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Abstract—In this paper, a novel nonlinear technique for hy- perspectral classification, as well [3]-[5]. Variations3M-
perspectral image classification is proposed. Our approacrelies  pased algorithms have also been proposed to improve the
on sparsely representing a test sample in terms of all of the ¢|55gification accuracy. These variations include tracibes
training samples in a feature space induced by a kernel funabn. SVM. which loits both labeled and unlabeled | 6
For each test pixel in the feature space, a sparse represetitn » wWhic .exp orts O, abeled an .un ,a €led samples [, ],
vector is obtained by decomposing the test pixel over a traing and SVM with composite kernels, which incorporates spatial
dictionary, also in the same feature space, by using a kernddased information directly in the SVM kernels [7]. Multinomial
greedy pursuit algorithm. The recovered sparse representin |ogistic regression [8] is another widely used classifiejoh
vector is then used directly to determine the class label ofhe uses the logistic function to provide the posterior proligbi

test pixel. Projecting the samples into a high-dimensiondeature A fast algorithm f i ial logisti .
space and kernelizing the sparse representation improveshée ast algorithm for sparse muitinomial 10gISUC regressio

data separability between different classes, providing a igher has been developed in [9] and successfully adopted for HSI
classification accuracy compared to the more conventionaldear segmentation in [10], [11]. Some of the other recent HSI

sparsity-based classification algorithms. Moreover, the matial  classification techniques can be found in [12]-[17]. In thes
coherency across neighboring pixels is also incorporateditough cent methods, a feature extraction strategy is proposeti |

a kernelized joint sparsity model, where all of the pixels wihin f lassificati hich i the i discrirtii
a small neighborhood are jointly represented in the feature or classinication which generalizes the linear discrinwe

space by selecting a few common training samples. Kernel analysis and nonparametric discriminative analysis. 8},fthe
greedy optimization algorithms are suggested in this papeto derivative information of the spectral signatures is eitpbbas

solve the kernel versions of the single-pixel and multi-pigl features and then decisions obtained from spectral refieeta
joint sparsity-based recovery problems. Experimental reslts on 54 gerivative information are fused for the final decisions

several hyperspectral images show that the proposed techqie . . . e
outperforms the linear sparsity-based classification techique, as In [14], each image band is decomposed into intrinsic mode

well as the classical Support Vector Machines and sparse keel  functions (IMFs) which are adaptive to local properties via
logistic regression classifiers. empirical mode decomposition and then SVM is applied to

the lower-order IMFs for classification. In [15], tikenearest-
neighbor classifier is applied to the local manifolds to eipl
. INTRODUCTION the intrinsic nonlinear structure of hyperspectral imags
Hyperspectral imaging sensors capture images in hundregsni-supervised classification algorithm is proposed @] {1
of continuous narrow spectral bands, spanning the visible arder to use a kernel machine which is iteratively updated
infrared spectrum. Each pixel in a hyperspectral image YHSly manifold regularization. In [17] the results from multi-
is represented by a vector whose entries correspond tougariple classification/segmentation techniques are fused Isy po
spectral-band responses. Different materials usuallyeaefl processing to generate the final spectral-spatial claadit
electromagnetic energy differently at specific waveleagthmap. Most of the above-mentioned HSI image classification
This enables discrimination of materials based on theictsge techniques do not directly incorporate the spatial or the-co
characteristics. One of the most important applicationd®f textual information into the classifier.
is image classification, where pixels are labeled to one ®f th Recently, sparse representation [18], [19] has also been pr
classes based on their spectral characteristics, givena#l smosed to solve many computer vision tasks [20]-[25], where
set of training data for each class. Various techniques hate usage of sparsity as a prior often leads to state-of-the-
been developed for HSI classification. Among the previowst performance. Sparse representation has also beemr@ppli
approaches, the support vector machine (SVM) [1], [2] h&e HSI target detection and classification [26]-[28], retyion
proven to be a powerful tool to solve many supervised clathe observation that hyperspectral pixels belonging tstmee
sification problems and has shown good performances in ltJass approximately lie in the same low-dimensional sutspa
Thus, an unknown test pixel can be sparsely represented by
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of Naval Research (ONR) under Grant N102-183-0208. encode the class information. The sparse representatisedb



classifier is different from the conventional sparse cfassi the feature space. The kernel sparse representation viector
SVM in the following aspects. SVM is a discriminative modelthen obtained by decomposing the test pixel represented in a
while the sparse representation method can be viewed akigh dimensional feature space over a structured dictionar
generative model, where the signal (pixel) is expressed agansisting of training samples from all of the classes in
linear combination of atoms [19]. SVM is a binary classifiethe same feature space. The recovered sparse vector is used
that finds the separating hyperplane between two classi®ctly for classification. Although the proposed appiohas
(multi-class SVM requires a one-against-one or one-againa similar formulation as previous kernel regression apghea

all strategy). The sparse representation-based clagsifiem with a sparse prior such as kernel matching pursuit [33],
a reconstruction point of view. The sparse decomposition kérnel basis pursuit [34], and generalized LASSO [38], the
the test pixel over the entire dictionary implicitly leads tunderlying ideas are quite different. The objective of thes

a competition between the subspaces (classes) and thusptte¥ious approaches is to approximate a function as a linear
recovered sparse representation is discriminative. M@ combination of dictionary functions, which are the kernels
SVM, there is an explicit training stage. The SVM classifiecentered at the training points, by minimizing certain loss
is trained only once and then this classifier with its fixefunction evaluated at these training points and subject to a
sparse support vectors is used to classify all of the test. dagparsity prior. Therefore, the target vector for fitting sists

On the other hand, in our proposed approach, a new spap¢he observations of the function value at the traininghpmi
representation vector is extracted for each test pixel autltlis and the dictionary is then the dictionary functions evaddat
adaptive, representing the sparsely selected atoms whéch the training points which turns out to be the kernel matnix. |
adapted to reconstruct the current test pixel. our proposed approach, the target vector is the test pbedf it

