused by poorly scaled or
highly correlated features [30].

Label relaxation is an iterative heuristic technique that ex-
tracts contextual information from an image to reduce the am-
biguity of predetermined labeling. Relaxation labeling utilizes
two sources of information: an initial labeling for p(ωi/ℵm)
and information embedded in spatial context. Several of the
early PLR algorithms were proposed in the late 1970s and
1980s. Among the most popular are probabilistic labeling re-
laxation [31] and the supervised extraction and classification
of homogeneous objects developed by Landgrebe [32] and
Richards et al. [33].

Following Richards [19]

pkm

(
ωi

ℵm

)
(5)

is an estimate of the probability that, on the kth iteration,
the label or class of the pixel m is ωi. An iterative process
was constructed in order to progressively modify the initial
probability assigned to pixel m
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m
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)
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j

pkm(ωj) ·Qk
m(ωj)

(6)



176 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 51, NO. 1, JANUARY 2013

Fig. 1. (a) Second-order neighborhood for pixel m. (b) Third-order neighbor-
hood for pixel m.

where Qk
m(ωi) is called the neighborhood function. Let ℵm be

a neighborhood as in Fig. 1(a) [19]. With the new evidence
obtained from Q, we modified this initial probability, which is
known as the posterior probability.

The function Qk
m(ωi) can be defined as

Qk
m(ωi) =

∑
n

∑
j

pmn(ωi|ωj)p
k
m(ωj) (7)

where pmn(ωi|ωj) is the probability that pixel m belongs to
class ωi, given that n is from class ωi.

Context With a Third-Order Statistic PLR3

In this paper, we extend PLR2 to a new label relaxation
approach termed PLR3, in which we consider third-order statis-
tics. Third-order statistics have been shown to be important in
many other fields [22], [34], [35].

The matrix pmn(ωi|ωj) is constructed considering not just
one neighboring pixel n but two neighbor pixels n and l, for
the actual pixel m; in this case, the conditional matrix will have
the form pmnl(ωi|ωj , ωh). This is a conditional probability of
seeing class ωi for pixel m given the following configuration:
Pixel n has class ωj , and pixel l has class ωh.

For example, if we consider that the two classes are in a
vertical (V) disposition, as shown in Fig. 1(b), the neighborhood
function will be given by

Qk
m(ωi) =

∑
j

∑
h

pmnl(ωi|ωj , ωh)pnl(ωj |ωh)p
k
l (ωh) (8)

and the a posteriori probability will be given by the same
expression as (6).

The algorithm described in this section was applied to a
series of synthetic images and a real image. The methodology is
explained in Section III, using the example of a synthetic image
created with different directions.

III. METHOD

Two types of synthetic images (204 × 204 pixels) were
used, one with horizontal (H) and V stripes and the other with
diagonal stripes, as shown in Fig. 2. The images had four
bands; the reason for choosing this number was because we also
planned to use real images with four bands. Only two classes
were considered for the experiments in an effort to simulate the
extraction of a feature against a background, such as roads or
other cartographic linear features. The synthetic image classes
were produced with a random generator, and each band showed
normal distributions: N1 [(40, 46, 46, 46), (10, 10, 10, 10)]

Fig. 2. Synthetic images (a) with H and V stripes and (b) with diagonal stripes.

Fig. 3. Flowchart of the proposed method.

and N2 [(46, 46, 46, 40), (10, 10, 10, 10)] where the numbers
represent different levels of gray for each band. Although only
two classes were considered for the experiment, the method
presented here would be valid for any number of classes.

Fig. 3 shows a flowchart of the proposed method. Entry of
the algorithm is shown in the upper part. One of the inputs is
the original image, which would be either a real or a synthetic
image, as shown in Fig. 2(a) and (b).

The other input would be the structure to be detected in the
original image. An example of this type of structure can be
seen in Fig. 4. In Fig. 4(a), we look for H and V structures,
and in Fig. 4(b), we look for principal (D1) and secondary (D2)
diagonals.
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Fig. 4. Structural elements to be detected: (a) shows H and V structural
elements, and (b) shows structural diagonals D1 and D2.

Fig. 5. (a) and (b) Ground truth. (c) and (d) Mahalanobis classification.

