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ABSTRACT 

Very high-resolution Synthetic Aperture Radar sensors represent an alternative to 

aerial photography for delineating floods in built-up environments where flood risk is 

highest. However, even with currently available SAR image resolutions of 3 m and 

higher, signal returns from man-made structures hamper the accurate mapping of 

flooded areas. Enhanced image processing algorithms and a better exploitation of 

image archives are required to facilitate the use of microwave remote sensing data for 

monitoring flood dynamics in urban areas. In this study a hybrid methodology 

combining radiometric thresholding, region growing and change detection is 
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introduced as an approach enabling the automated, objective and reliable flood extent 

extraction from very high-resolution urban SAR images. The method is based on the 

calibration of a statistical distribution of “open water” backscatter values inferred 

from SAR images of floods. SAR images acquired during dry conditions enable the 

identification of areas i) that are not “visible” to the sensor (i.e. regions affected by 

‘layover’ and ‘shadow’) and ii) that systematically behave as specular reflectors (e.g. 

smooth tarmac, permanent water bodies). Change detection with respect to a pre- or 

post flood reference image thereby reduces over-detection of inundated areas. A case 

study of the July 2007 Severn River flood (UK) observed by the very high-resolution 

SAR sensor on board TerraSAR-X as well as airborne photography highlights 

advantages and limitations of the proposed method. We conclude that even though the 

fully automated SAR-based flood mapping technique overcomes some limitations of 

previous methods, further technological and methodological improvements are 

necessary for SAR-based flood detection in urban areas to match the flood mapping 

capability of high quality aerial photography. 

 

I. INTRODUCTION 

The support of remote sensing for mapping changes in water surface extents and 

elevations has been demonstrated widely (for detailed reviews see [1]-[3]). The 

success of these research studies together with recent public and political awareness 

for quantifying global environmental change has led to a significant increase in the 

number of satellites dedicated to flood monitoring and hydrology in the wider sense. 

Importantly, flood monitoring from space has the advantage of large area coverage 

and relatively fast response services (see for example the International Charter’ Space 
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and Major Disasters’ initiated by major space agencies: 

http://www.disasterscharter.org/).  

The vast majority of a flooded area is rural rather than urban and accordingly most 

literature on remote sensing based flood detection to date has focussed on the rural 

case. However, it is perhaps more important to detect the urban flooding because of 

the increased risks and costs associated with it. Flood extent can be detected in rural 

floods using SARs such as ERS and ASAR, but these have too low a resolution (25 

m) to detect flooded streets in urban areas. However, a number of SARs with spatial 

resolutions as fine as 3 m or better have recently been launched and are potentially 

capable of detecting urban flooding. They include TerraSAR-X, RADARSAT-2, and 

the four COSMO-SkyMed satellites. 

In an operational context, reference [4] have proposed a hybrid methodology for 

SAR imagery, which combines radiometric thresholding and region growing as an 

approach enabling the automatic, objective and reliable flood extent extraction from 

SAR images. First results on moderate and low resolution image data indicate that the 

proposed method may outperform manual approaches if no training data are available 

even if the parameters associated with these methods are determined in a non-optimal 

way. The results demonstrate the algorithm’s potential for accurately processing data 

from different SAR sensors.  

Notable examples of research into automatic near real-time flood detection 

algorithms using single-polarisation high resolution (greater than a few metres) SAR 

imagery have been shown by references [5]-[6] on TerraSAR-X data and reference [7] 

on COSMO-SkyMed data. The algorithms by references [5]-[6] search for water as 

regions of low SAR backscatter using a region-growing iterated segmentation / 

classification approach whereas the technique by reference [7], is based on a fuzzy 

http://www.disasterscharter.org/
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logic approach which integrates theoretical knowledge about the radar return from 

inundated areas based on backscattering models, with simple hydraulic considerations 

and contextual information. Both algorithms are very effective at detecting rural 

floods, but would require substantial modification to work in urban areas containing 

radar shadow and layover.  

A semi-automatic algorithm for the detection of floodwater in urban areas using 

TerraSAR-X has also been developed by reference [8]. It uses a SAR simulator [9] in 

conjunction with LiDAR terrain data to estimate regions of the image in which water 

would not be visible due to shadow or layover caused by buildings and taller 

vegetation. Ground will be in radar shadow if it is hidden from the radar by an 

adjacent intervening building. The shadowed area will appear dark, and may be 

misclassified as water even if it is dry. In contrast, an area of flooded ground in front 

of the wall of a building viewed in the range direction may be allocated to the same 

range bin as the wall, causing layover which generally results in a strong return, and a 

possible misclassification of flooded ground as un-flooded. The algorithm is aimed at 

detecting flood extents for validating an urban flood inundation model in an offline 

situation, and requires user interaction at a number of stages.  

Follow-up work from this was carried out by reference [10]. Here the objective 

was to build on a number of aspects of the existing algorithms to develop an 

automatic near real-time method for flood detection in urban and rural areas. In the 

urban area, 75% of the urban water pixels visible to TerraSAR-X were correctly 

detected, though this percentage reduced somewhat if the urban flood extent visible in 

the aerial photos and detected by TerraSAR-X was considered, because flooded pixels 

in the shadow/layover areas not visible to TerraSAR-X then had to be taken into 

account. Better flood detection accuracy was achieved in rural areas, with almost 90% 
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of water pixels being correctly detected by TerraSAR-X. The algorithm assumes that 

high resolution LiDAR data are available for at least the urban regions in the scene, so 

that a SAR simulator may be run in conjunction with the LiDAR data to generate 

maps of radar shadow and layover in urban areas. It is therefore limited to urban 

regions of the globe that have been mapped using LiDAR.  

To contribute to these recent developments in high performance flood detection 

algorithms for high resolution SAR data, we propose a simple but effective technique 

based on image differencing as proposed by reference [4], which may compete with 

existing algorithms in terms of accuracy and level of automation. For this we also 

focus on flood detection inside urban areas and use the TerraSAR-X image of the 

England summer 2007 floods as demonstration. Although this is only a single test, 

and different results may be obtained for other urban areas where the built 

environment is different to the UK case studied here, it does provide a first 

demonstration of the potential of the method. 