Hyperspectral images are usually smooth in the sense thehe feature space. It is not the similarity measure betwee
pixels in a small neighborhood represent the same materihal dhe test sample and training samples and may not have an
have similar spectral characteristics. Various techréduave explicit expression. The dictionary also consists of tlaning
been proposed recently to exploit the contextual coratisamples in the feature space and can not assume an explicit
within HSI which have notably improved the classificatiomxpression either. The recovered sparse representataiorve
and segmentation performance. Post-processing proceaigre can be viewed as a discriminative feature extracted from the
used in [29], [30] on the individually-labeled samples lthse test pixel and is used directly for classification.
certain decision rules to impose the smoothness. Markov ranThe contextual correlation between pixels within a small
dom fields exploit the statistical dependency among neighbspatial neighborhood can be incorporated into the kerraebsp
ing pixels and are usually applied in Bayesian approachHs [1representation through the joint sparsity model [31], vehadt
The composite kernel approach [7] is another way to imeighboring pixels are simultaneously represented byeatin
corporate the spatial information, which explicitly extt combination of a few common training samples in the feature
spatial information for each spectral pixel and then combinspace. Furthermore, the composite kernel approach [7] can
the spectral and spatial information via kernel compositioalso be used with the proposed kernel sparse representation
Joint sparsity model [31] is exploited in sparsity-based H$nodel in order to combine spectral and spatial information.
target detection and classification [27], [28], where thigime Efficient kernel-based optimization algorithms are disewksin
boring pixels are simultaneously represented by a spathés paper for the recovery of the kernel sparse represengat
linear combination of a few common training samples. Eadhr both single-pixel and multi-pixel joint sparsity model
pixel, although sharing the same common support, might haveNotation-wise, vectors and matrices are denoted by lower-
weighting coefficients taking on different values. In thiaw and upper-case bold letters, respectively. For a vectoiRN
the smoothness across neighboring spectral pixels is@dorand an index sef C {1,...,N} with |A| =t, ay € R! is the
directly in the classification stage, and no post-processiportion of a indexed onA. For a matrixSe RNt*N2 | index
steps are performed. The details of composite kernels and detsA1 C {1,...,Ns} with |[Aq| =t1, andA2 C {1,...,Nz} with
joint sparsity model will be further discussed in the follayy |A2| =t2, Sp,: € R4*N2 js a submatrix ofS consisting of the
sections. t; rows in S indexed onAy, S A, € RM*%2 consists of the;

It is well known that for the classical HSI image clas€olumns inSindexed oAz, andSy, A, € R4~ is formed by
sification and target detection algorithms, the use of Kerrtbe rows and columns @indexed orn\; and/\y, respectively.
methods yields a significant performance improvement [5], The remainder of this paper is structured as follows. Sec-
[32], because the kernel-based algorithms implicitly eitpl tion Il briefly introduces the sparsity-based HSI classtiara
the higher-order structure of the given data which may not echnique. Section Ill defines the sparsity models in theufea
captured by the linear models. Therefore, if the data settis rspace, then discusses how to incorporate spatial infoomati
linearly separable, kernel methods [33]-[36] can be adpli@nd describes the kernel sparse recovery algorithms. Exper
to project the data into a nonlinear feature space in whichental results are shown in Section 1V, and conclusions are
the data becomes more separable. In practical implementatidrawn in Section V.
the kernel trick [37] is often used in order to avoid explicit
evaluating the data in the feature space. Il. SPARSITY-BASED HS| CLASSIFICATION

In this paper, we propose a new HSI classification algorithm This section briefly introduces the sparsity-based allorit
based on kernel sparse representation by assuming that aftesHSI classification, and more details can be found in [26]—
pixel can be linearly represented by a few training sampies[R8]. It is assumed that the spectral signatures of pixels



belonging to the same class approximately lie in the same low [1l. KERNEL SPARSEREPRESENTATION
i i B . .
dimensional subspace. Thus, an unknown test sampI&®, If the classes in the dataset are not linearly separable,

whereB is the number of spectral bands, can be written asyien the kernel methods can be used to project the data
sparse linear combination of all of the training pixels as  jnto a feature space, in which the classes become linearly

X — Ad (1) separable [1]. The kernel function: RB x RB — R is defined
’ as the inner product
whereA=[a; a -~ an| €RP*Nis a structured dictio- K(Xi, X)) = (@), 0(X;))- @)

nary whose column$a};_;, y areN train'i‘n_g samples (re- commonly used kernels include the radial Basis Func-
ferred to as atoms) from all classes, and R™ is an unknown ;- (RBF) kernelk (X, X;) = exp(—y||)q —x, Hz) with y> 0

sparse vector. The index set on whithave nonzero entries is controlling the width of the RBF, and orded homogeneous
the support ofr. The number of nonzero entriesanis called ; . d
. ; and inhomogeneous polynomial kernedgg,x;) = (X -X;)
the sparsity leveK of a and denoted bK = ||a||,. Given the d . K .
andk(x;,Xj) = (X -Xj+1)", respectively. In this section, we

g:)cls:)nr;aryA, the sparse coefficient vecter is obtained by describe how the sparsity models in Section Il can be exténde
to a feature space induced by a kernel function.
a =argmin|lx—Aal/, subjectto [aly <Ko, (2)

where Ko is a preset upper bound on the sparsity Ieve'ﬁ' Pixel-wise Sparsity in Feature Space

The problem in (2) is NP-hard, which can be approximately Let X € R® be the data point of interest anglx) be
solved by greedy algorithms, such as Orthogonal Matchifl§ representation in the f_eature space. _T_he kernel sparse
Pursuit (OMP) [39] or Subspace Pursuit (SP) [40]. The clagPresentation of a sampiein terms of training atomsy’s

label of x is determined by the minimal residual between can be formulated as

and its approximation from each class sub-dictionary: ox) =[p@) - o@n)| oy - C(MT =Ag’, (8)

— 1 - a’

Classx) arng.l.TM e ) where the columr?ép oA, are the representations of training
where Qn  {1,2,...,N} is the index set associated withSamples in the feature space axids assumed to be a sparse
the training samples belonging to tingth class. As pointed VECtOr.
out in [25], the sparse representation-based classifiebean Similar to the linear sparse recovery problem in @)can
viewed as a generalization of the nearest neighbor clasd® recovered by solving
fier [41]. @’ = argmin||@(x) —Aga’||, subject to [ja’||, < Ko. (9)

In HSI, pixels within a small neighborhood usually consisthe problem in (9) can be approximately solved by kernedjzin
of similar materials and, thus, their spectral charadiessare the OMP and SP algorithms (denoted by KOMP and KSP,
highly correlated. The spatial correlation between neiginy respectively). Note that in the above problem formulatiwa,
pixels can be incorporated through a joint sparsity modg],[2 are solving for the sparse vecwrdirectly in the feature space
[31] by assuming the underlying sparse vectors associated wsing the implicit feature vectors, but not evaluating teenlel
these pixels share a common sparsity pattern as follows. [feimctions at the training points.