These structural elements are necessary to calculate the prob-
abilities pmn(ωi|ωj) and pmni(ωi|ωj , ωh) and to determine the
neighborhood function of (8). It also allows the proportions of
the two classes to be determined depending on the directions,
as shown in Fig. 4. For the PLR2 method, a pair of pixels is
taken, as shown in Fig. 1(a), while in the PLR3 method, triples
of pixels are considered, as shown in Fig. 1(b). These triples are
examined only for linear structures in all directions (V, H, and
D1 and D2), and so consequently, the method preserves such
linear features in the postclassification process.

The next step in the procedure is supervised classification of
the images shown in Fig. 2 using training fields. In our case,
as stated in the previous section, a Mahalanobis classification
distance was used in both images, using 10% of the ground-
truth images as a training set [Fig. 5(a) and (b)]. The results of
the classification are shown in Fig. 5(c) and (d).

In order to determine the direction in which the algorithm
should be applied (H or V, or diagonal D1 or D2) in the
current pixel, first, an independent component analysis (ICA)
was carried out [36].

It is assumed that the reflectance of a pixel is a combination
of the reflectances of endmember spectra in the area covered
by that pixel; this mixture can be considered as the result
of the linear combinations of these endmembers within the

Fig. 6. (a) and (c) show the ICA H–V and D1–D2. (b) and (d) show the
directional filter applied to the ICA analysis.

pixel [37]. Several authors have investigated the application of
ICA methods to the analysis of remote sensing multispectral
images [38]–[41]. ICA is defined as representing the pixel
spectra by the linear combination of statistically independent
components; since two classes are considered, two components
were calculated for ICA. The features from the two classes
behave to some extent like two different sources. For all cases
of the synthetic and the real images, the first ICA band provided
good differentiation between the features. Furthermore, a direc-
tional filter was used on the first band of the ICA to enhance
identification of the adjacent pixel properties in all directions.
The direction filter consisted of a 3 × 3 pixel window that
studies the whole image, applying a higher weighting in a given
direction (0◦ and 90◦ in the H and V and 45◦ and 315◦ in the D1
and D2). Fig. 6(a) and (c) shows the ICA images that contain
edge information; Fig. 6(b) and (d) shows the directional filter
applied to the ICA in order to enhance the directions.

The information from Fig. 6(b) and (d) is used to decide what
values of pmnl(ωi|ωj , ωh) and pnl(ωj |ωh) should be used for
the H, V, D1, or D2 directions, in each pixel. In the actual pixel,
the direction is obtained by exploring the neighborhood pixels
shown in Fig. 6(b) and (d). This information is also utilized in
calculating pkl (ωh), which updates the posterior probability in
each iteration k.

The classifications are evaluated using a confusion matrix:
accuracy and kappa coefficient with its p-value and 95% confi-
dence interval.

IV. RESULTS AND DISCUSSION

Fig. 7(a) shows the results of classifying the synthetic image
shown in Fig. 2(a) by Mahalanobis distance, using 10% of
the ground truth, shown in Fig. 5(a), as a training sample.
Fig. 7(b)–(d) shows the postprocessing of the Mahalanobis clas-
sification. For Fig. 7(b), a Majority filter with a 3 × 3 window
was applied, Fig. 7(c) was obtained with a PLR (PLR2), as
explained by Richards and Jia [19], with three iterations, and
in Fig. 7(d), the proposed PLR3 method was applied, also with
three iterations. The key difference between PLR2 and PLR3
is that the former used the statistical distribution of pairs of
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Fig. 7. Postprocessing of the (a) Mahalanobis classification with (b) Majority
filter, (c) PLR2, and (d) PLR3 for the image with H and V structures. The details
in (f)–(h) show the differences in the postprocessing algorithms. The white lines
in (h), which correspond to PLR3, are better defined than the same lines in (f)
(Majority) and (g) (PLR2). Similar results can be seen in the details of (j)–(l).