 

II. METHODOLOGY 

Reference [5] recently highlighted an apparent lack of traceability and 

standardisation in many SAR-based flood-mapping methodologies. This concern has 

led to the introduction of two variants of an automated and physically-based SAR-

based flood-mapping algorithm [4]. Both variants, which are termed M1 and M2a 

respectively, exploit the statistics of backscattering coefficients retrieved from SAR to 

segment an image into its flooded and non-flooded parts. While M1 only considers a 

single SAR flood image to extract pixels corresponding to “open water” via 

thresholding and region growing, M2a adds change detection with respect to a non-

flood reference image to improve the algorithm’s performance. In this study we 
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introduce an enhanced version of M2a, which we term M2b. This method addresses 

some of the shortcomings of M2a that reference [4] identified in two representative 

case studies. This section provides a detailed overview of all processing steps of the 

flood extraction algorithm M2b, together with the associated parameters defining each 

process and a list of differences with respect to the M1 and M2a algorithms 

previously introduced. Besides standard pre-processing steps commonly involved 

with Level 1 SAR data, the M2b algorithm consists of four processing steps (Fig. 1).  

 

A. Statistical distribution of the “open water” backscatter 

The flood extraction algorithm uses as input Level 1 SAR data that are geo-coded, 

co-registered and calibrated.  The first step is the estimation of the probability density 

function (PDF) of backscattering values associated with “open water”. The aim of this 

processing step is the calibration of a theoretical PDF that optimally fits the empirical 

distribution of backscatter values from “open water” inferred from the SAR image. 

According to reference [13] the backscatter variability on a homogeneous surface is 

mainly due to speckle and the theoretical PDF that best describes the distribution of 

backscatter originating from a homogeneous surface is of gamma type. Here, we 

hypothesize “open water” to be a homogeneous surface, which means that a potential 

limitation of the approach and SAR mapping of inundated surfaces in general relates 

to the possible roughening of open water caused by emerging vegetation, wind or 

rainfall. We therefore assume that the PDF of type gamma can be used to estimate the 

distribution function of ”open water” backscatter: 
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where k is the shape parameter of the gamma distribution and 0

mσ  is the gamma 

distribution mode.  The parameter 0

1σ  is the minimum backscatter value in the SAR 

image, which needs to be applied so that the gamma distribution is calculated only for 

positive values.  

Two parameters thus need to be optimized to identify the theoretical gamma 

function f that best fits the empirical distribution of backscatter values from “open 

water” h (i.e. image histogram). The optimization of the two parameters k and 0

mσ  

consists in minimizing the root mean squared error (RMSE) between the image 

histogram and the gamma distribution for backscatter values lower than 0

thrσ , with the 

parameter 00

mthr σσ   representing the point where the distributions f and h start 

deviating. The optimization is performed with sequentially increasing values of 0

mσ  

and 0

thrσ  values. For each set of 0

mσ  and 0

thrσ  values, the parameter k is optimized 

using the nonlinear fitting process of reference [14]. The RMSE between the 

theoretical density function f and the empirical density distribution h is calculated for 

each parameter set and over all backscatter values lower than 0

thrσ . Finally, the 

parameter set ( 0

mσ , k, 0

thrσ ) providing the lowest RMSE is set as optimal. 

 

B. Radiometric thresholding 

The aim of the following step of the algorithm is to extract seeds of “open water” 

areas from the flood image, being either individual pixels or regions. The parameter 
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0

thrσ
 

represents the maximum backscatter value for which the fit between the 

theoretical and empirical PDF is satisfactory. For backscattering values higher than 

0

thrσ  the distribution functions f and h start deviating, which leads to an immediate and 

substantial increase of over-detected water pixels. As a matter of fact, 
0

thrσ
 

is 

considered the maximum backscatter value for which there is no significant overlap 

between radiometric distributions corresponding to water bodies and other land use 

types. Since the backscatter values from water surfaces are comparatively low, this 

value is used to extract the seeds of water bodies by selecting the pixels having 

backscatter values lower than
0

thrσ . The thresholding yields a preliminary flood 

inundation map that represents the seed region for a subsequent region growing 

process.  

Moreover, in order to be able to map permanent water bodies, the threshold 

computed on the flood image, 
0
thr

 , is also applied on the reference SAR image to 

classify seeds of permanent water bodies. It is worth noting that these seeds include in 

addition to permanent water bodies other smooth surfaces with a water surface-like 

radar response as well as all shadow-affected areas. 

 

C. Region growing 

Next, the extracted water bodies, representing the seeds, are dilated using the 

region growing approach of reference [15]. The procedure iteratively grows the seeds 

until a given tolerance level is reached. The sequence of thresholding and region 

growing only adds pixels to the seeds that are located in the vicinity of the 

preliminary flood extent, thereby limiting the risk of over-detection on areas distant 

from the flooded area (i.e. misclassification of “dry” pixels as “wet”). The tolerance 
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parameter characterises the regional homogeneity of the backscattering behaviour. 

The tolerance criterion adopted here is based on the percentiles of the theoretical 

gamma distribution of “open water” pixels.  

 The iterative procedure incorporates pixels with backscatter values lower than 

0

rgσ , corresponding to a given percentile of the theoretical gamma distribution of 

“water” pixels in the image.  In this study we propose a simultaneous calibration 

recently advocated by reference [4]. The approach optimizes the tolerance criterion 

0

rgσ  together with the change detection parameter introduced in the next section. 

Region growing, with the same threshold value 
0

rgσ  is also applied to dilate the 

seeds of permanent smooth surfaces obtained from the reference image. The approach 

provides a mask of water surface-like radar response areas that is used to limit the 

region growing applied on the flood image, thereby preventing the spreading of 

flooded areas into permanent smooth areas. 

 

D. Change detection 

Reference [4] argued that flood maps resulting from region growing should 

include all ‘‘open water’’ pixels connected to the seeds. The region growing should 

thus extend into the high percentiles of the gamma distribution. However, the 

resulting over-detection needs to be removed by the subsequently applied change 

detection step. Change detection thus aims at removing pixels from the flood extent 

map that do not correspond to flood water. To do so, only pixels that significantly 

change their backscatter values with respect to their baseline backscatter values are 

kept in the flood extent map, while pixels that did not decrease their backscatter 

values by a minimum amount are removed. This means that the main river channel, 
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which is a permanent water body, is not any longer an integral part of the flooded 

area. 