X;. These pixels can be compactly represented as in OMP/SP is replaced by the kernel trick in (7). U6 €
RN*N be the kernel matrix whosg, j)th entry isk (a;,a;), and

X=[x % - xr|=[Aoy Adz - Adt] kax € RN be the vector whosih entry isk (a,X). Using the
=Alay az -+ ar]=AS (4) feature representations, the correlation (dot produdijéen
b4 a pixel@(x) and a dictionary atong(a;) is then computed by

In the joint sparsity model, the sparse vectdog},_; G = (@00, 0(@)) =k (xa) = (Kax);. (10)

share the same suppoft and, thus,S is a sparse matrix the orthog_oqal projection coefficient qi(x) onto a set of
with only |A| nonzero rows. The row-sparse matBcan be Selected dictionary atom&p(an)}ni,\ IS given as
recovered by solving the following optimization problem A = (KA)/\,/\) (kA,x)/\7 (11)

S=argmin|X —AS||x subjectto ||S|,,uo <Ko, (5) and the residual vector betwee(x) and its approximation us-
’ ing the selected ato a, = . is then expressed
where [|S]| 4, o denotes the number of non-zero rows Sf asg mop@n) Fncn = (Ao). P

and ||-||- denotes the Frobenius norm. The problem in (5) . -1
can M l:approximately solved by the simultaneous versions of or) = @) - (A"’)H/\ ((KA)"”\) (Kax) - (12)
OMP (SOMP) [31] or SP (SSP) [28]. The label of the centalote that the feature representation of the residual vegror
pixel x; is then determined by the minimal total residual: in (12) cannot be evaluated explicitly. However, the catieh
betweeng(r) and an atomp(a;) can be computed by

Classx;) = arg rlninlvI HX A5

m=1,...,

C® ¢
i 6= (0().0@)) = (kax); - Ka)in (Kalnn)  (Kax) -

where||-||z denotes the Frobenius norm. (13)



The KOMP and KSP greedy algorithms, similar to the lineahe row ofC, which has the maximél,-norm for somep > 1.
OMP and SP algorithms, are used to locate the sugpofthe The KSOMP algorithm is summarized in Algorithm 1. Note
sparse vecto@’. The KOMP algorithm augments the supporthat when computing the projection in (11) and correlation
set by only one index, which is given By=argmax-1_nC in (13), a regularization terml is added in order to have a
with ¢; being defined in (13) andp(r) being the residual stable inversion, wherk is typically a small scalar (e.g. in the
vector from the previous iteration, at each iteration uKgl order of 10°°) andl is an identity matrix whose dimensionality
atoms are selected or the approximation error (i.e., northeof should be clear from the context.
residual vector in (12)) is within a preset threshold. ThePK
algorithm maintains a ;et d_{o indice; with a chktrag:king Input: Bx N dictionaryA = [8.1 aN]’ Bx T data ma
meghamsm. At eac_h iteration, the mdqx set is refined by iy x — X1 xr], kernel functionk, and a stoppin
addingKo new candidates, whose associated atoms have| thiierion
Ko highest correlation (13) to the residual vector from the
previous iteration, to the current list and then discardiag
insignificant ones from the list ofk} candidates. This proces
repeats until certain stopping criterion is met. In both loé t
KOMP and KSP algorithms, after the support #ebf @’ is | =\ @7/ =% THEEASER0 =49 19
determined, the entries @ indexed onA are computed by somep> 1 and iteration counter— 1
the orthogonal projection of the test pixel onto the sekbcte While stopping criterion has not been
dictionary atoms using (11). The KOMP/KSP algorithms can (1) Compute the correlation matrix

L]

Initialization: compute the kernel matricd§p in Algo-
rithm 1 (In|t|aI|zat|on) andKax € RN*T Whose( J)th entry

)

be viewed as special cases, with= 1, of the kernelized _ -1 L NXT
SOMP/SSP algorithms (Algorithms 1 and 2) proposed in the C=Kax—Ka):n, ((KA)’\t 1M 1+M) (Kax)n . FR
next section, respectively. The details are thus omittedihe (2) Select the new index &g =arg_max |[Ci.:[|,, p=1

Once the sparse vectdf is recovered, the residual betwegn  (3) Update the index se% = At,lu{}\t}
the test sample and theth-class reconstruction in the high- At—t+1
dimensional feature space is then computed by end while

rm(X) = [|@(X) — o Qo
m(X) H(p( ) (A‘p)-ﬁQm Om 2 Output: Index set A = Ari1, the sparse representation
:<cp(x)—(Acp):’Qmﬁ’Qm,cp(X)—(Acp):‘Q (,/Qm> S whose nonzero rows indexed by are S,\ =

T 1/2 (K/\,/\ + )\l) (KA,X) A
_ U A~/ )
- (K(X’X) 2 (kA’X)Q +GQ (Ka)ar, Q”‘GQ’“) ' Algorithm 1: Kernelized Simultaneous Orthogonal Matching

_ _ (14 pursuit (KSOMP)
whereka x andKa are as defined above, al, is the index

set associated with thath class. The class label of is
determined as

Similarly, KSSP is a simultaneous version of KSP where
the Ko atoms that best simultaneously approximate all of the
Clasgx) =arg min rm(X). (15) T residuals in terms of thé,-norm are chosen. The KSSP

""" algorithm is summarized in Algorithm 2. Note that the step
for computing the residual vectors (12) is incorporatea int

the computation of the correlation vector in Step (1) of both
The joint sparsity model in (4) can also be extended to thegsoMP and KSSP.