TABLE I
CONFUSION MATRICES FOR MAHALANOBIS, MAJORITY, PLR2, AND

PLR3 FOR H AND V STRUCTURES FOR THE SYNTHETIC IMAGE IN FIG. 7

pixels, while the latter used triples of pixels. It is observed that
all three methods reduced the noise of the initial Mahalanobis
classification, particularly the Majority filter in Fig. 7(b); how-
ever, PLR2 and PLR3 better delineate the linear entities, as can
be seen in the details hereinafter, in Fig. 7(e)–(l). The images
in Fig. 7(e) and (i) are details of the Mahalanobis classification
shown in Fig. 7(a); in Fig. 7(f) and (j), corresponding to the
Majority filter, black pixels invade white lines; in Fig. 7(g)
and (k), corresponding to PLR2, white pixels occupy the black
edges; Fig. 7(h) and (l), corresponding to PLR3, produces the
best results in depicting the white lines.

To complement this visual analysis, we performed a numer-
ical analysis in which the classification was evaluated using a
confusion matrix of the full ground-truth data set [Fig. 5(a) and
(b)]. Table I shows the results of the confusion matrices for
Mahalanobis and the three postclassification methods.

Fig. 8. Postprocessing of the (a) Mahalanobis classification with (b) Majority
filter, (c) PLR2, and (d) PLR3 for the image with diagonals D1 and D2. Details
in (e)–(l) show the differences in the postprocessing algorithms. (f) and (j) show
two details of the Majority filter, (g) and (k) represent the results of the PLR2
algorithm, and (h) and (l) show the performance of the proposed algorithm
PLR3.

TABLE II
CONFUSION MATRICES FOR MAHALANOBIS, MAJORITY, PLR2, AND

PLR3 FOR D1 AND D2 STRUCTURES FOR SYNTHETIC IMAGE IN FIG. 8

Note that the Majority method provides the best accuracy
(99.14%) and kappa coefficient (0.982), with approximately
300 pixels misclassified; the PLR3 produced the second best
accuracy (98.79% and kappa coefficient 0.9752) with almost
500 pixels incorrectly classified, but better defined linear fea-
tures. Most of the decrease in PLR3 accuracy and kappa is be-
cause, for this case, the method, as well as the Majority method,
does not clean noise; Majority reduced the noise but increased
the misclassified pixels in the edges of linear structures. PLR2
was slightly less accurate (accuracy 98.68% and kappa 0.973)
than the PLR3 and Majority algorithms.

For all methods, the p-value and a 95% confidence interval
have been included. In all cases, the p-value was less than
0.001, indicating that the classifications obtained are signifi-
cant. Although the confidence intervals for PLR2 and PLR3
have no empty intersection, which means that the difference
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Fig. 9. (a) Aerial image of an area of Madrid with two details. Image (b) shows the first band of ICA with diagonal filters applied.

Fig. 10. Postprocessing of the (a) Mahalanobis classification with (b) Majority filter, (c) PLR2, and (d) PLR3 for the aerial image. Details in (e)–(l) show the
differences in the postprocessing algorithms. (f) and (j) show two details of the Majority filter, (g) and (k) represent the results of the PLR2 algorithm, and (h) and
(l) show the performance of the proposed algorithm.

between methods is statistically nonsignificant (as can be seen
in Table I), the visual evaluation [Fig. 7(g) compared with
Fig. 7(h) and Fig. 7(k) compared with Fig. 7(l)] shows that the
edges are better represented by PLR3 than by PLR2.

We conducted a similar study for diagonal directions. The
Mahalanobis classification and the three postclassification
methods for Fig. 2(b) image with some details are shown in
Fig. 8. Following the order of the aforementioned synthetic
image, Fig. 8(a) corresponds to Mahalanobis classification,
Fig. 8(b) corresponds to Majority filter, Fig. 8(c) corresponds
to PLR2, and Fig. 8(d) corresponds to PLR3.