The specific parameter of the change detection is ∆0
, defined as the required 

minimum change in backscatter between the reference and the flood image for a pixel 

being considered as flooded. In order to determine the optimal criterion for the 

required minimum change in backscatter, an iterative procedure is adopted.  

As mentioned earlier, the two parameters 
0

rgσ  and ∆0
 are optimized through a 

simultaneous calibration, minimizing the RMSE computed over the whole range of 

backscatter values in the flood image between the theoretical gamma distribution and 

the empirical distribution of “open water” pixels. This means that different threshold 

values, 
0

rgσ , which correspond to different percentiles of the theoretical gamma 

distribution, are sequentially selected from an interval of plausible values, and a 

corresponding minimum change detection parameter 0
 is optimized for each tested 

0

rgσ threshold value. For every parameter set (
0

rgσ , ∆0
), the sequence of region 

growing and change detection processes is applied on the area conditioned by the 

permanent smooth area mask.  At the end of each iteration, the histogram of  “flood 

water” pixels is computed. The corresponding empirical PDF is compared against the 

initially calibrated theoretical gamma distribution (1). The parameter set (
0

rgσ , ∆0
) 

providing the lowest RMSE value is set as optimal. 

To summarize, M2b essentially represents an improved version of the M2a 

method introduced by reference [4]. The two algorithms both take into account a 

reference SAR image and include four inter-related processing steps (i.e. calibration 

of gamma distribution function, radiometric thresholding, region growing and change 

detection). However, while M2a pre-defines the region growing parameter 
0

rgσ as the 
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99% percentile of the “water” backscatter gamma distribution, M2b adds flexibility to 

the optimization process by calibrating the tolerance criterion 
0

rgσ that, together with 

the associated change detection parameter ∆0
, minimizes the RMSE between 

empirical and theoretical distribution functions.  

This modification implemented in M2b constitutes an important change as it 

renders the algorithm fully automated, without any requirement of manual user inputs. 

Therefore, the mapping process is believed to be entirely objective. Another important 

improvement is that M2b, unlike M2a, makes use of the reference image to build a 

mask of permanent water surface-like radar response areas. Indeed, to render the 

algorithm suitable for urban flood mapping, it is necessary to mask out not only 

smooth surfaces like tarmac, paved roads and parking lots, but also all regions in 

shadow-affected areas unseen by the satellite. In urban areas the latter are particularly 

important as they potentially lead to a significant part of over-detected flooded areas. 

It should also be noted that method M2a and its enhanced version M2b both rely 

on the availability of reference images acquired from the same orbital track, with the 

same incidence angle, polarization and resolution, and prior to the onset of flooding. 

Moreover, the adequate choice of a season-dependent reference image might help 

reducing the effects of changes in vegetation and in soil moisture conditions, as 

argued recently by reference [16]. With the advent of relatively new sensors such as 

TerraSAR-X, it can be difficult to find an image that satisfies these selection criteria. 

However, as image archives are gradually being built up, this should be less of a 

problem in the near future. If no reference image is available, method M1 can be 

applied. 
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III. STUDY AREA AND AVAILABLE DATASET 

This section describes the study area, the flooding event and the available remote 

sensing images for testing and evaluating the proposed automated flood delineation 

algorithm. 

The image data used for this study were acquired for the 1-in-150 year flood that 

took place around Tewkesbury, U.K., in July 2007. Extreme rainfall intensities 

resulted in substantial flooding of urban and rural areas; about 1000 properties in the 

town of Tewkesbury were affected [17]. Tewkesbury lies at the confluence of the 

River Severn, flowing in from the northwest, and the River Avon, flowing in from the 

northeast. Bankfull discharge is approximately 350 m
3
s

-1
 (or 4.5 m in gauged level) at 

the Saxons Lode gauging station ~7km upstream of Tewkesbury. The summer 2007 

event was unusual for the study site in that the majority of the flow was derived from 

local rainfall. On the 20th July, two days prior to flood peak, more than 12 cm of rain 

fell on the surrounding area. The flood peak of 5.43 m Ordnance Data Newlyn was 

measured at Tewkesbury on July 22 with both rivers exhibiting a more rapid increase 

in flow than a typical autumn or winter event that may build over many weeks, with 

flows increasing from 100 m
3
s

-1
 to >500 m

3
s

-1
 in 57 hours, between the 20th of July 

and the 22nd July. The river did not return to below bankfull until July 31. In the 

region of interest (red box in Fig. 2) an area of 1.5 km
2
 was possibly flooded at the 

time of the TerraSAR-X overpass, according to a 2m model simulation [18]. 

In order to demonstrate the applicability of our proposed SAR image 

segmentation algorithm, we define the urban area as the zone inside and in the 

vicinity of the built-up region of the town of Tewkesbury. 
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A. TerraSAR-X images 

A unique data set consisting of numerous types of remotely sensed images over 

one single event hydrograph were acquired over the selected study area [18]. From 

this dataset a stripmap TerraSAR-X image acquired on July 25 2007 (at 06:34 GMT, 

Wednesday) was selected (see Fig. 2). The image is a multi-look ground range 

spatially enhanced scene with 1.5 m pixel spacing and has a mean incidence angle of 

24°. Its H/H polarization mode arguably allows for the best discrimination between a 

SAR image’s flooded and non-flooded parts [5]. At the time of the satellite overpass 

and image acquisition, there was relatively low wind speed and no rain [8]. Moreover, 

no rainfall was recorded in the 30 hours preceding the TerraSAR-X acquisition, as 

well as during the satellite overpass itself. 

In their flood delineation study reference [8] used the single TerraSAR-X flood 

image together with air-borne scanning laser altimetry (LiDAR) data. Here, we also 

consider a dry reference image which is a post-flood image acquired from the same 

orbit track and with the same polarization as the flood image. This way, geometric 

problems related to co-registration can be limited and baseline backscatter values can 

be inferred. A single scene having these imaging characteristics and covering all of 

the azimuth extent of the target is available in the current TerraSAR-X image archive. 