B. Joint Sparsity in Feature Space

feature space as follows: Once the matriX is recovered, the total residual between
Xo=[0(x1) -+ @x1)] =[A) - Aaf] the T neighboring pixels and their approximations from the
A Ja - all= 7 16) Mmth-class training samples is computed by
A [0} 7] =AS (16) ) "
s _ &
where the vectordai},_, r share the same support. The [m(x1) = (Zl (K(x"x' 2$m' (Kax)g +%m| KA) o am Som. )) ,
row-sparse matris§ is recovered by solving (18)
g_ arg m,on(p A‘PSHF subject to HSHrowo < whereKa x andKp are as defined in Algorithms 1 and 2, and

(17) Qme {1,2,...,N} is the index set associated with tingth

In this paper, we propose the kernelized SOMP (KSOMP) aftfss. The label for the center pixel is then determined by
the kernelized SSP (KSSP) algorithms in order to approxie total residual
mately solve the above joint sparse recovery problem in.(17) Clasgx;) = arg | m|n rm(xl) (19)

In KSOMP, at every iteration, the atom that simultaneousty 7>
yields the best approximation to all tiepixels (or residuals ) _ )
after initialization) is selected. Specifically, 6t RN*T be C. Kernel Sparse Representation with a Composite Kernel
the correlation matrix whosé, j)th entry is the correlation  Another way to address the contextual correlation within
betweengp(a;) andq(r ), whereq(r;) is the residual vector of HSI is though a composite kernel [7], which takes into
@(Xj). The new atom is then selected as the one associated veititount the spatial correlation between neighboring pixel



Input: Bx N dictionaryA=[a; --- ax], Bx T data ma Whe_reue (0,1), andks andky, are the I_<erne| functions of the

trix X =[xz --- xr], kernel functionk, and a stopping spatial and spectral features, respectively.

criterion .The com_posite kerr_1e|s can be directly applied to the pixel-
wise sparsity model in the feature space in (8). The sparse
Initialization: compute the kernel matricdéa in Algo- representation vector can be recovered using the KOMP or
rithm 1 (Initialization) andKax € RN*T whose(i, j )th entry KSP algorithm, where the kernel matifs is now a weighted
is Kk (a,x;). Setindex sed o K. indices corresponding to summation of the spectral and spatial kernel matrices of the

a,Xj). 0= P 9 training dictionaryA, and the vectokay also needs to be
theKq largest numbers iH(KA‘X)i H ,p>1,i= 1,...,N}, modified accordingly.
Xicll o

and set iteration countér= 1. It is worth noting that the composite kernel approach is
while stopping criterion has not been méa different from the kernel joint sparsity model discussed in
(1) Compute the correlation matrix Section IlI-B. The joint sparsity model involves only the

1 sBatiaI information of the test pixels, and no prior knovged
C=Kax—(Ka).r_, ((KA)/\t,l,/\l,l-H\l) (Kax)a, ;. = BBOUt the neighbors of the training pixels is needed. On the
other hand, for the composite kernels, the spatial infoionat

for both training and test sets are necessary. Moreovejgittte

the Ko largest numbers itﬂCi,:Ilp, p>1,i= 1,...,N} sparsity model does not assume a sum or average of the same
(3) Update the candidate index dat=A_11J I samples, but treats all pixels in a small neighborhood éyjual
4) Compute the projection coefficientsand finds the sparsity pattern that simultaneously reptesen

o

(2) Find the index sef = {Ko indices corresponding 1

- these pixels.
P=((Knlaa+M)  (Kax)z, € RZOT P
(5) Update the index sef; = { Ko indices inA; cor- IV. EXPERIMENTAL RESULTS
responding to thé, largest numbers ifiP;| ., p> 1, In this section, we show the effectiveness of the proposed
i1 N P algorithms on classification of several hyperspectral skt

For each image, we solve the sparse recovery problems
in (2), (5), (9), and (17) for each test sample, and then deter
mine the class by the minimal residual (the results are @&shot
by OMP/SP, KOMP/KSP, SOMP/SSP, and KSOMP/KSSP,
Ohfespectively). The results of KOMP and KSP with composite
kernels, as discussed in Section IlI-C, are denoted by KOM-

B)t+t+1
end while

Output: Index set A = Ai_1, the sparse representati
A . A/
S whose nonzero rows indexed b\ are S,. =

(KA,/\+)\|)71(KA,X)/\,; PCK and KSPCK, respectively. The classification results are
Algorithm 2: Kernelized Simultaneous Subspace Pu hen compa_red visually an_q quantitatively to those_obmlne
suit (KSSP) y the classical SVM classifier and sparse multinomial Kerne

logistic regression (KLR). For SVM and KLR classifiers,
we use a spectral-only kernel (denoted by SVM/KLR), as
by combining kernels dedicated to the spectral and spatigdll as a composite kernel (denoted by SVMCK/KLRCK).
information. The composite kernel approach has been shownall classifiers with a composite kernel, we use a weighted
to significantly outperform the spectral-only classifiertHSl summation kernel and the spatial information is the mean
classification [42]. This method, although originally posed of pixels in a small neighborhood. The parameters for KLR,
for SVM, can be readily incorporated into other classifiei&LRCK, SVM, and SVMCK are obtained by cross-validation.
which operate in the feature space, such as kernel logisticThe first hyperspectral image in our experiments is the
regression and the kernel sparse representation-bassdfiefa Airborne Visible/Infrared Imaging Spectrometer (AVIRIB)-
proposed in this paper. Specifically, &Y' be the spectral age Indian Pines [43]. The AVIRIS sensor generates 220
pixel at locationi in a hyperspectral image and be the bands across the spectral range from 0.2 to|#¥ In the
spatial information extracted from a small neighborhood-ceexperiments, the number of bands is reduced to 200 by
tered at locationi, which is usually the mean and/or theremoving 20 water absorption bands. This image has spatial
standard deviation of the pixels within the neighborhoodesolution of 20 m per pixel and spatial dimension 4515. It
The new pixel entity at this location can be redefined a®ntains 16 ground-truth classes. For each class, we rdgdom
Xi = {X;,x°}. Note that in previous sections contains only choose around 10% of the labeled samples for training and use
spectral information (i.e.x; = x'). The spectral and spatialthe remaining 90% for testing, as shown in Table | and Fig. 1.
information can then be combined in a variety of wayRadial Basis Function (RBF) kernels are used in all kernel-
including stacking, direct summation, weighted summatiobased classifiers (i.e., SVM, SVMCK, KLR, KLRCK, KOMP,
and cross-information kernels [7]. In this paper, we coaisidKSP, KSOMP, KSSP, KOMPCK, and KSPCK). Since this
the weighted summation kernel, which is shown to yield thenage consists of large homogenous regions, a large spatial
best classification performance compared to other typeswihdow of size 9x 9 (T = 81) is used in classifiers with a
composite kernels [7]. The kernel function in this case is composite kernel and the joint sparsity models (4) and (16).
The classification performance for each of the 16 classese,
K (X, Xj) = HKs (XF,X5) + (1 — Wkw (%", x1") , (20) overall accuracy (OA), average accuracy (AA), and the



coefficient measure [44] on the test set are shown in Table I
The OA is the ratio between correctly classified test sample "
and the total number of test samples, the AA is the mean of th -
16 class accuracies, and theoefficient is a robust measure of
the degree of agreement. The classification maps on labele
pixels are presented in Fig. 2, where the algorithm and O#
are shown on top of each corresponding map. One can clear
see that incorporating the contextual correlation and atjpey

in the feature space both have significantly improved the et i
classification accuracy. The KOMPCK and KSPCK algorithms @) (b)
outperform all other classifiers - the OA for both of which are n
greater than 98%. The KSOMP and KSSP algorithms also
yield superior performance, which have only about 1% lower
OA than KOMPCK and KSPCK. Note that the kernel joint Corn—min
sparsity model for KSOMP and KSSP does not assume any | com
prior knowledge of the neighbors of the training samples as