The worst performance of the three postclassification tech-
niques in this case was the PLR2 method, which produced
a lot of noise and poor determination of the linear features
[Fig. 8(c)]. This is due to the shape of the neighborhood
considered for PLR2, as this method studies the images in
only H and V directions. The number of noisy pixels was
similar in the Majority and PLR3 results; however, as with
the previous synthetic image, PLR3 defined the linear features
more accurately, as seen by comparing Fig. 8(b) and (d). Two
details [Fig. 8(e)-(h) and (i)-(l)] have been provided to better
see this idea. It can be observed that Fig. 8(h) and (l) are the
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TABLE III
CONFUSION MATRICES FOR MAHALANOBIS, MAJORITY, PLR2, AND

PLR3 FOR D1 AND D2 STRUCTURES FOR THE AERIAL IMAGE IN FIG. 9

Fig. 11. Image (a) is a satellite image (Ikonos) of the Alcalá de Henares
university campus (Madrid) with three details 1, 2, and 3. The bands for vi-
sualization with red, green, and blue are infrared, blue, and green, respectively.

best postprocessing classifications among the three methods,
removing noise and preserving linear features, as confirmed by
numerical analysis in Table II.

In this case, PLR3 provides the best accuracy (99.12%) and
kappa (0.9140), while Majority provides an accuracy of 98.50%
with a kappa of 0.860. As in Table I, PLR3 produced more noise
in homogeneous regions than Majority but worked better at the
edges. PLR3 and Majority present significant differences in the
kappa coefficient because their confidence interval at the 95%
level had an empty intersection.

Fig. 9 shows an aerial image (400 × 400 pixels) of Alcalá
de Henares, Madrid, Spain, taken in summer 2010. This image
was taken with a Leica ADS40 SH52 sensor, with a spa-
tial resolution of 0.5 m and four spectral bands (red, green,
blue, and near infrared). The two images on the right are
the selected details. In this case, the diagonal neighborhood

Fig. 12. Panels (a) and (b) show the training and evaluation sets, respectively,
for Fig. 11 satellite image. Panel (c) shows the first band of ICA analysis with
diagonal filters applied.

TABLE IV
CONFUSION MATRICES FOR MAHALANOBIS, MAJORITY, PLR2, AND

PLR3 FOR D1 AND D2 STRUCTURES FOR IKONOS IMAGE IN FIG. 11

system was used because of the diagonal appearance of the
man-made and natural features of the image. The result of
applying the directional filter to the first component of the ICA
is shown in Fig. 9(b), which shows how the linear structures are
enhanced.

The classification and postprocessing are shown in Fig. 10; as
with the synthetic images, the first row shows Mahalanobis (a),
Majority (b), PLR2 (c), and PLR3 (d) applied to Fig. 9(a). It can
be seen that the three postprocessing methods removed most of
the noise from the Mahalanobis classification, but boundaries
are represented very differently between the studied methods; at
this level, it can also be seen that PLR3 best conserves the linear
features. To appreciate this characteristic, we show the two
details of Fig. 9(a): Number 1 shows a region with buildings
in a diagonal disposition, and number 2 shows the diagonal
intersection of two roads.
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Fig. 13. Postprocessing of (a) the Mahalanobis classification with (b) Majority filter, (c) PLR2, and (d) PLR3 of the real image in Fig. 12. The other images
show the results of the tested algorithms in three scenes of the image. First column [(e), (i), and (m)] shows the Mahalanobis classification, second column shows
the Majority filter, third column shows the PLR2, and fourth column shows the proposed algorithm PLR3.

In the first detail, note how in Fig. 10(h), corresponding to
PLR3, the large building at the center right is better delineated
than in Fig. 10(e)–(g), corresponding to Mahalanobis, Majority,
and PLR2, respectively. In the second detail, note how in
Fig. 10(l), corresponding to PLR3, the median road is detected
more clearly than in Fig. 10(i)–(k).

Apart from the visual evaluation, Table III shows the con-
fusion matrices and p-values, which are superior for the PLR3
method although, for this case, the comparison between PLR3
and PLR2 is significant to the 95% level.

Fig. 11 shows another real image, which is this time a satel-
lite image from the Ikonos sensor; this sensor takes images in
four spectral bands with different spatial resolutions (1 m in the
panchromatic mode and 4 m in the multispectral mode) from an
average altitude of 681 km (revisit time is approximately three
days). The image used here is a pansharpened image [42] of 1 m
resolution and a size of 900 × 700 m, depicting part of Alcala
university campus, Madrid.