It was acquired on July 22 2008 (at 06:34 GMT, Tuesday), almost exactly a year after 

the flood event had occurred.  The flood and non-flood images have both been 

acquired in the same month of the year. Hence it can be assumed that the state of 

vegetation is similar in both images. This is important as decreases in backscatter 

values between any two images are caused not only by flooding, but also by changes 

in vegetation and soil moisture among others. Hence, it is also important to note that 

the gauging stations close to the town of Tewkesbury did not record any rainfall in the 
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three days before the reference image was acquired. Since the weather was dry when 

the reference image was acquired, the effect of soil moisture fluctuations on observed 

decreases in backscatter values are considered as not significant for this test case. 

The two images, whose characteristics are listed in Table I, have been geo-

referenced and calibrated. In an operational context, the reference image would 

ideally consist of a pre-flood satellite acquisition. However, in this particular case, 

given the relative novelty of a sensor such as TerraSAR-X, it was not possible to find 

a reference image, prior to the onset of flooding, acquired from the same orbital track 

and with same polarization. Therefore, a post-flood image was selected. 

Particular attention has been given to an adequate co-registration of the images, as 

an accurate overlapping is a pre-requisite for detecting flooding-related changes in the 

backscattering behaviour. The accuracy of the geo-referencing has a sub-pixel 

precision. Next, the images have been filtered with a 5 x 5 Gamma-MAP filter to 

decrease the speckle contribution. This filter smoothes out the speckle granularity 

while preserving details, such as the contours of buildings and flooded areas [19]. It 

also impacts the parameterization of the gamma PDF (1) by reducing the spread of 

backscattering values associated with “open water”. The red box area in Fig. 2 

presents the area of interest for the city of Tewkesbury: it refers to a rectangular area 

of 1135x998 pixels (1.5 m pixel spacing) for a total surface of ~3 km
2
. 

 

B. Validation dataset 

The validation data set, consisting of very high-resolution 0.2 m aerial 

photographs acquired during the flooding event in July 2007, enables a 

comprehensive evaluation of the algorithm’s performance in terms of SAR-based 
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flood delineation. An aircraft operated by the Environment Agency of England and 

Wales (EA) carried out the overflights.  

The flood extent was obtained through manual photo-interpretation (Fig. 3a). 

Taking advantage of existing landuse maps of the area, permanent water bodies 

associated with rivers and canals have been removed from the validation map. While 

in general the delineation of flood boundaries from such high-resolution optical 

products is relatively straightforward, it is important to note that the flooding of 

densely vegetated and built-up environments can lead to some ambiguities. For 

instance, in the case of bare soil fields, the accurate positioning of the separation line 

between muddy flood waters and non-flooded areas is non-trivial.  

In addition, it is important to bear in mind that the aerial photographs were 

acquired on July 24 (at 11:30 GMT) while the TerraSAR-X image was obtained 19 

hours later on July 25 (at 06:34 GMT). Although there was no significant decrease in 

main river discharge between the acquisition time of aerial photographs and the 

TerraSAR-X overpass [20], this time gap might be responsible for some discrepancies 

between the SAR-derived and aerial photography-derived flooded areas. To illustrate 

potential discrepancies, simulations with a previously calibrated hydraulic 2m 

LISFLOOD-FP flood model [21], have been carried out both at the aerial photographs 

acquisition time and at the TerraSAR-X overpass. These simulations show a reduction 

of the flooded area of approximately 5% between the two time steps. In particular, 

Fig. 3(b) shows the differences between the two simulated flood inundation maps The 

most notable differences can be observed on a triangular-shaped field (see the middle-

right part of the domain of interest) from which flood water was drained between the 

two overpasses according to the model simulations. This location was also 

problematic in terms of identifying its flooding status through photo-interpretation, as 
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explained in more details in the discussion section. These factors, all unrelated to the 

processing of the SAR images, need to be taken into account during the analysis, as 

all the observed differences may not be necessarily due to the inability of the 

proposed algorithms for accurately extracting the flood extent from SAR imagery.  

 

IV. RESULTS AND DISCUSSION 

This section assesses the accuracy of the classification obtained with the fully 

automated flood detection algorithm M2b and contrasts its performance with those of 

the previously introduced M1 and M2a algorithms. The section also provides insights 

into the added-value of reference images for flood delineation in urban areas.  

 

A. Extraction of flooded areas 

The flood extent has been extracted from the TerraSAR-X image using the three 

methods M1, M2a and M2b.  

In particular, for method M2b, Fig. 4 illustrates the optimization of the four 

parameters: the mode of the “open water” backscatter gamma PDF, 0

mσ , the 

radiometric threshold, 
0

thrσ , the tolerance criterion for the region growing step, 
0

rgσ , 

and the minimum CD value, ∆0
. Panel (a) reports the optimization of the mode 

parameter while panel (d) provides the corresponding optimized gamma PDF in red 

together with the histogram of the backscatter values in the flood image. Panel (d) 

displays the value of the second parameter, 
0

thrσ  (i.e. in this case study equal to –15.5 

dB) as the maximum backscatter value for which there was no overlap between the 

empirical histogram and the theoretical gamma PDF. The optimized 
0

thrσ  value is also 

provided in Fig. 5(a), together with the backscatter histogram of pixels in the 
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reference image. This value is used to derive the reference mask of permanent water 

surface-like radar response areas through thresholding of the reference image (Fig. 

5(b)). From Fig. 4(d) and Fig. 5(a) it can be observed that for high backscatter values, 

there is a systematic noise in the return signal of both TerraSAR-X images. This is 

arguably due to the high complexity of urban topography and its considerable impacts 

on the high-resolution backscattering signal. Considering the region growing step of 

method M2b, it is important to mention that the parameters 
0

rgσ  and ∆0
 are 

optimized together. Therefore, the subplot in panel (b) of Fig. 4 illustrates the impact 

that different 
0

rgσ  parameters (each associated with the corresponding optimal ∆0
 

value) have on the RMSE. Similarly, panel (c) provides an example of the 

performance plot of parameter ∆0
 for a given 

0

rgσ  value: Fig. 4(c) refers to the 

optimal 
0

rgσ  value of the case study. The backscatter value corresponding to the 

optimized 
0

rgσ value is also displayed in panels (e) and (f). Finally, panel (f) shows the 

empirical histogram of flood pixel values before and after change detection. The 

histograms in panel (f) are computed only from pixels inside the SAR-derived flooded 

area. The reduction of the distribution tail and the related reduction of over-detection 

are indicated by the empirical histogram approaching the theoretical gamma PDF.   