Alfalfa Oats

Corn-noatill Soybeans—noatill
Soybeans-min

Soybean-clean

. Grass/Pasture Wheat
the composite kernel approach does.
B Grass/Trees Woods
TABLE | B Grass/Pasture-mowed Building—Grass-Trees:

THE 16 GROUND-TRUTH CLASSES IN THEAVIRIS INDIAN PINES IMAGE.

Hay-windrowed Stone-steel Towers

Class S_amples Fig. 1. (a) Training and (b) test sets for the Indian Pinesgea
No | Name Train | Test
1 | Alfalfa 6 48
g ggm'”m‘?;'” 18‘24 1725%0 (b) that for the pixel-wise kernel sparsity modgli= 512
2 | Com o4 | 210 leads to the highest OA at all sparsity levels. For a fixed
5 | Grass/Pasture 50 | 447 y, the performance of KOMP and KSP generally improves
g gggzgﬁﬁre owed 735 62732 as Kg increases, and tends to saturatekKasreaches 30-50.
8 | Hay-windrowed 49 | 440 For KSOMP and KSSP, as shown in Figs. 3(c) and (d), the
9 | Oats 2 18 same tendency cannot be observed. However, the kernel joint
ﬂ ggiggggz‘”mﬁz” 29477 2327211 sparsity model is more stable than the pixel-wise model, as
12 | Soybean-clean 62 | 552 for a large range of sparsity levély and suff|C|ent_Iy large
13 | Wheat 22 | 190 y, the overall accuracy is always around 96% with a small
14 | Woods _ 130 | 1164 variance. The stable performance suggests that we coud als
15 | Building-Grass-Trees-Driveg| 38 342 ..
16 | Stone-steel Towers 10 85 use empirical parametekg andy.

Total 1043 | 9323 In KSOMP and KSSP algorithms, a regularization texin

is added to stabilize the matrix inversion, wherés a small

The sparsity leveKg and RBF parametey used in the scalar and is chosen as=10° in our implementation. This
above experiments are obtained from a small validation seframeter, however, does not seriously affect the claasdit
An n-fold cross validation would not be appropriate for findingerformance, because the kernel makiids usually invertible
the optimal sparsity level, unlessis large (e.g., leave-one-2and regularization is not really needed. Fig. 4 shows the ©A a
out cross validation). This is because the sparsity ldggel @ function ofA on the Indian Pines image, using the KSOMP
is related to the size of dictionary, therefore the optim&@nd KSSP algorithms with 10% training samples while all
Ko for part of the dictionary may not be optimal anymor®ther parameters are fixed. The classification performance
for the entire dictionary. Now we examine how these twfemains the same unill becomes as large as 10
parameters affect the classification performance on thiaind The next two hyperspectral images used in our experiments,
Pines image. We use randomly selected 10% of all labelt® University of Pavia and the Center of Pavia images,
samples as the training set and the remaining samples asaf& urban images acquired by the Reflective Optics System
test set, then varKo from 5 to 80 andy from 273 to 22 Imaging Spectrometer (ROSIS). The ROSIS sensor generates
in KOMP, KSP, KSOMP, and KSSP. The experiment for eackl5 spectral bands ranging from 0.43 to 0y86 and has a
v, Ko, and each of the four algorithm is repeated five timegpatial resolution of 1.3-meters per pixel [42]. The Unsigr
using different randomly-chosen training sets to avoidlsiag 0f Pavia image consists of 630340 pixels, each having 103
induced by random sampling. The window size is fixed &ands, with the 12 most noisy bands removed. There are nine
9x 9 for KSOMP and KSSP due to its smoothness. The Oground-truth classes of interests, as shown in Table IIt. Fo
on the test set, averaged over five independent realizatioiés image, we follow the same experiment settings for the
are shown in Fig. 3. The bars indicate the maximal aritgining and test sets as used in [30], [42], in which about 9%
minimal accuracies in five runs at each point, and we seélabeled data are used as training and the rest are used for
that the the fluctuation is usually within 2% and within 1%4esting, as shown in Table Il and Fig. 5.
in a majority of cases. One can observe from Figs. 3(a) andThe classification accuracies and thecoefficients on the



TABLE I
CLASSIFICATION ACCURACY (%) FOR THEINDIAN PINES IMAGE USING10% T TRAINING SAMPLES AS SHOWN INFIG. 1 AND TABLE .