A training set was selected from Fig. 11(a), as shown in
Fig. 12(a). In remote sensing classification with only two
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classes, the most commonly chosen classes are man-made and
natural areas. Training areas are shown in red for man-made
areas and bright green for natural objects, which are mostly
vegetation with some areas of bare soil. The training areas in
Fig. 12(a) were extended to produce the evaluation set seen
in Fig. 12(b), so different pixels are used for evaluation and
training. Fig. 12(c) shows the image produced by applying the
directional filter to the first ICA component from Fig. 11(a).
The results of the classification are presented in Table IV.
All three postprocessing method have an accuracy and kappa
coefficient superior to the initial classification by Mahalanobis
distance, with the PLR3 method producing the best results.
The high confidence interval and kappa value demonstrate that
the PRL3 method is significantly superior to the Majority and
PLR2 methods.

Mahalanobis classification of the image in Fig. 11(a) is
shown in Fig. 13(a), demonstrating that most man-made areas
were classified correctly. Fig. 13(b)–(d) shows the postclassi-
fication of Fig. 13(a) with Majority, PLR2, and PLR3, respec-
tively. Note that the tennis courts and athletics track in the upper
right part of Fig. 11(a) have synthetic surfaces, so they have
been correctly assigned to the man-made class.

For a visual discussion of the results, three details have
been selected from the classified satellite image to evaluate
the goodness of the algorithm. The first detail [Fig. 11(a)-1]
shows the athletics track. In Fig. 13(e), the results of the
Mahalanobis classifications are shown; the Majority postpro-
cessed image is shown in Fig. 13(f), showing some im-
provement such as reduced noise. Furthermore, Fig. 13(g)–(h)
corresponds to PLR2 and PLR3, respectively, and shows fur-
ther improvement over Majority, with reduced noise and more
clearly delineated track.

The second detail [Fig. 11(a)-2] corresponds to a natural
area, such as a lawn; the Mahalanobis classification of this
element is shown in Fig. 13(i); the postclassification images
with Majority, PLR2, and PLR3 are shown in Fig. 13(j)–(l),
respectively. All three improve on the Mahalanobis classifica-
tion, but the proposed PLR3 method is superior to the other
methods in preserving linear structures. Finally, the third detail
[Fig. 11(a)-3] corresponds to a major and a minor road; the
Mahalanobis classification is shown in Fig. 13(m). The Major-
ity [Fig. 13(n)] and PLR2 [Fig. 13(o)] blindly clean the noise,
removing the minor road, while PLR3 preserved part of the
diagonal linear structures, keeping and extending some of the
lines delineating the minor road [Fig. 13(p)].

V. CONCLUSION

This paper has examined the use of a postclassification
method to improve the supervised classification of linear struc-
tures. We compared the behavior of three methods: two pre-
existing methods, Majority and PLR2, and a proposed PLR3
method, which extends PLR2 by studying groups of three pixels
in the current pixel neighborhood rather than pairs.

In general contextual postclassification, it is important to
remove the noise of an initial classification. Existing methods
are useful in homogeneous regions, but when boundaries need
to be enhanced, many problems occur with misclassified pixels
at the edges of the classification regions. The goal of the
proposed PLR3 method, in addition to removing classification

noise, is to correctly differentiate linear boundaries between
classes.

The performance of the three methods was tested in four
images: two synthetic images and two real images (an aerial and
a satellite image). The use of synthetic images with full ground
truth facilitated numerical analysis of the accuracy and kappa
coefficient of the different methods. The use of real images was
important to determine the potential of the proposed method for
real situations.

The results showed that, in all cases, postclassification im-
proved the accuracy of the initial classification by reducing
image noise. The proposed PLR3 method defines linear struc-
tures better than the Majority and PLR2 methods, due to the
inclusion of third-order statistics (in the sense of using triplets
of neighborhood pixels) within the probabilistic likelihood
calculation.

The proposed PLR3 method was used to extract linear fea-
tures such as roads, sports tracks, buildings, etc., from remotely
sensed aerial and satellite images; the results showed that the
proposed method was a good candidate for a postclassifier.
There is no single best postprocessing technique for all cases
because results depend on the application at hand. Therefore,
the method presented here is useful when it is important to
retain lines or edges.
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