 

B. Evaluation at city level (quantitative analysis) 

Three flood extent maps were obtained through the application of the three image 

processing algorithms. The corresponding contingency matrices were computed using 

the evidence provided by aerial photography. The binary pattern of flooded and non-

flooded pixels was compared against the reference flood map (in this case, see Fig. 3). 
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The result is a matrix (or contingency table) of four possible outcomes. With respect 

to the reference flooded area, there are two ways for a remote sensing-derived flooded 

area to be correct (either by correctly representing flooded or non-flooded pixels) and 

two ways to be incorrect (either by erroneously under- or over-predicting the observed 

inundation extent). The values of the contingency matrix for all methods are reported 

in Table II (and also displayed as contingency maps in Fig. 6) for a quantitative 

evaluation of the performances. Moreover, the optimized (and/or fixed) parameter 

values for the region growing and the change detection are indicated.  

From Table II it can be concluded that in the present case study the three 

algorithms provide very similar performance levels. When the evaluation is carried 

out at a regional scale (i.e. at city level), the differences seem to be marginal. 

However, methods M2a and M2b still slightly outperform method M1 with respect to 

all evaluation criteria listed in Table II, suggesting that change detection with respect 

to a non-flood reference image does provide some advantages. The results do not 

reflect the added-value that we expected from the methodological improvements of 

method M2b. This result is due to the fact that, in this particular case study, the 

optimized region growing threshold 
0

rgσ equals 98%, which is very close to the pre-

defined 99% value that reference [4] proposed for M2a. Here, the trade-off involves a 

controlled growing of the seed region in order to be able to limit the over-detection of 

flooded areas. While the latter can be partly removed by the subsequent change 

detection, the results indicate that the reduced over-detection comes at the cost of an 

increased under-detection of flooded areas. The results also indicate that method M2b, 

which provides an optimal empirical distribution with respect to the targeted gamma 

distribution of “open water” backscatter values, does not necessarily generate a more 

accurate flood inundation map than M2a. On a more positive note, it can be observed 



 19 

that the simultaneous optimization of region growing threshold 
0

rgσ and change 

detection parameter ∆0
, computed by minimizing the RMSE between empirical and 

theoretical distribution functions, led to the maximum value of correctly detected 

pixels (81.7% as reported in Table II). Moreover, from Fig. 7 it can be observed that 

in this case study the optimum parameter set also yields the best performance with 

respect to the validation data.  

A comparison with the flood extent detected for the same test case with the semi-

automatic procedure of reference [8] cannot be carried out in a very meaningful way 

due to the fact that the input data sets in both studies differ. Reference [8] took 

advantage of a regional DEM so that SAR-derived water ground heights smoothly 

vary along the river reach. Furthermore, reference [8] did not make use of a pre-flood 

reference image. The comparison of contingency matrices reveals that the M2b 

method performance of 81.7% of correctly detected pixels is rather close to the 

percentage of 85.4% obtained with the flood inundation map provided by reference 

[8] on a common area of interest and reference dataset. This result indicates that 

topography data could be used more efficiently than pre-flood reference images for 

increasing the accuracy of SAR-derived flooded areas. However, this assessment 

needs to be confirmed in future studies.   

To better appreciate the advantages of these methodological enhancements it is 

worth analyzing the PDF of backscattering values associated with pixels located 

inside the flood inundation maps, the latter corresponding either to the validation map 

obtained from aerial photographs or the flood extent maps computed with the 

different versions of the image-processing algorithm. The different PDFs are 

displayed in Fig. 8. It becomes evident from the panels that the PDF of “flood water” 

pixels from high-resolution photos is reasonably close to a gamma distribution, albeit 
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characterized by a heavy tail end. M1 does enable the identification of a majority of 

water pixels, but it misses out the tail of the distribution. M2a yields a better 

performance, as it adds more pixels to the flood extent, thereby reducing the number 

of under-detected flood pixels. However, there is still a tendency to slightly 

overestimate part of the tail of the theoretical gamma PDF. Because of its enhanced 

change detection procedure, the M2b method is capable of growing the seeds further 

into the high percentiles of the gamma distribution, thereby further reducing the heavy 

tail end while keeping the PDF of detected water pixels closer to the theoretical PDF. 

It is worth noting here that the PDF of backscattering values inside the area delimited 

by the high-resolution photos exhibits a particular tail that is missed by all three 

versions of the flood detection algorithm. Surprisingly, the high number of pixels with 

associated high backscatter values is not only due to the expected increased 

backscatter response from urban structures. In fact, probability distributions from 

pixels located in rural areas exhibit the same heavy tail end as pixels located in urban 

areas (Fig. 9). Further research is needed to get a better understanding of the particular 

shape of the PDF of backscatter values. One possible explanation, can be that some of 

the pixels changed their status from “flooded” to “non-flooded” between the two data 

acquisitions, as already illustrated in Fig. 3b.  

From this first overview of results, it can be concluded that the strength of change 

detection is that it allows the region growing to extend further into the high 

percentiles of the gamma distribution as it efficiently removes part of the resulting 

over-detection. More case studies are needed before a generalization of these findings 

can be done in a meaningful way. Nevertheless, these preliminary results corroborate 

those reported by reference [4] in case studies dealing with coarse and moderate 

resolution SAR imagery. 
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On the selected domain (i.e. rectangular area of 1135x998 pixels) the running time 

of the complete process on an Intel(R) Core (TM) 2Quad CPU, 2.66Ghz and 3.24 GB 

RAM is less than 30 minutes, indicating the appropriateness of the method also for 

near real-time applications. 

 

1) Analysis of errors: the problem of unseen regions 

One feature that requires special attention relates to regions in a SAR image that 

cannot be seen by the radar sensor because of its side-looking nature. The affected 

regions are commonly referred to as ‘shadow’ and ‘layover’. In the context of urban 

flood mapping ‘shadow’ and ‘layover’ are due to geometric distortions caused mainly 

by the presence of buildings. Their impact on SAR-based flood mapping is twofold. 