Class || SYM | SYMCK | KLR | KLRCK | OMP | KOMP | SOMP | KSOMP | KOMPCK | SP | KSP | SSP | KSSP | KSPCK
1 81.25| 9583 | 6458| 7500 | 68.75| 7292 | 8542 | 97.02 97.92 68.75 | 72.92 | 81.25 | 91.67 | 95.83
2 86.28 | 96.67 | 89.46| 96.43 | 65.97 | 86.36 | 94.88 | 97.21 99.22 74.65 | 87.91| 95.74 | 97.98 | 99.15
3 72.80| 90.93 | 70.67| 95.47 | 60.67| 77.47 | 94.93 | 96.67 96.93 63.20 | 78.53 | 92.80 | 97.73 | 96.93
4 58.10 | 85.71 | 67.14| 86.19 | 3857 | 62.86 | 91.43 | 93.33 95.24 | 40.00 | 62.86 | 82.38 | 96.67 | 97.14
5 92.39| 93.74 | 90.60| 96.42 | 89.49| 90.38 | 89.49 | 95.75 98.43 | 89.04 | 90.60 | 93.29 | 94.85 | 98.21
6 96.88 | 97.32 | 98.07| 98.66 | 95.24| 97.17 | 9851 | 99.55 99.11 95.98 | 96.88 | 98.81 | 98.96 | 99.11
7 43.48 | 69.57 | 17.39| 8261 | 21.74| 21.74 | 91.30 | 60.87 100 21.74 | 21.74 | 82.61| 17.39 | 100
8 98.86| 9841 | 98.86| 97.95 | 97.05| 98.18 | 99.55 100 100 99.09 | 98.64 | 99.77 | 100 99.97
9 50 55.56 | 16.67 50 33.33 | 55.56 0 0 88.89 61.11 | 55.56 | O 0 100
10 || 71.53| 93.80 | 74.97| 93.80 | 68.20| 77.61 | 89.44 | 94.60 98.05 70.72 | 79.33 | 91.27 | 94.37 | 97.70
11 || 84.38| 94.37 | 84.87| 9554 | 75.96 | 85.68 | 97.34 | 99.28 97.43 77.94 | 86.90 | 97.43 | 98.33 | 98.20
12 || 8551 | 93.66 | 81.16| 91.85 | 54.53| 77.90 | 88.22 | 95.65 98.73 61.23 | 78.44 | 89.13 | 97.46 | 98.73
13 100 99.47 100 100 100 100 100 100 100 100 | 100 | 99.47 | 100 100
14 || 93.30| 99.14 | 95.02| 96.56 | 92.87 | 95.70 | 99.14 | 99.83 99.40 95.62 | 95.96 | 99.05 | 99.91 | 99.48
15 || 64.91| 8743 | 61.70| 88.01 | 41.23| 55.85 | 99.12 | 91.81 97.95 | 48.25| 55.56 | 97.95 | 97.08 | 97.37
16 || 88.24 100 57.65| 88.24 | 94.12| 92.94 | 96.47 | 91.76 97.65 92.94 | 94.12 | 92.94 | 94.12 | 95.29
OA || 8452 | 9486 | 84.78| 05.10 | 74.78| 85.26 | 95.28 | 97.33 98.33 78.10 | 86.09 | 95.34 | 97.46 | 98.47
AA || 79.24| 90.73 | 73.05| 8955 | 68.61| 78.02 | 88.45 | 88.39 97.81 7252 | 7850 | 87.12 | 86.03 | 98.31
K 0.823| 0941 | 0826| 0944 | 0.712| 0832 | 0946 | 0.970 0.981 | 0.749 | 0.841 | 0.947 | 0.971 | 0.983
97.47 ] than that for SYMCK and KLRCK, which affect the OA

because this class contains more than 45% of the samples in
the entire test set. This could be circumvented by seleaing
learning a more representative training set which is seffitty
comprehensive to span the class subspace.
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€ 96.81 ] TABLE Il
8 THE 9 GROUND-TRUTH CLASSES IN THEUNIVERSITY OF PAVIA IMAGE .
T 96.6f
g Class Samples
96.45 ] No | Name Train Test
1 | Asphalt 548 6304
2 Meadows 540 | 18146
9621 e —T \ 3 | Gravel 392 | 1815
4 Trees 524 2912
96 . . . . 5 Metal sheets|| 265 1113
107 107 10° 10°° 10 107 10° 6 | Bare soil 532 | 4572
A 7 | Bitumen 375 | 981
8 Bricks 514 3364
Fig. 4. Effect of the regularization terml in the kernel sparse recovery 9 Shadows 231 795
algorithms using 10% of all labeled samples in the IndiareRimage as the Total 3021 | 40002

training set.

test set using various techniques are shown in Table IV, an - '

the classification maps for all labeled pixels are presentes. - I B Asphalt

in Fig. 6. Again, the RBF kernel is used for all kernel- = " Meadows
based algorithms. This urban image lacks the large spatic . ".-; Gravel
homogeneity. Therefore, a smaller neighborhood of sizé&5 L 3 M Trees

is optimal for algorithms using a composite kernel, and the : B WMetal sheets
linear and kernel joint sparsity models. Similar to the &mdi r, . B Bare soil
Pines image, the proposed KSOMP/KSSP algorithms achiev L. ' B Bitumen
better or comparable performance when compared with thr - . B Bricks
SVMCK classifier for most of the classes. KSOMP yields the - chadows

best accuracy in five out of the total nine classes, and KSSI

has the highest OA, AA, anxl coefficient. The overall perfor- (a) (b)
mance of SVM, KOMP, and KSP, which are kernel methong. 5. (a) Training and (b) test sets for the University ofiRamage.

for pixel-wise models, are comparable, and by incorpogatin

the contextual information, the SVMCK, KSOMP, and KSSP In the sequel, we examine how the number of training
techniques still have comparable performance. The sparsisamples affects the classification performance for varbys-
based algorithms generally do not handle the second clasthms on the Indian Pines and the University of Pavia images
representing Meadows, very well. For example, the accurathe algorithm parameters are fixed to be the same as those
for the second class for KSOMP and KSSP is 5%-9% lowesed to generate the results in Tables Il and IV. For the india
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TABLE IV
CLASSIFICATION ACCURACY (%) FOR THEUNIVERSITY OF PAVIA IMAGE USING 3921 (AROUND 9%) TRAINING SAMPLES AS SHOWN INFIG. 5 AND
TABLE III.

Class || SVM | SVMCK | KLR | KLRCK | OMP | KOMP | SOMP | KSOMP | KOMPCK SP KSP SSP | KSSP | KSPCK
1 84.30 79.85 82.96 74.40 | 68.23 | 76.09 | 59.33 94.23 82.23 69.78 | 76.67 | 69.59 | 89.56 | 89.64
2 67.01 84.86 83.34| 85.91 67.04 | 69.61 | 78.15 76.74 72.47 67.90 | 70.92 | 72.31 | 79.98 | 72.68
3 68.43 81.87 64.13 61.71 65.45| 72.12 | 83.53 79.23 82.26 69.20 | 73.39 | 74.10 | 85.45 | 80.06
4 97.80 96.36 96.33 | 96.22 97.29 | 98.11 | 96.91 95.12 98.56 96.77 | 98.15 | 95.33 | 98.66 | 98.94
5 99.37 99.37 99.19 | 99.10 | 99.73 | 99.73 | 99.46 100 99.82 99.64 | 99.82 | 99.73 | 99.91 100
6 92.45 93.55 80.05| 84.45 | 73.27| 87.66 | 77.41 99.50 93.92 78.96 | 89.70 | 86.72 | 95.76 | 94.77
7 89.91 90.21 8451 | 85.32 87.26 | 88.07 | 98.57 99.80 92.46 88.18 | 88.28 | 90.32 | 97.96 | 89.81
8 92.42 92.81 83.17 | 93.37 81.87 | 89.51 | 89.09 98.78 78.78 83.68 | 87.54 | 90.46 | 96.43 | 89.54
9 97.23 95.35 89.81| 96.48 | 9597 | 93.96 | 91.95 29.06 96.98 9459 | 95.22 | 90.94 | 98.49 | 96.48

OA 79.15 87.18 83.56 | 84.77 73.30 | 78.33 | 79.00 85.67 81.07 74.86 | 79.18 | 78.39 | 87.65 | 83.19
AA 87.66 90.47 8483 | 86.33 | 81.79| 86.10 | 86.04 85.83 88.61 83.19 | 86.63 | 85.50 [ 93.58 | 90.21
K 0.737 0.833 0.784| 0.799 | 0.661| 0.725 | 0.728 0.815 0.758 0.681] 0.735[ 0.724 | 0.840 | 0.785

Pines image, in each test, we randomly choose 1% to 30%K®MPCK and KSPCK consistently yield higher OA than any
the labeled data in each class as the training samples anddtieer classifiers.

remaining samples as the test ones. The classificationaaycur

plots under various conditions are shown in Fig. 7(a) for the For the University of Pavia image, we create a balanced
Indian Pines image, where theaxis denotes the percentagdlictionary by randomly choosing = 10,20,30,50,100, and

of training samples from the total available labeled sample200 training samples per class, and these training sampes a
and they-axis is the OA on the test set. The accuracies afesubset of the entire training set shown in Fig. 5(a). Since
averaged over five runs for each classifier at each percentHfe dictionary is considerably small, the sparsity leglis
level to avoid any bias induced by random sampling, and tg&t to be no more thah. The classification accuracy plots
bars indicate the maximal and minimal accuracies for ea@fe shown in Fig. 7(b), where theaxis denotes the number
point in the five runs. The OA monotonically increase as tH¥ training samples per class, and tirexis is the overall
size of training set increases, and the variance is smadl (#assification accuracy on the test set. Again, the acaesaci
difference between the maximum and minimum is within 198)e averaged over five runs for each classifier at ezad the

when at least 5%-10% training samples become available. IS represent the maximum and minimum in the five runs. It
is obvious that in most cases the OA increases monotonically
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Fig. 3. Effect of sparsity leveKo and RBF kernel parametgron the Indian Pines image using (a) KOMP, (b) KSP, (c) KSOMig @) KSSP.

and the variance decreases as the number of training sampledization is shown in Figs. 8 and 9, respectively. Thaxis
increases. For the University of Pavia image, the perfonmarrepresents the relative gain in percentage (averaged ower fi
at L = 50 is almost the same as that lat= 100 for all runs), which is ratio between the improvement in accuracly an
classifiers. The SVMCK classifier consistently outperfoaths the OA of the algorithm before kernelization/contextuatian.

of the other classifiers when the number of training samglesior example, in the case of contextualization of KOMP using
small, but the curves for SVMCK and KSSP tend to converdke joint sparsity model, the relative gain is computed by

as more training samples are available (see Table IV for the OAksomp — OAkomPp
performance comparison of SVMCK and KSSP with a large = OA

training set). It should also be pointed out again that dytire KOMP
training stage of algorithms using a composite kernel, deor where OAsomp and O/kowp are the overall accuracy for
to extract the spatial features for each training sample, o € KSOMP and KOMP a}lgo_rlthms, respectively. The relative
requires knowledge of the neighboring pixels or the locatid gain obtalngd by.kernellza}tlon_ of the SP, SSP, OMP, gnd
the training sample, which may not be available in the trajni S_OMP algorlth_ms IS shown n F_|gs. 8(a) and (b) _for the Indian
set. Moreover, the proposed sparsity-based algorithmgsorel Pines and Un_|ver5|ty of Pavia images, _respectlv_ely. One can
the approximation accuracy from each class sub-dictiona%?serve that in most_ cases, kernelization consstentlgtsle_a
Therefore, if the size of the sub-dictionary is too smalk tht a pgrformance gain of 5% to 20%._The only exceptllon
training samples may not be sufficient to faithfully reprui:se@.('s‘tS n the K.SSP ar?d KSOMP algorithms f.or- the Indian
the subspace associated with each class, leading to a IovF\>/ s image with a higher percentage of training samples,

classification accuracy than the discriminative class&i¢M. w 'Ch_'s partly due to th_e fact that SSP and SOMP befofe
kernelization already achieve an OA of at least 95%. In this

A closer inspection of the performance gain, as a functi@mase, an improvement of 2% to 3% means the error rate is
of the dictionary size, obtained by kernelization and centereduced by half which could be considered significant.

x100%
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M®SFOA = 83.19

Fig. 6. Classification maps and overall classification amcyi{OA) for the University of Pavia image using around 9%eled samples as training set.

The relative gain obtained by incorporation of spatial info KOMP are both shown in Fig. 9. One can observe that for
mation in OMP, KOMP, SVM, and KLR is shown in Figs. 9(a)he India Pines image, the linear method OMP is the most
and (b) for the Indian Pines image and the University afensitive to the spatial information, in which the relatjan
Pavia image, respectively. The contextualization of SP aiglgenerally more than 20%. The other classifiers all work in
KSP has a similar effect to that of OMP and KOMP, anthe feature space, and the gain ranges from 10% to 15% in
the results are not reported here. Note that with the kermaebst cases, with a slight decrease as the number of training
sparse representation model, the contextual correlation samples increases. For the University of Pavia image, the
be incorporated through either a joint sparsity model (JSMglative gain in classification accuracy is usually aroufébol
or a composite kernel (CK), and thus the relative gain &6 14%. Contrary to the case of the Indian Pines image, the
KSOMP (through JSM) and KOMPCK (through CK) overimprovement of the linear approach OMP is slightly less than
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Relative performance gain by kernelization for spghased

the kernel methods. Moreover, the performance of KLR is NOL - 9 CROUND-TRUTH CLASSTAB"E M

as consistent as the other methods.