First, flooding does not impact the radar response from shadow areas and, 

consequently, SAR-based detection of flooded shadow areas is not possible (i.e. 

problem of under-detecting floods). Second, the low radar response from shadow 

regions might erroneously lead to their classification as ‘flooded’ even in the case 

they are not (i.e. problem of over-detecting floods). Here, we assume that the resulting 

over-detection might be addressed through change detection since urban shadow areas 

do not change between two images acquired from the same track. This is confirmed 

by the reduction in over-detection shown in Table II. Moreover, due to double-bounce 

reflection effects, the urban layover backscatter could be different in the flood and 

reference images. This phenomenon typically occurs in vegetated areas, where 

flooding yields an increased backscatter due to the double-bouncing between the 

flooded ground and branches or leaves, resulting in a higher return signal in the flood 

image. A similar mechanism of multiple reflections between flooded streets and walls 

can potentially result in a brighter backscatter in the urban areas covered by the flood 
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image. Classification errors are expected to be higher in urban areas than in forested 

regions [22] and therefore the layover contribution should be taken into account when 

mapping flooded urban areas. In fact, the inherent under-detection problem can only 

be addressed through technological advances (e.g. look angles closer to nadir) or the 

use of ancillary data (e.g. topography data).  

For the imaging characteristics of the TerraSAR-X image acquired on July 25 

2007, reference [8] computed a mask of areas affected by ‘shadow’ and ‘layover’ in 

the city of Tewkesbury (Fig. 10). They used the German Aerospace Center (DLR) 

SAR end-to-end simulator (SETES) in conjunction with air-borne scanning laser 

altimetry (LiDAR) data to estimate regions of the image in which water would not be 

“visible” to the instrument. In this case study we made use of the shadow/layover 

mask from reference [8] to evaluate the risk of misclassifying pixels in areas not 

“visible” to the SAR sensor.  

In the area of interest (red box in the relevant figures), the shadow/layover mask 

of reference [8] covers a total area of ~1 km
2
, which is a significant percentage of the 

total area selected for the analysis (~3 km
2
). However, referring to the validation map, 

the flooded area not visible to the satellite reduces to 0.25 km
2
, over a total flood 

extent of 1.22 km
2
 (see Table III). Moreover, due to the 24° look angle, in this 

particular case study the effect of layover is greater than shadow, as it covers a much 

larger flooded area. This is mostly due to the diffuse presence of hedges along the 

borders of the different fields in the rural areas.  

As flooding in shadow/layover areas is undetectable for SAR, the corresponding 

regions would need to be delineated a priori and considered as areas with an 

“unidentifiable status of flooding”. In fact, even if a flood is correctly classified in a 

shadow region, this result should be viewed as an error as the right answer is obtained 
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for the wrong reason. As the objective of the developed method was to generate a 

mask of surfaces that produce a radar signal response similar to that of inundated 

areas in order to constrain the flood extent outside the shadow areas, in the following 

we focus only on the overlap between the obtained flood extent and the shadow areas 

derived by reference [8]. Note that the shadow mask itself, obtained with the SAR 

simulator and the LiDAR data, might contain some degree of uncertainty. However, 

we noticed that the number of such pixels was not significant in comparison to the 

total number of extracted flood pixels (see Table III). In general, the overlap between 

the SAR-derived flood extent and the shadow mask is restricted to the border regions 

of large clusters of pixels, which were correctly classified as “flooded”. Furthermore, 

it can be observed from the results in Table III that M2b helps in significantly 

reducing the number of pixels classified as “flood water” in the shadow regions. This 

is due to the fact that parts of the shadow-affected areas are included in the mask of 

permanent water surface-like radar response areas described earlier. By considering a 

reference image acquired from the same orbital track as the target image, the method 

termed M2b reduces the risk of classifying ‘shadow’ areas as “flooded”.  

 

C. Evaluation at street level (qualitative/thematic analysis) 

The benefits of using a reference image (including the masking of permanent 

smooth areas) become obvious when looking at the spatial distribution of errors (Fig. 

6). The application of algorithms M2a and M2b leads to the expected reduction of 

misclassified pixels in urban areas. Numerous scattered clusters of pixels that were 

initially erroneously classified as “flooded” could be removed, thereby significantly 

reducing over-detection. In Table IV a thematic analysis with a special focus on urban 

features complements the quantitative analysis presented earlier (Table II).  
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The objective is to understand the advantages and limitations of the three variants 

of the SAR-based flood delineation algorithms for correctly identifying flooding in 

urban areas. From the results depicted in Table IV, it can be observed that in spite of 

the high-resolution SAR imagery used in this study, the detection of flooding in built-

up environments remains a very challenging task. All algorithms struggle to recognize 

the flooding status of many small-scale features that might be crucial as their state of 

flooding could mean significant interruptions of everyday life. However, overall, the 

enhanced algorithm M2b performs best with a slightly reduced number of 

misclassified areas. In particular, M2b enables the a priori delineation of areas 

characterized by specular-like reflections (i.e. areas with permanent water surface-like 

radar responses). This is helpful given that smooth areas (e.g. R2 & R3) tend to be 

systematically classified as flooded by M1 and, to a lesser extent, by M2a. On the 

other hand, more open areas, such as the main roads R12 and R13, are correctly 

classified by all three methods. It is worth mentioning that, despite these somewhat 

encouraging results, M2b fails to correctly delineate flooding in many densely 

vegetated and built-up environments.  

These errors will be analyzed in more detail in the following sections. In this 

analysis we will consider ancillary data (e.g. land use map, oral communications from 

local experts) to better understand the reasons that are at the origin of the remaining 

misclassifications. Moreover, the mask of the region unseen by the satellite, i.e. 

shadow and layover, has also been taken into account for error detection at street 

level. 
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1) Analysis of errors: the problem of over detection 

As it can be seen from the urban flood maps presented in Fig. 6 both over- and 

under-detection are reduced as a result of applying the M2b algorithm rather than its 

predecessors. This is particularly evident in the case of the large shopping mall 

labelled R3. Due to the flatness of its roof and resulting specular reflection it was 

erroneously classified as flooded by M1, while M2a and M2b correctly excluded it 

from the flooded area. This emblematic example best illustrates the potential added 

value of reference images as they enable the a priori identification of the majority of 

smooth areas.  

Similarly, other wide flat regions, such as parking lots and airfields, are 

recognizable in the reference image. For instance, the region labelled R1 corresponds 

to large parking lot composed of three parts. M2b completely removes one of them 

from the flood extent map, while the two other parts are significantly reduced in size. 

The sub-optimal performance of M2b is arguably due to a difference in the number 

and placement of vehicles at the time of the two satellite overpasses. In very high 

resolution SAR imagery the presence or not of an object like a car inevitably impacts 

the radar response. This necessarily influences the capability of the M2b algorithm to 

reliably identify areas of smooth tarmac and unfortunately may not be resolvable at 

all, for obvious reasons. 

The region labelled R2, an area both flat and made of tarmac but not used as a 

parking space, shows the capability of M2b to avoid the typical misclassifications of 

smooth areas as flooded. 

Finally the thematic analysis confirms the algorithm’s ability for identifying 

permanent water bodies. The permanently flooded bed of the River Avon and some 

adjacent boat marinas are removed from the flood extent map when taking into 
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account the reference image: this becomes evident when looking at the areas of over 

detection in the panels (b) and (c) of Fig. 6. Clearly, this result is not achievable with 

a single flood image, as M1 would invariably classify permanent water bodies as 

flooded (see panel (a) of Fig. 6).  

Despite the previously mentioned ability of M2b to detect areas with permanent 

low backscatter values, there are still some shadow-affected areas that are erroneously 

classified as “flooded”. A typical example is a large inclined rooftop in region R9. 

This is classified as “flooded” by all three methods due to the fact that one side is not 

“visible” to the SAR sensor. Other examples of this behaviour can be found on 

various inclined rooftops in the R7 region. 

To summarize, some risk of over-detecting flooded areas in built-up environments 

inevitably remains. Non-flooded areas that appear smooth and water-surface like at 

radar wavelengths as well as areas unseen by the satellite because of the side-looking 

nature of SAR systematically produce very low signal returns and are not easily 

distinguishable from flooded areas. The results of this study suggest that taking into 

account the baseline backscatter values from “dry” reference images partly addresses 

the problem. Wide, open areas of tarmac or concrete (roads, parking lots, airfields 

etc.) can be identified and removed from the final flood map (or, alternatively, 

categorized as areas impossible to classify), while the situation is more problematic 

with shadow areas. To check the plausibility of both types of regions to be flooded, 

we expect that the use of high-resolution high-precision DEM data may be helpful. 

More research on the integration of additional data sources into the image-processing 

algorithm is needed for this to provide significant advantages.  
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2) Analysis of errors: the problem of under detection 

With respect to the problem of under-detecting the true flood extent using SAR 

observations, the results depicted in Table II indicate that method M2b leads to a 

decrease in performance. In fact, the percentage of under-detected flood pixels rises 

from 15.6 % obtained with the initial M2a method to its M2b-related value of 16.2 %.   

However, it has to be underlined that this type of error is generally to be found on the 

edge of inundated fields or in the vicinity of the main riverbed with tall vegetation 

surrounding the areas. While the algorithm accurately retrieves most of the flooded 

areas in wide, open areas, it can be observed that it systematically fails to retrieve 

flooding under the vegetation canopy. These errors are not related to the image-

processing algorithm; rather they are due to the fact that with X-band radar systems 

volume scattering originating from the vegetation canopy causes increased signal 

return (i.e. layover). Furthermore, as already mentioned in paragraph 3.2, it cannot be 

ruled out that the validation flood extent itself is affected by a slight overestimation, 

as it was acquired closer to peak discharge than the satellite images. This could also at 

least partly explain the under detection documented in the contingency matrix. Also, 

the uncertainties in the delineation of the flood validation extent form aerial 

photography are expected to have some marginal effect.  

For example, an important area of apparent under-detection is the triangular 

shaped field labelled R15.  However, a closer look at the data reveals that due to the 

time difference between the acquisitions of aerial photographs satellite imagery, it is 

likely that that most of the floodwater was drained from the field in the 19 hours 

preceding the TerraSAR-X acquisition. This hypothesis is confirmed by hydraulic 

model simulations (see Fig. 3(b)). 
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The roughening of water surfaces due to wind is another inherent and potentially 

significant limitation of the algorithm proposed in this study. When there are regular 

waves on the surface of the water, Bragg resonance can result in very high signal 

returns [23]. The misclassification of the area labelled R18 as non-flooded represents 

a typical example. From the air photos and model simulations there can be no doubt 

about the flooding of the area. However, waves are clearly identifiable on the standing 

water. This renders accurate flood detection extremely difficult (if not impossible), as 

it violates the algorithm’s main underlying assumption of flooded areas behaving as 

specular reflectors. 

 

V. CONCLUSIONS 

This study proposes a promising methodology that is shown to be capable of 

providing satisfactory results in mapping flood extent in a challenging case study 

However, some further improvements are still necessary before the deployment of a 

fully automated SAR-based flood delineation algorithm operating in a near-real time 

can be envisaged.  

The proposed algorithm shares some of the characteristics advocated by reference 

[5]. In fact, since no manual (and subjective) input is required from the end user, the 

algorithm enables an automated, objective and repeatable flood detection. The 

algorithm is computationally efficient and operates with minimum data requirements, 

considering as input data a flood image and a reference image acquired before or after 

the flooding. 

The difficulty of detecting flooded areas in a built-up environment could be 

partially addressed by a change detection approach that makes use of pre- or post-

flood reference images available in the data archives of satellite data providers. In 



 29 

particular, the shadow effect stemming from man-made structures can be taken into 

account through a mask of permanent water surface-like radar response areas. This 

approach overcomes the need of a high-resolution DEM and a SAR simulator for 

determining shadow regions that are not visible to the satellite. On the other hand, it 

requires a reference image with the same imaging characteristics as the flood image. 

While the number of suitable candidate images can be very limited in case of 

relatively new satellites, such as TerraSAR-X, it is important to note that image 

archives are gradually being built up, which will progressively increase the likelihood 

of finding adequate reference images in the online archives.  

In order to further improve the method, we aim at taking advantage of topographic 

and land use data, which are available at global scale, albeit with variable accuracy 

and resolution. We hypothesize that such ancillary data will help to reduce the 

elevation curvature along the flood edges as argued by reference [8] and to identify 

parts of the under-detection caused by emerging objects such as trees of buildings.  