The third image in our experiments, Center of Pavia, is the

other urban image collected by the ROSIS sensor over the " ij’;ﬁqe Traiampl'?;t
center of the Pavia city. This image consists of 169892 T T Water =45 | 64533
pixels, each having 102 spectral bands after 13 noisy bands 2 | Trees 785 | 5722
are removed. The nine ground-truth classes and the number of 3 | Meadow ) 797 | 2094
L d test les f hcl h in Table V 4 | Brick 485 1667
training and test samples for each class are shown in Table 5 | soil 820 | 5729
and illustrated in Fig. 10. For this image, about 5% of the 6 | Asphalt | 678 | 6847
labeled data are used as training samples. The classificatio 7 | Bitumen || 808 | 6479
it ed in Table VI. and the classificati 8 | Tile 223 | 2899
results are summarized in Table VI, and the classificatiopsma 9 | shadow || 195 | 1970
are shown in Fig. 11. KLRCK achieves a 100% accuracy on Total 5536 | 97940

the first class (water), which occupies 66% of the test sat, an
thus yields the best OA. The KSOMP and KSSP work very

ES IN THECENTER OFPAVIA IMAGE AND
THE TRAINING AND TEST SETS

’ - V. CONCLUSIONS
well on the other classes, except that KSSP fails for thennint

class (Shadow). In this paper, we propose a new HSI classification technique

In general, one can observe from the experimental resultssed on sparse representations in a nonlinear feature spac
on these three images that the incorporation of contextuadluced by a kernel function. The spatial correlation betwe
information improves the classification performance (€5 neighboring pixels is incorporated through a joint spgrsit
vs. SSP, KSP vs. KSSP, SVM vs. SVMCK, etc). Moreover, oprodel. Experimental results on AVIRIS and ROSIS hyperspec-
erating in the kernel feature space also significantly impso tral images show that the kernelization of the sparsityedas
the accuracy (e.g., SP vs. KSP, SSP vs. KSSP, etc). algorithms improve the classification performance comgtoe
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Ground Truth SVM, OA = 94.63 SVMCK, OA = 96.81 KLR, OA = 97.99 RICK, OA = 98.92
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Fig. 11. Classification maps and overall classification smgu (OA) for the Center of Pavia image using 5536 traininggas (around 5% of all labeled
samples) as shown in Fig. 11 and Table V.



TABLE VI
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CLASSIFICATION ACCURACY (%) FOR THE CENTER OFPAVIA IMAGE USING 5536TRAINING SAMPLES (AROUND 5% OF ALL LABELED SAMPLES AS

SHOWN IN FIG. 10 AND TABLE V).

Class || SVM | SVMCK KLR KLRCK OMP | KOMP | SOMP | KSOMP | KOMPCK SP KSP SSP | KSSP | KSPCK
1 99.19 97.46 99.63 100 98.91 | 98.13 99.32 99.07 98.98 98.20 | 98.09 | 97.79 | 99.26 98.79
2 77.74 93.08 93.18 95.39 86.75 | 92.76 92.38 95.30 96.31 86.98 | 91.17 | 92.82 | 91.23 91.70
3 86.74 97.09 96.18 95.89 96.04 | 97.04 95.46 97.09 96.08 96.61 | 97.28 | 97.80 | 97.71 99.57
4 40.38 77.02 81.76 89.80 81.22 | 88.84 85.66 89.68 97.78 84.16 | 86.86 | 78.52 | 95.26 94.54
5 97.52 98.39 96.25 98.59 94.40 | 94.89 96.37 97.56 97.82 94.01 | 95.76 | 95.81 | 97.45 94.99
6 94.77 94.32 93.91 96.67 91.94 | 96.13 92.83 98.31 96.54 9292 | 95.82 | 96.52 | 97.41 93.92
7 74.37 97.50 95.22 97.31 93.18 | 95.40 94.68 98.80 98.63 93.80 | 95.57 | 95.96 | 97.82 96.90
8 98.94 99.83 99.52 98.41 98.62 | 99.34 99.69 99.93 100 98.79 | 99.24 | 99.79 | 99.90 99.55
9 100 99.95 99.90 99.49 98.07 | 99.39 98.68 100 96.65 99.34 | 99.39 | 98.83 | 71.42 93.60
OA 94.63 96.81 97.99 98.92 96.68 | 97.19 97.66 98.53 98.46 96.40 | 97.08 | 96.93 | 97.82 97.55
AA 85.52 94.96 95.06 96.84 93.24 | 95.77 95.01 97.30 97.64 93.87 | 95.47 | 94.87 | 94.16 95.95
K 0.899 0.943 0.963 0.980 0.940 | 0.949 0.958 0.973 0.972 0.935 | 0.947 | 0.945 | 0.960 0.956
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(a) Training and (b) test sets for the Center of Pawige.

support vectors is obtained by a training process over the
whole training set and then this SVM is used to classify all
of the test data. However, our method can be considered as a
generative model. The subspaces representing differesdges
implicitly compete with each other during the sparse recpve
process, leading to a discriminative representation vettos
sparse representation vector is extracted for each test pix
and is thus adaptive. This will inevitably lead to an inceeas
in the computational cost, but the kernel matkx can be
computed offline. Therefore, the most intensive part in the
sparse recovery is the inversion of a matrix of at most size
Ko x Ko for the OMP-based algorithms an@Kp) x (2Kop)

for the SP-based algorithms. Moreover, in the OMP-based
algorithms, since the support set is sequentially augmente
by one index at a time, the inversion can be accelerated by

on (a) the Indian Pines image and (b) the University of Pawiage with
different dictionary size.

spatial single-classifiers such as SVMCK.

Cholesky decomposition [45].
Our proposed dictionary-based classifier provides several

advantages. Firstly, new training samples can be easilgcdd
to the dictionary without re-training the model, unlike thtber
the linear version. It is also shown that the proposed algwori classifiers (e.g., SVM and KLR) that need to re-train the nhode
has a better or comparable performance to the recent specfia the new training data. Also, our algorithm is especially
useful for creating a dictionary invariant to the enviroma
The proposed sparsity-based classifier is different froen thiariations by adding synthetically generated spectrahasig
conventional sparse classifier SVM in many aspects. SVMtigres that account for various illuminations and atmosigher
a discriminative model, which finds the separating hypemplaconditions [46]. Moreover, the joint sparsity model in kelrn
between two classes. A model with a fixed set of sparspace is still applicable when the training data is syntiadti



generated or from a spectra library rather than taken fram th4]
scene. On the other hand, classifiers using composite{kerne
require knowledge of the spatial features of each trainiig d
which may not be available, and thus these classifiers may [t
be applicable in the case of a synthetic or library trainieg s

The classification accuracy can be further improved by
a post-processing step, or combining the proposed te¢ts]
nigue with other state-of-the-art classifiers to generate a
mega-classifier [17]. Another possible direction is the de-
sign/learning of a better dictionary such that the dictigna[17]
provides more accurate reconstruction, more discrimiaati
power, and/or better adaptivity to the test data.

(18]
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