We consider this study to be timely because there is a clear need for rapidly 

acquiring, processing and distributing hydrology-related information derived from 

SAR imagery. For near real-time applications in hydrology, where flood extent data is 

systematically assimilated into hydrologic-hydraulic models, the value of remote 

sensing data is much higher if rapidly available [24]-[25]. 
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FIGURE CAPTIONS 

Fig. 1. General scheme of the three processing steps of the flood detection algorithm 

M2b. 

Fig. 2. (a1) Flood image (July 25 2007) and (b1) post-flood reference image (July 22 

2008). Zoom in the area of interest (city of Tewkesbury) for (a2) the flood image and 

(b2) the reference one. 

Fig. 3. (a) Flood validation map obtained from high resolution aerial photography on 

July 24 2007 at 11:30: the permanent water bodies are also displayed; (b) comparison 

between the LISFLOOD computed flood extent at the time of aerial photographs 

acquisition (July 24 2007, 11:30 GMT) and TerraSAR-X overpass (July 25 2007, 6:34 

GMT). 

Fig. 4. Optimization of the parameters of the automated algorithm for M2b method: 

Gamma pdf mode, 
0

mσ , backscatter threshold, 
0

thrσ , region growing threshold (or 

maximum water backscatter), 
0

rgσ , CD threshold, ∆0
; the backscatter histogram of 

the flood image is also displayed in dark blue colour. 

Fig. 5. (a) Backscatter histogram of the reference image with superimposed the 

threshold value 
0
thr


, computed on the flood image; (b) reference mask: pixels in the 

reference image with values lower than 
0
thr


. 

Fig. 6. Contingency map deriving from method: (a) M1, (b) M2a, (c) M2b. For sake 

of clearness in the representation, the displayed maps have been cleaned by 

neighbourhood analysis in post-processing step.  
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Fig. 7. RMSE values computed for different region growing thresholds (M2b method) 

during the optimization process and corresponding performances in terms of correctly 

predicted pixels (as flooded and as non-flooded). 

Fig. 8. Backscatter probability density function of water pixels from the high 

resolution (HR) photographs and water pixels from the method: (a) M1, (b) M2a, (c) 

M2b. The histograms refer to the algorithm output, with no post-processing cleaning 

step included. 

Fig. 9. (a) Main rural and urban areas overlapped on the pixels in the flood image 

covered by water according to the high resolution aerial photographs; (b) 

corresponding backscatter probability density functions. 

Fig. 10. Mask of regions unseen by TerraSAR-X due to shadow and layover, from 

reference [8]. 
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TABLES  

TABLE I  

CHARACTERISTICS OF THE AVAILABLE IMAGES (STRIPMAP MODE) FOR 

THE ANALYZED FLOOD EVENT. 

IMAGE Date track orbit 

pixel 

spacing 

(m) 

ground 

resolution 

(m) 

band 

wave 

length 

(GHz) 

polarization 

Average mean 

incidence angle 

on study area 

(°)  

flood 
July 25 2007 

6:34 
descending 109 1.5 3 X 9.6 H/H 24 

reference 
July 22 2008 

6:34 
descending 109 1.5 3 X 9.6 H/H 24 

 

 

TABLE II  

QUANTITATIVE EVALUATION OF TERRASAR-X DERIVED FLOOD 

EXTENT. 

 
0

rgσ  RGthr ∆0 
over 

detection 

under 

detection 

total 

good 

total 

error 

 (dB) (%) (dB) (%) of the area of interest, red box in Figures 

M1 -13.4 96 - 2.8 15.6 81.6 18.4 

M2a -11.7 99 -3.1 2.6 15.6 81.8 18.2 

M2b -12.5 98 -3.0 2.1 16.2 81.7 18.3 

 

 

TABLE III  

QUANTITATIVE ANALYSIS OF WATER PIXELS (PIXEL SIZE 1.5M) IN THE 

SHADOW REGIONS (MASON ET AL., 2010).  

 

n° of water 

pixels 

in shadow 

n° of 

water pixels 

water pixels 

in shadow 

(%) 

M1 8648 374060 2.3 

M2a 8738 371734 2.3 

M2b 7304 357616 2.0 
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TABLE IV  

IMPROVEMENT DERIVING FROM THE USE OF A REFERENCE IMAGE: 

COMPARISON OF THE DIFFERENT METHODS FOR SOME REGIONS, WITH 

A SPECIAL EMPHASIS ON URBAN FEATURES. SEE FIG. 6 FOR THE 

LOCATION OF STREETS, CROSSINGS AND URBAN/RURAL AREAS (THE 

CORRECTLY CLASSIFIED REGIONS OF EACH METHOD ARE IN BOLD 

FONT).  

ID  region HR photographs method M1 method M2a method M2b 

R1 parking lots non-flooded flooded partially flooded partially flooded 

R2 tarmac area non-flooded flooded non-flooded non-flooded 

R3 
supermarket roof 

(Morrisons Store) 
non-flooded flooded non-flooded non-flooded 

R4 road crossing non-flooded non-flooded non-flooded non-flooded 

R5 
Road 

(Barton Road) 
non-flooded flooded flooded flooded 

R6 field on hillslope non-flooded flooded flooded flooded 

R7 roof non-flooded flooded flooded non-flooded 

R8 urban area non-flooded partially flooded less flooded less flooded 

R9 roof non-flooded flooded flooded flooded 

R10 road crossing non-flooded flooded partially flooded partially flooded 

R11 
Road 

(East Street) 
non-flooded non-flooded flooded non-flooded 

R12 
Road 

(Chance Street) 
non-flooded non-flooded non-flooded non-flooded 

R13 
road 

(High Street) 
non-flooded non-flooded non-flooded non-flooded 

R14 parking lot partially flooded flooded partially flooded partially flooded 

R15 field  flooded (dubious) non-flooded non-flooded non-flooded 

R16 
road 

(Ashchurch Road) 
flooded partially flooded partially flooded partially flooded 

R17 road crossing flooded non-flooded non-flooded non-flooded 

R18 parking lot flooded partially flooded partially flooded partially flooded 

R19 urban area flooded partially flooded partially flooded partially flooded 

R20 urban area flooded non-flooded non-flooded non-flooded 

R21 
Road 

(Knights Way) 
flooded non-flooded non-flooded non-flooded 
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